L12 — Week 7
Introduction to Markov Decision
Processes and RL

CS 295 Optimization for Machine Learning

loannis Panageas



The framework

A finite Markov Decision Process (MDP) is defined as follows:
e A finite state space S.
e A finite action space A.

e A transition model P where P(s’|s,a) is the probability of transitioning
into state s’ upon taking action a in state s. P is a matrix of size (S-A) x S.

e Reward function r : S x A — [0, 1].

e A discounted factor v € [0, 1).
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The framework

A finite Markov Decision Process (MDP) is defined as follows:
e A finite state space S.
e A finite action space A.

e A transition model P where P(s’|s,a) is the probability of transitioning
into state s’ upon taking action a in state s. P is a matrix of size (S-A) x S.

e Reward function r : S x A — [0, 1].

e A discounted factor v € [0, 1).

The goal is to find a stationary policy 7 : S — A such that the function

VT(s)=(1—7)E Z’ytr(st,at)h,so =5
t=0

is maximized. This is the Infinite Time Horizon case. V7 (s) € [0, 1]
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Example

Example (Navigation). Suppose you are given a grid map. The state of the agent
is their current location. The four actions might be moving 1 step along each of east,
west, north or south. The transitions in the simplest setting are deterministic. There
is a goal g that is trying to reach. Reward is one if the agent reaches the goal and zero
otherwise.
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Example

Example (Navigation). Suppose you are given a grid map. The state of the agent
is their current location. The four actions might be moving 1 step along each of east,
west, north or south. The transitions in the simplest setting are deterministic. There
is a goal g that is trying to reach. Reward is one if the agent reaches the goal and zero
otherwise.

The optimal behavior 77 in this setting corresponds to finding the shortest path
from the initial to the goal state.
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Example

Example (Navigation). Suppose you are given a grid map. The state of the agent
is their current location. The four actions might be moving 1 step along each of east,
west, north or south. The transitions in the simplest setting are deterministic. There
is a goal g that is trying to reach. Reward is one if the agent reaches the goal and zero
otherwise.

The optimal behavior 77 in this setting corresponds to finding the shortest path
from the initial to the goal state.

The value function of a state s, given the aforementioned policy is

V7(s) = (1= 7)7",

where d is the number of steps to reach the goal from s.
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State-action value function

Definition (Q-function). In discounted infinite horizon problems, for any policy 7,
the state-action value function Q : S X A — IR is given by

oo

Q" (s,a) = (1—7)E | Y _ ~'r(st,ar)|so =s,a0 = aand 7t(st) = ar Vt
=0
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State-action value function

Definition (Q-function). In discounted infinite horizon problems, for any policy 7,
the state-action value function Q : S X A — IR is given by

oo

Q" (s,a) = (1—7)E | Y _ ~'r(st,ar)|so =s,a0 = aand 7t(st) = ar Vt
=0

By definition of Q function (for fixed policy) the following equations must be
satisfied:

V7™(s) = Q7(s,7(s)) and Q" (s,a) = (1 = 7)r(s,a) + YEgp(|s,0) [V (5")]

namely|Q7(s,a) = (1 — y)r(s,a) + v Xy P(s'|s,a) VT (s').
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State-action value function

Q7 (s,a) = (1 —7)r(s,a) + v Ly P(s'ls, a) V7 (s').

Q7™ (s,a) = (1 —y)r(s,a) + Lo P(s'|sg = s,a0 = a)E[Lioq Yir(st,at)|s1 = ¢, ).
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State-action value function

Q7 (s,a) = (1 —7)r(s,a) + v Ly P(s'ls, a) V7 (s').

Q7™ (s,a) = (1 —y)r(s,a) + Lo P(s'|sg = s,a0 = a)E[Lioq Yir(st,at)|s1 = ¢, ).

= (L=)r(s,a) + 7Ly P(s'|so = 5,a0 = a)E[Y2 0 7' 7(5141, ap41) [s1 = &', 7).
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State-action value function

Q7 (s,a) = (1 —7)r(s,a) + v Ly P(s'ls, a) V7 (s').
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State-action value function

Q7 (s,a) = (1 —7)r(s,a) + v Ly P(s'ls, a) V7 (s').

Q7™ (s,a) = (1 —y)r(s,a) + Lo P(s'|sg = s,a0 = a)E[Lioq Yir(st,at)|s1 = ¢, ).

= (L=)r(s,a) + 7Ly P(s'|so = 5,a0 = a)E[Y2 0 7' 7(5141, ap41) [s1 = &', 7).

= (1—=7)r(s,a) + v Ly P(s'|so = s,a0 = a) V7' (s').

Similarly, one can show that

V7i(s) = (1 =7)r(s, 7(s)) + v Lo P(s'|s, 71 (s)) V" (s").
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State-action value function

V7(s) = Q"(s,7(s)) and Q" (s,a) = (1 — 7)r(s,a) + YEyp(|s,0)[V"(5")]

namely|Q” (s, a) = (1 — y)r(s,a) + v Xo P(s'|s,a) VT (s').

That gives
Q" = (1—9)r +yPVT.
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State-action value function

V7(s) = Q"(s,7(s)) and Q" (s,a) = (1 — 7)r(s,a) + YEyp(|s,0)[V"(5")]

namely|Q” (s, a) = (1 — y)r(s,a) + v Xo P(s'|s,a) VT (s').

That gives
Q" = (1—9)r +yPVT.

By substitution
Q" = (1 —9)r+yP"Q%,
where P"isa (S-A) x (S-A) that is induced by the P and the policy 7.
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State-action value function

V7(s) = Q"(s,7(s)) and Q" (s,a) = (1 — 7)r(s,a) + YEyp(|s,0)[V"(5")]

namely|Q” (s, a) = (1 — y)r(s,a) + v Xo P(s'|s,a) VT (s').

That gives
Q" = (1—9)r +yPVT.

By substitution
Q" = (1 —9)r+yP"Q%,
where P"isa (S-A) x (S-A) that is induced by the P and the policy 7.

We conclude that

Q" =17 —P")r,
where (I — yP™)~! is invertible (why?).
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Bellman Equations

We would like to find the optimal stationary policy, that is we want to

V*(s) = max, V7 (s)
Lemma (Bellman Equations). The following must hold:

V¥ (s) = max{(1=)r(s,a) + 7 L P(s'ls, w(s)) V" ()}

Equivalently for Q-function
Q*(s,a) = (L—)r(s,a) +v ) _P(s'ls, 71(s)) max Q*(s', b)

S/ beA
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Bellman Equations

Proof.
V*(s) = max V7 (s).

= max(1 — VE A'r(st, ar)|m, s, al.
:
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Bellman Equations

Proof.
Vi(s) = max V7 (s).

= max(1 — VE A'r(st, ar)|m, s, al.
t

= max(1 — y)r(s,a) + 7ZP(S’|S,a)]E[Z'ytr(st,at)|7t’,s’].

a,7t’ 7
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Bellman Equations

Proof.

V*(s) = max V' (s).

7T

= max(1 — VE A'r(st, ar)|m, s, al.
t

a,7t’

= max(1 — y)r(s,a) + ’YZP(S’|S,6Z)]E[;’)/tT(St,at)|7T’,S,].

= max(1 — y)r(s,a) + ’)/ZP(S’\S,Q)V”’(S’).

a,7t!
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Bellman Equations

Proof.
V*(s) = max V' (s).

7T

= max(1 — VE A'r(st, ar)|m, s, al.
= max(1 — 7)r(s,a) + 'rZ,P(S’ISfa)]E[;'YtT(St,at)Iﬂ’,S’]-
= max(1 — 7)r(s,a) + ')/ZP(S’\S,Q)V”’(S’).

= max{ (1 —)r(s,a) +7)_ P(s'|s,a) max V7 (s}

7T
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Bellman Equations

Proof.

V*(s) = max V' (s).

7T

= max(1 — W)IE[; v'r(st,ar)|7, s, a].
= max(1—1)r(s,a) +7 L P ls, EL v'r(su,an) 7,5
— max(1 — 7)r(s,a) + 7 L P(ls, )V (<),

= max{(1 = 7)r(s,a) + v L P(s'ls, a) max V7 (')}

7T

— mﬁ?x{(l — (s, a) + ’yZP(s’|S,a)V* (s")}.
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Bellman Operator

Definition (Bellman Operator). Let’s define the following operator T:

TW(x) = rgleeg((l — y)r(s,a) + Z{P(s’|3,a)W(s’)
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Bellman Operator

Definition (Bellman Operator). Let’s define the following operator T:

TW(x) = lgle%i((l —y)r(s,a) + v ZP(S’|S,Q)W(S')

Claim (Bellman Operator). V* is the unique fixed point of the operator.
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Bellman Operator

Definition (Bellman Operator). Let’s define the following operator T:

TW(x) = lgle%i((l —y)r(s,a) + v ZP(S’|S,Q)W(S')

Claim (Bellman Operator). V* is the unique fixed point of the operator.

Proof. We have already shown it is a fixed point. We will show that T is
contracting! (Banach Fixed point Theorem).
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Bellman Operator

Definition (Bellman Operator). Let’s define the following operator T:

TW(x) = lgle%i((l — y)r(s,a) + ZP(S’|S,Q)W(S')

Claim (Bellman Operator). V* is the unique fixed point of the operator.

Proof. We have already shown it is a fixed point. We will show that T is
contracting! (Banach Fixed point Theorem).

Consider f, f’ and observe that

| max f(a) — max f'(a')] < max|f(a) - f'(a)
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Bellman Operator

Proof cont. Assume a maximizes f(a) and moreover f(a) > max, f'(a’)
(w.l.o.g due to symmetry). Then we get

f(a) —max f'(a') < f(a) = f'(a) < max f(b) — f'(b).
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Bellman Operator

Proof cont. Assume a maximizes f(a) and moreover f(a) > max, f'(a’)
(w.l.o.g due to symmetry). Then we get

fla) — maXf (') < f(a) = f'(a) < max f(b) — f'(b).
Therefore

|TV-TV'|| = (11— 7)[maxr(s,a) +ZP(S,|Q,S)V(S’) — max r(s,a’) — ZP(S’M’,S)V,(S,))]O(
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Bellman Operator

Proof cont. Assume a maximizes f(a) and moreover f(a) > max, f'(a’)
(w.l.o.g due to symmetry). Then we get

f(a) — maxf (a') < f(a) — f'(a) < max f (b) — f'(b).
Therefore
TV —-TV'|| = (1 —'y)[max r(s,a) +ZP(S'|{1,5)V(S') —maxr EP(S a’,s)V'(s"))]a

< (1—17) max[ (s,a) +ZP(S la,s)V —r(s,a) — EP(S 12,3) V)]0

S!
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Bellman Operator

Proof cont. Assume a maximizes f(a) and moreover f(a) > max, f'(a’)
(w.l.o.g due to symmetry). Then we get

f(a) — maxf( ") < f(a) — f(a) < max f (b) — f(b).

Therefore

TV —-TV'|| = (1 —'y)[maxr(s,a) +ZP(S'|{1,5)V(S') —maxr EP(S a’,s)V'(s"))]a
< (1—17) max[ (s,a) +ZP(S la,s)V —r(s,a) — EP(S 12,3) V)]0

S!

= (1—7) m&ax[ZP(s 1a,3)(V — V)]
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Bellman Operator

Proof cont. Assume a maximizes f(a) and moreover f(a) > max, f'(a’)
(w.l.o.g due to symmetry). Then we get

f(a) — maXf (') < f(a) — f'(a) < max f (b) — f(b).

Therefore

TV =TV oy = (L= lmgr(s,0) + TP )V () —mars,d) = DRl ) V()
< (1 - ) max[r(s,a) +;P<s 2, 9)V = r(s,0) = L P a9V
= (1= N max P 9)(V = V)l

< A=V =V max[L P(sla,s)] = A =1 [[V =V
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Value lteration

ldea: We build a sequence of value functions. Let V, be any vector, then iterate the application
of the optimal Bellman operator so that given V, at iteration k we compute

Vi1 = TVg.
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Value lteration

ldea: We build a sequence of value functions. Let V, be any vector, then iterate the application
of the optimal Bellman operator so that given V, at iteration k we compute

Vi1 = TVg.

The policy will be given at every iteration as

7, = argmax(1 —y)r(s,a) + Y _P(s'[s,a) Vi(s")
a o/

After kK = log(1/€) we have error €.
log(1/7)
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Policy Iteration

ldea: We build a sequence of policies. Let my be any stationary policy. At each iteration k
we perform the two following steps:

1. Policy evaluation given 7w, compute V7,

2. Policy improvement: we compute the greedy policy 7pq from V7™ as:
Tr+1(2) € argmax |r(z, a) + Zp(y|;17, a)V7* (y)].

acA
y

I'he iterations continue until V™ = VV/7k+1
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Conclusion

 Introduction to Markov Decision Processes.
— Policy Iteration
— Value lteration

— Bellman Equations

* Next week we will talk for multi-agent RL.



