L13 — Week 7

Introduction to Multi-armed Bandits
(part 2)

CS 295 Optimization for Machine Learning

loannis Panageas



Recap of framework (stochastic)

Setting. We are given K arms and time window T (known). At each time step
t=1..T.

e Player chooses arm ay.

e Observes reward ry € [0, 1] for the chosen arm.

e The algorithm observes only the reward for the selected action, and
nothing else.

e The reward for each action is IID. For each arm a € [K], there is a distri-
bution D, over reals, called the reward distribution (unknown). Every
time this action is chosen, the reward is sampled independently from
this distribution.

Goal: Minimize the regret

T
R(T) = u"T — t_Zl u(ar) or E[R(T)].
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Upper Confidence Bounds

Definition (Confidence bounds). We define upper/lower confidence bounds for ev-
ery arm a and round t

UCB¢t(a) = fir(a) +re(a), LCBi(a) = fir(a) —re(a),

where fi;(a) is the average reward of arm a so far, r¢(a) = znlf(% )T (confidence

radius) and n¢(a) is the number of samples from arm 4 in round 1, ..., t,
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Upper Confidence Bounds

Definition (Confidence bounds). We define upper/lower confidence bounds for ev-
ery arm a and round t

UCB¢t(a) = fir(a) +re(a), LCBi(a) = fir(a) —re(a),

where fi;(a) is the average reward of arm a so far, r¢(a) = znl%):r (confidence

radius) and n¢(a) is the number of samples from arm 4 in round 1, ..., t,

Definition (UCB). Consider the following algorithm:

1. Try each arm once.

2. In each round ¢, pick arg max, UC'B(a).
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Analysis of UCB

Remarks:
* Anarm a has the largest UCB; for two reasons: The empirical reward is large
(hence it is likely a has high reward) or confidence radius is large, thus the arm has not

been explored much.

Either reason makes this arm worth choosing!
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Analysis of UCB

Remarks:

* Anarm a has the largest UCB; for two reasons: The empirical reward is large
(hence it is likely a has high reward) or confidence radius is large, thus the arm has not
been explored much.

Either reason makes this arm worth choosing!

Theorem (Regret). UCB algorithm achieves regret

E[R(T)] to be O(\/KTlogT).
Theorem (Regret v2). UCB algorithm achieves regret

1
(o) H(@*) — p(a)

E[R(T)] < O(logT) )
a:p(a)<p
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Analysis of UCB

Let us define the “clean” event (we condition on that)

&= {Vj,alpj(a) —pla)| <rja)}.
Let a* be an optimal arm and assume that we chose arm a; at time ¢ then:

u(ay) + 2ri(ay) > fiy(ar) + ri(as) clean event
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Let a* be an optimal arm and assume that we chose arm a; at time ¢ then:
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Let us define the “clean” event (we condition on that)
&= {Vj,alpj(a) —pla)| <rja)}.
Let a* be an optimal arm and assume that we chose arm a; at time ¢ then:
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Analysis of UCB

Let us define the “clean” event (we condition on that)

&= {Vj,alpj(a) —pla)| <rja)}.
Let a* be an optimal arm and assume that we chose arm a; at time ¢ then:

u(ay) + 2ri(ay) > fiy(ar) + ri(as) clean event
= UCBf(at)

> UCBy(a™) since we chose a;

= us(a*) +r(a*) > u(a™) clean event.
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Analysis of UCB

Let us define the “clean” event (we condition on that)

&= {Vj,alpj(a) —pla)| <rja)}.
Let a* be an optimal arm and assume that we chose arm a; at time ¢ then:

u(ay) + 2ri(ay) > fiy(ar) + ri(as) clean event
= UCBt(at)

> UCBy(a™) since we chose a;

= us(a*) +r(a*) > u(a™) clean event.

Hence it holds

2re(ar) = p(a™) — plar) = A(ay).
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Analysis of UCB

Hence it holds

2ri(ar) > p(a”) —u(ar) = Alay).

For each arm a consider the last time 7 that a was pulled, then we get nr(a) =
n¢(a) and rr(a) = r¢(a). We conclude that
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Hence it holds

For each arm a consider the last time 7 that a was pulled, then we get ny(a)

Analysis of UCB

2ri(ar) > p(a”) —u(ar) = Alay).

n¢(a) and rr(a) = r¢(a). We conclude that

2

2log T
nr(a)

=2rr(a) > p(a”) — pu(a)

A(a).
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Analysis of UCB

Hence it holds

2ri(ar) > p(a”) —u(ar) = Alay).

For each arm a consider the last time 7 that a was pulled, then we get nr(a) =
n¢(a) and rr(a) = r¢(a). We conclude that

2log T
nr(a)

2 =2rr(a) > u(a*) —u(a) = A(a).

The contribution of arm a to the total regret is

A(a) x nr(a) < 2\/2nT(a) log T.
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Analysis of UCB

Hence it holds

2ri(ar) > p(a”) —u(ar) = Alay).

For each arm a consider the last time 7 that a was pulled, then we get nr(a) =
n¢(a) and rr(a) = r¢(a). We conclude that

2log T

2 nr(a)

=2rr(a) > p(a”) — pu(a) = Aa).

The contribution of arm a to the total regret is

A(a) x nr(a) < 2\/2nT(a) log T.

Hence the regret is bounded by

2\/210gTZa:\/nT(a).
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Analysis of UCB

Hence the regret is bounded by

2/21log T Y +\/nr(a).

Finally observe that \/x is a concave function hence, by Jensen’s inequality

we get
%;\/Tl’[(ﬁl) < \/;;WT(Q) < \/g

Optimization for Machine Learning



Analysis of UCB

Hence the regret is bounded by

2/21log T Y +\/nr(a).

Finally observe that \/x is a concave function hence, by Jensen’s inequality

we get
%;\/Tl’[(ﬁl) < \/;;WT(Q) < \/g

We conclude that the regret is bounded by

O(y/TKlogT).
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Analysis of UCB

Recall that we showed

2log T

2 nr(a)

=2rr(a) > p(a”) — pu(a) = Aa).

This implies that
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Analysis of UCB

Recall that we showed

2log T

2 nr(a)

This implies that
8log T

A(a)?

HT(Q) §

The contribution of arm a to the total regret is

8log T
A(a) x np(a) < Ala)

Hence the regret is bounded by

O(logT) ) A(la) :

a
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Framework (adversarial bandits)

Setting. We are given K arms and time window T (known). At each time step
t=1..T.

e Player chooses arm ay.
o Adversary picks cost c¢(a) for each arm a.

e Player observes cost ct(as) € [0,1] for the chosen arm.

e The player observes only the cost for the selected action, and nothing
else.

Goal: Minimize the regret
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Framework (adversarial bandits)

Setting. We are given K arms and time window T (known). At each time step
t=1..T.

e Player chooses arm ay.
o Adversary picks cost c¢(a) for each arm a.

e Player observes cost ct(as) € [0,1] for the chosen arm.

e The player observes only the cost for the selected action, and nothing
else.

Goal: Minimize the regret

R(T) = Y_ ci(ar) — min Y ci(a) or E[R(T)].
te[T] te[T]
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MWU (recap)

Algorithm (MWUA). We define the following algorithm:

1. Initialize w =1 for all i € [n]. Remarks:

9 For t=1 ... T do e We choose i with

t-1
probability pf = =
3. Choose action i with probability Ty w;_l :
: t—1
proportional to ;™. e ¢ isthe cost of action i at
4. For each action 7 do time t chosen by the
5. wt = (1—€)%w! . adversary.
6. End For
7. End For

Can we use this for adversarial bandits? Reduction
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Exp3 Algorithm

Algorithm (Exp3). We define the following algorithm:

1. Initialize w) =1 for all i € [n]. Remarks:

2 For t=1 ... T do e We choose i with

t_
probability pf = — :
3. Choose action ¢ with probability 1 Zj W]t.—l '
. t—1
DB 1O €2 e ¢ isthe cost of action i at
4. Only for the chosen action (say ¢) do time t chosen by the
£ wh = (1 — e)C?/Pﬁwj;‘*l. adversary.
e Essentially, we assume that

6. End For

all the actions got cost zero
7. End For except the chosen action
that got cost & := ¢{/p}.
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Exp3 Algorithm

Algorithm (Exp3). We define the following algorithm:

1. Initialize w9 = 1 for all i € [n].
2. For t=1 ... T'do

3. Choose action ¢ with probability
proportional to w! 1.

i

4. Only for the chosen action (say i) do

5 wt = (1 — €)% /Pigl~1,
0. End For
7. End For

Remarks:
We choose i with
bability pt = <"
probability p; = ZjW;_l.

c{ is the cost of action i at
time t chosen by the
adversary.

Essentially, we assume that
all the actions got cost zero
except the chosen action
that got cost &} = c{/p}.

What is the cost of every action? Each a r.v that is an

unbiased estimator!

Formally we ensure that [E[¢!|p'] = ¢! for all i.
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Exp3 Algorithm

Algorithm (Exp3). We define the following algorithm:

1. Initialize w{ = 1 for all i € [n]. Remarks:

e We choose i with

2. For t=1 ... T do 1

. . probability pf = ==
3.  Choose action ¢ W111;h probability Ty W]t_—1 :
t

proportional to w;

« ¢l is the cost of action i at

4. Only for the chosen action (say i) do time t chosen by the
adversary.

e Essentially, we assume that
all the actions got cost zero

7. End For except the chosen action

that got cost &} = c{/p}.

5, wi = (1- e)cg/pzwf_l
0. End For

What is the cost of every action? Each a r.v that is an

unbiased estimator!

Formally we ensure that [E[¢!|p'] = ¢! for all i.

We will choose € = 4/ 21¥gK and we will get regret O(,/TK log K).
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Analysis of Exp3

Recall that for the analysis of MWU we defined a potential function ®; (sum of weights).
t—1

We set @; = —Llog )y ;e X1,

Set L =YY, ¢7. Observe that
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Analysis of Exp3

Recall that for the analysis of MWU we defined a potential function ®; (sum of weights).

t—1

We set @; = —Llog )y ;e X1,

Set L =YY, ¢7. Observe that

Py — P = ——log
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Analysis of Exp3

Recall that for the analysis of MWU we defined a potential function ®; (sum of weights).

t—1

We set @; = —Llog )y ;e X1,

Set L =YY, ¢7. Observe that

Py — P = ——log
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Analysis of Exp3

Recall that for the analysis of MWU we defined a potential function ®; (sum of weights).

t—1

We set @; = —Llog )y ;e X1,

Set L =YY, ¢7. Observe that

Py — P = ——log

= —lloglE

—edt
€ I]

i~ pt [e

1.2

Since e™* <1 —x + 5x7%. 2

1 NI PO
— logE; (1 — ect + ~€ ¢t2]

IV
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Analysis of Exp3

1 1
q)H—l — (I)t 2 — E 10g IEint [1 — Eéf + 56265 2]

1 R 1 5.
= —E 10g (1 — IEint [€Cf — Ee Cf
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Analysis of Exp3

1 1
CDH_1 — (I)t 2 — E 10g IEint [1 — Eéf + 56265 2]

1 i L oy

= —E 10g (1 — IElet [E‘Ci — Ee Ci
1 A 1 2at2
> E]Ei,\,pt [€Cf — 56 C; ]
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Analysis of Exp3

1 1
CDH_1 — (I)t 2 — E 10g IEint [1 — Eéf + 56265 2]

1 R 1 5.4
= —E 10g (1 — IEint [€Cf — Ee C;:L ])
1 R 1 5,45
> E:[EiNPt [€Cf — 56 Cf ]
1
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Analysis of Exp3

1 1
Pp1— P >~ logE; ([1— eét + € 2gh 2]

I~p
1 NI IR
= —E 10g (1 — IElet [€Ci — Ee C; ]
1 A 1 2at2
> E]Ei,\,pt [€Cf — 56 C; ]

By taking expectation we get

E[®p1 — Pi] > ) pici — —eZc"‘z > Zp ==
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Analysis of Exp3

We conclude that (telescopic sum)

T
KTe
E[®r — @] > 1 Yo plel -
t=1 i
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Analysis of Exp3

We conclude that (telescopic sum)

KTe
IE[(I)T—CI)l > Ezpl I_T
Finally
E[®r — ®q] < E[LL (——logK) Y ¢ +élogK
Hence KT 1
€
ER(T)] = D ¥ ple ~ Vel < 51€ ¢ Liogk
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Analysis of Exp3

We conclude that (telescopic sum)

KTe
Finally
E[®r — P4 <IE[ (——logK) Zcf*%—%logK.
f
Hence KT 1
€
ZZpl : —Zcf* < ElogK

t

We choose € = 4/ 21§Ig<K and it follows that|E[R(T)] is O(,/TKlog K).
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Conclusion

 Introduction to Multi-armed bandits.
— UCB.
— Exp3

e Next lecture we will talk about basics in
Markov Decision Processes and Stochastic
Games.



