L16 — Week 8

Introduction to Statistical Learning
Theory: VC dimension and
Learnability

CS 295 Optimization for Machine Learning

loannis Panageas



A motivating example

Recap:
* We saw that the hypothesis classes of finite cardinality are PAC learnable using
Chernoff Bounds and Union Bound. What if the class is not finite?
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Lemma (Threshold functions). Consider the Hypothesis class of threshold func-
tions on the real line, that is

where hy(x) = 1x<q. H is PAC learnable using ERM algorithm (even if the class is
infinite).
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A motivating example

Recap:
* We saw that the hypothesis classes of finite cardinality are PAC learnable using
Chernoff Bounds and Union Bound. What if the class is not finite?

Lemma (Threshold functions). Consider the Hypothesis class of threshold func-
tions on the real line, that is

where hy(x) = 1x<q. H is PAC learnable using ERM algorithm (even if the class is
infinite).

Remarks:

* Therefore it is not necessary that the hypothesis class is of finite cardinality.
. . _log;

*  We will show the lemma above, i.e., (g, §)-learnable using TS samples.
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A motivating example

Proof. Let D be the marginal distribution over the domain and fix €,5. We

need to show that taking S samples IID of size w

probability 1 — J the generalization error is at most €.

suffices so that with
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A motivating example

Proof. Let D be the marginal distribution over the domain and fix €,5. We

need to show that taking S samples IID of size w

probability 1 — J the generalization error is at most €.

suffices so that with

Let a* be a number such that h,« has error zero (perfect fit).
Moreover, consider ay < a* < a; such that

Pr [x € (ag,a”)] = Pr [x € (a*,a1)] = €.
x~D x~D

Optimization for Machine Learning



A motivating example

Proof. Let D be the marginal distribution over the domain and fix €,5. We

need to show that taking S samples IID of size w

probability 1 — J the generalization error is at most €.

suffices so that with

Let a* be a number such that h,« has error zero (perfect fit).

Moreover, consider ay < a* < a; such that

Pr [x € (ag,a")] = leb[x € (a*,a1)] =e.

x~D
€ Mass € mass
ao a™ ai
Observe that we might have to choose ag = —o0 or a; = +00.
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A motivating example

Proof cont. Let S be a set of IID samples and assume that the ERM algorithm
returns a function hg with threshold bg.

If by is the maximum x with label 1 and b; the minimum x with label O it
holds that

bs S (bo, bl]
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Proof cont. Let S be a set of IID samples and assume that the ERM algorithm
returns a function hg with threshold bg.

If by is the maximum x with label 1 and b; the minimum x with label O it
holds that

bs S (bo, bl]

The error of hg is at most € if and only if (bg, b1] C (ag,a1)
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A motivating example

Proof cont. Let S be a set of IID samples and assume that the ERM algorithm
returns a function hg with threshold bg.

If by is the maximum x with label 1 and b; the minimum x with label 0 it
holds that

bs € (bo, b1].

The error of hg is at most € if and only if (bg, b1] C (ag,a1)

Let’s bound the probability of this event!

Optimization for Machine Learning



A motivating example

Proof cont. Let S be a set of IID samples and assume that the ERM algorithm
returns a function hg with threshold bg.

If by is the maximum x with label 1 and b; the minimum x with label 0 it
holds that

bs € (bo, b1].

The error of hg is at most € if and only if (bg, b1] C (ag,a1)

Let’s bound the probability of this event!

By union bound we have

Srljll;)m[(bo < 610) U (bl > 611)] < Sf%;m[(bo < a())] + Sf{)m[(bl > 611)].
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A motivating example

Proof cont.
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A motivating example

Proof cont.

Using the same argument, we conclude that the error probability is
2e " = §. Solving for m we get

I log(2/6) .
€
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A motivating example

Proof cont.

SPE)m[(bO < ao)] < l;r[Vx €S, x ¢ (ng,a*)] — (1 _ e)m < p €M

Using the same argument, we conclude that the error probability is
2¢7 " = 4. Solving for m we get

I log(2/6) .
€

All hypothesis classes are learnable then? Not really
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VC dimension

Definition (Restriction). Let H be a class of functions from X to {0,1} and let
C = {c1,....cm}. The restriction of H to C is the set of functions from C to {0,1}

that can be derived from H. That is
He = {h(cq), ... h(cm)) :h € H},

where we represent each function from C to {0,1} as a vector in {0,1}CI.
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Definition (Restriction). Let H be a class of functions from X to {0,1} and let
C = {c1,....cm}. The restriction of H to C is the set of functions from C to {0,1}
that can be derived from H. That is

He = {h(c1),... h(cy)) : h € H},

where we represent each function from C to {0,1} as a vector in {0,1}CI.

Definition (Shattering). A hypothesis class H shatters a finite set C C X if the
restriction of H to C is the set of all functions from C to {0,1}. That is |Hc| = 2/€I.
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VC dimension

Definition (Restriction). Let H be a class of functions from X to {0,1} and let
C = {c1,....cm}. The restriction of H to C is the set of functions from C to {0,1}
that can be derived from H. That is

He = {h(c1),... h(cy)) : h € H},

where we represent each function from C to {0,1} as a vector in {0,1}CI.

Definition (Shattering). A hypothesis class H shatters a finite set C C X if the
restriction of H to C is the set of all functions from C to {0,1}. That is |Hc| = 2/€I.

Definition (VC dimension). The VC-dimension hypothesis class H, denoted VCdim(H),
is the maximal size of a set C that can be shattered by H. If ‘H can shatter sets of
arbitrarily large size we say that H has infinite VC-dimension.
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Examples

e The class of threshold functions on real line has VC dimension 1. Why?
e The class of interval functions on real line has VC dimension 2. Why?
* The class of aligned rectangle functions on the plane has VC dimension 4. Why?
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Examples

e The class of threshold functions on real line has VC dimension 1. Why?
e The class of interval functions on real line has VC dimension 2. Why?
* The class of aligned rectangle functions on the plane has VC dimension 4. Why?

C1
[ ®

Cq Cs5 C2
o o o O o

C3
® o

Figure 6.1 Left: 4 points that are shattered by axis aligned rectangles. Right: Any axis
aligned rectangle cannot label c5 by 0 and the rest of the points by 1.
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Examples

e The class of threshold functions on real line has VC dimension 1. Why?
e The class of interval functions on real line has VC dimension 2. Why?
* The class of aligned rectangle functions on the plane has VC dimension 4. Why?

C1
[ ®

Cq Cs5 C2
o o o O o

C3

Figure 6.1 Left: 4 points that are shattered by axis aligned rectangles. Right: Any axis
aligned rectangle cannot label c5 by 0 and the rest of the points by 1.

* Any finite class H has VC dimension at most log |H|. Why?
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VC dimension of halfspaces

Theorem (Halfspaces). The VC dimension of the class H of homogenous halfspaces
in R is d. Note that H = {hy(x) : hy(x) 1= sign(w " x)}.
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VC dimension of halfspaces

Theorem (Halfspaces). The VC dimension of the class H of homogenous halfspaces
in R is d. Note that H = {hy(x) : hy(x) 1= sign(w " x)}.

Proof. We first need to show that VC dimension is at least d by appropriately
choosing a set C.
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VC dimension of halfspaces

Theorem (Halfspaces). The VC dimension of the class H of homogenous halfspaces
in R is d. Note that H = {hy(x) : hy(x) 1= sign(w " x)}.

Proof. We first need to show that VC dimension is at least d by appropriately
choosing a set C.

Consider the set of vectors ¢y, ..., ¢;, where for every i the vector ¢; is the all
zeros vector except 1 in the i-th coordinate.
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VC dimension of halfspaces

Theorem (Halfspaces). The VC dimension of the class H of homogenous halfspaces
in R is d. Note that H = {hy(x) : hy(x) 1= sign(w " x)}.

Proof. We first need to show that VC dimension is at least d by appropriately
choosing a set C.

Consider the set of vectors ¢y, ..., ¢;, where for every i the vector ¢; is the all
zeros vector except 1 in the i-th coordinate.

This set is shattered by the class of homogenous halfspaces because for every
binary vector vy, ..., ¥4, and for w = (y1, ..., y4), we get that hy,(e;) = v;.
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VC dimension of halfspaces

Theorem (Halfspaces). The VC dimension of the class H of homogenous halfspaces
in R is d. Note that H = {hy(x) : hy(x) 1= sign(w " x)}.

Proof. We first need to show that VC dimension is at least d by appropriately
choosing a set C.

Consider the set of vectors ¢q, ..., ¢;, where for every i the vector e; is the all
zeros vector except 1 in the i-th coordinate.

This set is shattered by the class of homogenous halfspaces because for every
binary vector vy, ..., ¥4, and for w = (y1, ..., y4), we get that hy,(e;) = v;.

We need now to show that VC dimension is less than d + 1. Let xq, ..., x41 be
a set of d + 1 vectors in R?.
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VC dimension of halfspaces

Proof cont. Then, there must exist real numbers ay, ..., 45,1, not all of them are
zero, such that
Zaixi = 0 linearly dependent.
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VC dimension of halfspaces

Proof cont. Then, there must exist real numbers ay, ..., 45,1, not all of them are
zero, such that
Zaixi = 0 linearly dependent.

Let I ={i:a; >0} and J={j:a; <0}

If both I, ] are non-empty then

Zaixi = Z |a]|x]

iel jEe]
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VC dimension of halfspaces

Proof cont. Then, there must exist real numbers ay, ..., 45,1, not all of them are
zero, such that
Zaixi = 0 linearly dependent.

Let I ={i:a; >0} and J={j:a; <0}

If both I, ] are non-empty then

zaixi = Z |a]|x]

el je]

If x1,..., X441 are shattered then there exists a w such that w' x; > 0 fori € I
and w'x; < 0forjeJ.
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VC dimension of halfspaces

If x1,...,x4,1 are shattered then there exists a w such that w'x; > 0 fori € I
and w'x; < 0forj e J.

If the above is true, we get that

0< Zainxi =w' Y aix;

el icl
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VC dimension of halfspaces

If x1,...,x4,1 are shattered then there exists a w such that w'x; > 0 fori € I
and w'x; < 0forj e J.

If the above is true, we get that

0< Zainxi =w' Y aix;

el icl

=w' ) |ajlx

jel
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VC dimension of halfspaces

If x1,...,x4,1 are shattered then there exists a w such that w'x; > 0 fori € I
and w'x; < 0forj e J.

If the above is true, we get that

0<Y aw'xi=w' ) ax;
el el
=w' ) |ajlx
je]

=Y |ajlw’x; <.
j€]
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VC dimension of halfspaces

If xq,...,x541 are shattered then there exists a w such that w'x; >0foriel
and w'x; < 0forj e J.

If the above is true, we get that

0<Y aw'xi=w' ) ax;

el el
=w' ) |ajlx;
j€J

=Y |ajlw’x; <.
j€]

Contradiction!

Optimization for Machine Learning




Example of infinite VC

Theorem (sin has infinite VC). Consider the real line and let
H ={x — [sin(fx)] : 0 € R}.

The VC dimension of the hypothesis class above is infinite.

Proof. We need to show that for every d one can find d points that are shattered
by H.
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Example of infinite VC

Theorem (sin has infinite VC). Consider the real line and let
H ={x — [sin(fx)] : 0 € R}.

The VC dimension of the hypothesis class above is infinite.

Proof. We need to show that for every d one can find d points that are shattered
by H.

Consider x € (0,1) and let 0.x1x2x3..., be the binary expansion of x. Then for
any natural number m, [sin(2"7rx)| = 1 — x;,, provided that there exists a
k > m such that x; = 1.

Optimization for Machine Learning



Example of infinite VC

Theorem (sin has infinite VC). Consider the real line and let
H ={x — [sin(fx)] : 0 € R}.

The VC dimension of the hypothesis class above is infinite.

Proof. We need to show that for every d one can find d points that are shattered
by H.

Consider x € (0,1) and let 0.x1x2x3..., be the binary expansion of x. Then for
any natural number m, [sin(2"7rx)| = 1 — x;,, provided that there exists a
k > m such that x; = 1.

Fix d and consider C = {1/2,1/4,...,1/ Zd} and moveover choose any binary
vector of labels (y1, ..., v4). Set x = 0.y1...y;1 and use the above.
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Why do we care about VC?

Theorem (Fundamental Theorem of Learnability). The following are equivalent:
o H is PAC learnable.
o Any ERM rule is a successful PAC learner for H.
o H has finite VC dimension.

Remarks:
d log§+log%

 The number of samples needed is O ( ) where d is the VC dimension

€

of the hypothesis class.
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Conclusion

* Introduction to Statistical Learning.
— VC dimension.
— Examples.

— Fundamental theorem of Learnability

e Last lecture we will be talking about Stochastic
Games and Multi-agent RL.



