L15 - Week 8
Introduction to Statistical Learning
Theory

CS 295 Optimization for Machine Learning

loannis Panageas



Linear Prediction

e Goal. Compute a vector w that separates the two classes.
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The Perceptron Algorithm

Given (x4,¥1), ..., (x7, y7) € X X {£1} where we assume ||xt|| = 1 for all t.

Formally -y is defined

T

v := max min(y;w ' x;)4+,

w:||w||=1i€[T]

where (a)+ = max(a,0).
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The Perceptron Algorithm

Given (x4,¥1), ..., (x7, y7) € X X {£1} where we assume ||xt|| = 1 for all t.
Formally -y is defined

T

v := max min(y;w ' x;)4+,

w:||w||=1i€[T]

where (a)+ = max(a,0).

Definition (Perceptron). Consider the following iterative algorithm:

1. Initialize wy; = 0 (hypothesis)
2. On round t=1 ... T

3. Consider (z¢,y;) and form prediction §; = sign(w, x).

4. I g #
Wiy = Wt + YTy

6. Else Wi41 = Wy.
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Analysis of Perceptron

Theorem (# Corrections). Perceptron makes at most 1/+* mistakes and
corrections on any sequence with margin 7.

Proof. Let m the number of mistakes after T iterations. If a mistake
is made at round f then

2 2
w15 = |lwr + yexel|3
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Analysis of Perceptron

Theorem (# Corrections). Perceptron makes at most 1/+* mistakes and
corrections on any sequence with margin 7.

Proof. Let m the number of mistakes after T iterations. If a mistake
is made at round f then

2 2
w15 = |lwr + yexel|3

= |Jwe|l5 + [|xe]l5 + 2yex; w
———

negative
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Analysis of Perceptron

Theorem (# Corrections). Perceptron makes at most 1/+* mistakes and
corrections on any sequence with margin 7.

Proof. Let m the number of mistakes after T iterations. If a mistake
is made at round f then

2 2
w15 = |lwr + yexel|3

= llwel3 + llxell3 + 2yex; wy
——
negative

< ||we )5 + 1
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Analysis of Perceptron

Theorem (# Corrections). Perceptron makes at most 1/ v? mistakes and
corrections on any sequence with margin 7.

Proof. Let m the number of mistakes after T iterations. If a mistake
is made at round f then

2 2
w15 = |lwr + yexel|3

= [lwell3 + [|xell3 + 2yex) we
—_——
negative

< ||we )5 + 1

Therefore HwTH% < m.
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Analysis of Perceptron

Proof cont. Consider a vector w* with margin .

By definition of <y for all ¢ that there is a mistake

T T
¥ < yrw” xp =w" (Wi — We).
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Analysis of Perceptron

Proof cont. Consider a vector w* with margin .

By definition of <y for all ¢ that there is a mistake

T

¥ < yrw” xp = w” T(Wt_|_1 — Wy).

By adding the above we also have that
my < w* ' (wr —wy) = w* 'wr,

< [Jwrll -
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Analysis of Perceptron

Proof cont. Consider a vector w* with margin .

By definition of <y for all ¢ that there is a mistake

T

¥ < yrw” xp = w” T(Wt_|_1 — Wy).

By adding the above we also have that

my < w* ' (wr —wy) = w* 'wr,

< [Jwrll -

Therefore my < ||wr|, < V/m.
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Random Data and 0-1 loss function

What we really showed is that given (x4, y4), ..., (X7, yr) € X X {£1}
where we assume ||xt|| = 1 for all t it holds

1

T
; Yiw, xt<0 — ,YZ'

Given (x1, V1), -, (X5, ¥n) € X X {£1} 1ID from some distribution P.

Run perceptron algorithm and consider wy, ..., w,,. Then choose w uniformly
at random from {wy, ..., w,, }. This is good enough...
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Random Data and 0-1 loss function

What we really showed is that given (x4, y4), ..., (X7, yr) € X X {£1}
where we assume ||xt|| = 1 for all t it holds

1

T
; Yrw, xt<0 — ,),2'

Given (x1, V1), -, (X5, ¥n) € X X {£1} 1ID from some distribution P.

Run perceptron algorithm and consider wy, ..., w,,. Then choose w uniformly
at random from {wy, ..., w,, }. This is good enough...

Theorem (IID Data). Let w be the choice of the algorithm. It holds that

1 ¢ 1 1
E Zlyinxi<0] S ;IE [—:| .

E
7
i—1 v
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Random Data and 0-1 loss function

Proof. We have proved from before that (and taking expectations)

<e[a]

Let S = ((x1,y1), - (xn,yn)). The LHS can be expressed as

1 M
n Z yiw,! x;<0

=1

E.Eg [1 } — E.E, [1

yrw{ x7<0 yrwaT<0] '
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Random Data and 0-1 loss function

Proof. We have proved from before that (and taking expectations)

1 )
— Ty <E :
n z:l’ yiw; xi<0 n-y?
Let S = ((x1,y1), - (xn,yn)). The LHS can be expressed as
IET]ES |:1y"rwjr_x'r<0i| — IESIET |:1y'rw:|r_x’c<0i| )

Observe now that w; depends only on (x1,v1), ..., (xt_1,Yr_1), hence

Eskr [1yrwaT§0] = EslE<E( )p [1wax§0] = BsE[Lo1(wr)]

Remark: If we keep iterating perceptron algorithm we finally get Ly_;(w;) = 0

(how many steps?) where 1
Lo—1(w) = 5 ¥ 1yinxi<0
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PAC Learning

Assume we are given:

e Domain set X'. Typically R or {0,1}“. Think of 32x32 pixel images.
e Label set )V, typically binary like {0,1} or {—1,+1}.

e A conceptclassC ={h:h: X — V}.

Given a learning problem, we analyse the performance of a learning algo-
rithm:

e Training data S = (x1,v1), ..., (Xm, Ym), where sample S was generated
by drawing m IID samples from the distribution D.

e Output a hypothesis from a hypothesis class H = {h : h : X — YV} of
target functions.
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PAC Learning

Assume we are given:

e Domain set X'. Typically R or {0,1}“. Think of 32x32 pixel images.
e Label set )V, typically binary like {0,1} or {—1,+1}.

e A conceptclassC ={h:h: X — V}.

Given a learning problem, we analyse the performance of a learning algo-
rithm:

e Training data S = (x1,v1), ..., (Xm, Ym), where sample S was generated
by drawing m IID samples from the distribution D.

e Output a hypothesis from a hypothesis class H = {h : h : X — YV} of
target functions.

We measure the performance through generalization error that is

err(h) = IE(x,y)ND [lo_1(h(x),y)].
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PAC Learning

Definition (PAC learnable). A concept class C of target functions is
PAC learnable (w.r.t to H) if there exists an algorithm A and function
mz' : (0,1)% — IN with the following property:

Assume S = ((x1,y1), ..., (Xm,Ym)) is a sample of IID examples generated by
some arbitrary distribution D such that y; = h(x;) for some h € C almost
surely. If S is the input of A and m > ma4 then the algorithm returns a
hypothesis hs € H such that, with probability 1 — § (over the choice of the m
training examples):

err(hg) < €

The function mCA is referred to as the sample complexity of algorithm A.
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Examples

Example 2.2 (Half-spaces). A second example that is of some importance is defined by hyperplane. Here
we let the domain be x = R? for some integer d. For every w € R?, induces a half space by consider all
elements x such that w-x > 0. Thus, we may consider the class of target functions described as follows

C={fw:weR? fo(r)=sign(w-x)}
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Examples

Example 2.1 (Axis Aligned Rectangles). The first example of a hypothesis class will be of rectangles aligned
to the axis. Here we take the domain x = R? and we let C include be defined by all rectangles that are aligned
to the axis. Namely for every (z1, za, 23, z4) consider the following function over the plane

1 2y <wxp <29, 23 <1< 24
le,zQ,z3,24($1,fU2) =
0 else

Then C = {[z) 2y.24.24 ¢ (71,22, 23, 24) € R*}.
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ERM algorithm

Definition (ERM). Empirical Risk Minimization algorithm is defined as follows:

Return

arg minerrg(h),
ghe’H S( )

where errs(h) = - Y ¢y _1(h(x;),y:)

Theorem (Finite classes are PAC learnable). Consider a finite class of target func-

tions H = hy, ..., hy over a domain. Then if size of sample S is m > 62—2 log @ then
with probability 1 — 6 we have that

h) — h)| < e.
Iglea?iderrs() err(h)| < e
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ERM algorithm analysis

Proof. Applying Hoeffding’s inequality we obtain that for every S and fixed h

since errg (/) is sum of IID bernoulli with expectation err(h) :

l?gr[]errg(h) —err(h)| > €] < De~2me”,
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ERM algorithm analysis

Proof. Applying Hoeffding’s inequality we obtain that for every S and fixed h

since errg (/) is sum of IID bernoulli with expectation err(h) :

l?gr[]errg(h) —err(h)| > €] < De~2me”,

Applying union bound we obtain that

Psr[EIh : lerrg(h) —err(h)| > €] < 2|7—£|e_2m62.
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ERM algorithm analysis

Proof. Applying Hoeffding’s inequality we obtain that for every S and fixed h

since errg (/) is sum of IID bernoulli with expectation err(h) :

l?gr[|err5(h) —err(h)| > €] < De~2me”,

Applying union bound we obtain that

PSr[EIh : lerrg(h) —err(h)| > €] < 2|7—L|e_2m€2.

We want the RHS to be less than 6. Choose m appropriately!
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ERM algorithm analysis

Proof. Applying Hoeffding’s inequality we obtain that for every S and fixed h

since errg (/) is sum of IID bernoulli with expectation err(h) :

l?gr[|err3(h) —err(h)| > €] < De~2me”,

Applying union bound we obtain that

PSr[EIh : lerrg(h) —err(h)| > €] < 2|7—L|e_2m€2.

We want the RHS to be less than 6. Choose m appropriately!

What if the hypothesis class has infinite cardinality?
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Conclusion

* Introduction to Statistical Learning.
— Perceptron Algorithm.
— Loss functions and PAC learning
— ERM algorithm

e Next lecture we will talk about VC dimension.



