L12 - Week 6
Introduction to Multi-armed Bandits

CS 295 Optimization for Machine Learning

loannis Panageas



The framework

Setting. We are given K arms and time window T (known). At each time step
t=1..T.

e Player chooses arm ay.

e Observes reward ry € [0, 1] for the chosen arm.

Optimization for Machine Learning



The framework

Setting. We are given K arms and time window T (known). At each time step
t=1..T.

e Player chooses arm ay.

e Observes reward ry € [0, 1] for the chosen arm.

e The algorithm observes only the reward for the selected action, and
nothing else.

e The reward for each action is IID. For each arm a € [K], there is a distri-
bution D, over reals, called the reward distribution (unknown). Every
time this action is chosen, the reward is sampled independently from
this distribution.

Optimization for Machine Learning



The framework

Setting. We are given K arms and time window T (known). At each time step
t=1..T.

e Player chooses arm ay.

e Observes reward ry € [0, 1] for the chosen arm.

e The algorithm observes only the reward for the selected action, and
nothing else.

e The reward for each action is IID. For each arm a € [K], there is a distri-
bution D, over reals, called the reward distribution (unknown). Every
time this action is chosen, the reward is sampled independently from
this distribution.

Goal: Minimize the regret

T
R(T) = u"T — t_Zl u(ar) or E[R(T)].

Optimization for Machine Learning



Explore-First

Maybe the most natural approach is to estimate first the expected rewards for all arms
and then use the maximum.

Optimization for Machine Learning



Explore-First

Maybe the most natural approach is to estimate first the expected rewards for all arms
and then use the maximum.

Definition (Explore-first). Consider the following algorithm:

1. Exploration phase: try each arm N/K times.

2. Select the arm @™ with the highest average reward
(break ties arbitrarily).

3. Exploitation phase: Play a* in all remaining 7' — N rounds.

Remarks:
N will be chosen later as a function of T, K.

Optimization for Machine Learning



Explore-First

Maybe the most natural approach is to estimate first the expected rewards for all arms
and then use the maximum.

Definition (Explore-first). Consider the following algorithm:

1. Exploration phase: try each arm N/K times.

2. Select the arm a* with the highest average reward
(break ties arbitrarily).

3. Exploitation phase: Play a* in all remaining T'— N rounds.

Remarks:
N will be chosen later as a function of T, K.

Let’s analyze the regret for Explore-first algorithm!

Optimization for Machine Learning



Analysis of Explore-First

Remark (Hoeffding Inequality). Let fi(a) be the empirical (or average) reward for
action a after exploration phase. It holds

2K10ng 1

Pr [ﬁ(a) (o)) < 20BT 5y L

Pr{|a(a) — p(a)| > €] < 2672k,

Optimization for Machine Learning



Analysis of Explore-First

Remark (Hoeffding Inequality). Let fi(a) be the empirical (or average) reward for
action a after exploration phase. It holds

2Klog T 1

Pr [ma) — @) < B 21—

Pr{|a(a) — p(a)| > €] < 2672k,

Let us condition on the “clean” event that the above holds for all arms. By
union bound the probability of the “bad” event is at most

K _ 1
T4+ = T3

1

hence the “clean” event happens with probability at least 1 — =5.

Optimization for Machine Learning



Analysis of Explore-First

Let ap.s; be the arm with maximum mean reward. Suppose the algorithm
chose a* # ay,.;;. What does this mean?

Optimization for Machine Learning



Analysis of Explore-First

Let ap.s; be the arm with maximum mean reward. Suppose the algorithm
chose a* # ay,.;;. What does this mean?

It means that
ﬁ(ﬁl*) > ﬁ(abest)'

Optimization for Machine Learning



Analysis of Explore-First

Let ap.s; be the arm with maximum mean reward. Suppose the algorithm
chose a* # ay,.;;. What does this mean?

It means that
ﬁ(a*) > ﬁ(abest)'

But since we condition on “clean event”

\ 2Klog T _ ., .. _ .

p(a®) + 1/ =08 = 1(a”) = fapes) and
. 2Klog T
)”(abest) > ﬂ(abest) — Tg

Optimization for Machine Learning



Analysis of Explore-First

Let ap.s; be the arm with maximum mean reward. Suppose the algorithm
chose a* # ay,.;;. What does this mean?

It means that
ﬁ(a*) > ﬁ(abest)'

But since we condition on “clean event”

. 2Klog T _ . .o .
p(a®) + 1/ =08 = 1(a”) = fapes) and
N 2K log T
)”(abest) > H(ﬂbgst) — Tg
2Klog T

Hence p(a*) > u(apest) — 2 N

Optimization for Machine Learning



Analysis of Explore-First

We compute a bound on the regret (conditioned on clean event):

2Klog T
N

R(T) < N+ (T —N) ><2\/

2
<N+ \/SKTZ\}ogT

Optimization for Machine Learning



Analysis of Explore-First

We compute a bound on the regret (conditioned on clean event):

2Klog T
N

R(T) < N+ (T —N) ><2\/

2
- N+\/8KTZ\}ogT

We set N = 2T?/3(Klog T)!/3 and we have

R(T) < 4T?/3(Klog T)'/3

Optimization for Machine Learning



Analysis of Explore-First

Using law of total expectation we have

E[R(T)] = E[R(T)|clean] Pr|clean] + E[R(T)|bad] Pr[bad]

1
< 4(Klog T)Y/3T%/3 + T x ™= O((Klog T)Y/3T2/3).

Optimization for Machine Learning



Analysis of Explore-First

Using law of total expectation we have

E[R(T)] = E[R(T)|clean] Pr|clean] + E[R(T)|bad] Pr[bad]
< 4(Klog T)Y/3T%/3 + T x % — O((Klog T)Y/3T2/3).
Namely, we showed:
Theorem (Regret). Explore-first algorithm achieves regret
O((Klog T)'/3T?/3),

where K is the number of arms.

Optimization for Machine Learning



Epsilon-Greedy

Definition (e-greedy). Consider the following algorithm:

1. For t=1 ... T do

2. Toss a coin with success prob ¢;.
3. If success choose arm at random.
4. Else choose highest average arm.

Optimization for Machine Learning



Epsilon-Greedy

Definition (e-greedy). Consider the following algorithm:

1. For t=1 ... T do

2. Toss a coin with success prob ¢;.
3. If success choose arm at random.
4. Else choose highest average arm.

Theorem (Regret). e-greedy algorithm achieves regret
E[R(t)] to be O((Klog t)/3t2/3),
where K is the number of arms and e; ~ t—1/3(Klogt)1/3,

Remarks:
e Same regret as before but for all rounds!

Optimization for Machine Learning



Epsilon-Greedy

Definition (e-greedy). Consider the following algorithm:

1. For t=1 ... T do

2. Toss a coin with success prob e;.
3. If success choose arm at random.
4. Else choose highest average arm.

Theorem (Regret). e-greedy algorithm achieves regret

E[R(t)] to be O((Klog t)/3t2/3),

—1/3 1/3

Can we do better? Yes, adaptive exploration!
Remarks:

e Same regret as before but for all rounds!

Optimization for Machine Learning




Upper Confidence Bounds

One natural idea (suppose we have two arms): Alternate them until we find
that one arm is much better than the other, at which time we abandon the
inferior one.

Optimization for Machine Learning



Upper Confidence Bounds

One natural idea (suppose we have two arms): Alternate them until we find
that one arm is much better than the other, at which time we abandon the

inferior one.
How to define “one arm is much better” exactly?

Optimization for Machine Learning



Upper Confidence Bounds

One natural idea (suppose we have two arms): Alternate them until we find
that one arm is much better than the other, at which time we abandon the

inferior one.
How to define “one arm is much better” exactly?

Recall (Hoeffding). Let n;(a) be the number of samples from arm a in round 1, ..., t,
fit(a) be the average reward of arm a so far. Hoeffding Inequality suggests

2

Pr{|fi(a) —p(a)| = ri(a)] 21— —,

where ri(a) = y/ %, and r(a) is called the confidence radius.

Optimization for Machine Learning



Upper Confidence Bounds

One natural idea (suppose we have two arms): Alternate them until we find
that one arm is much better than the other, at which time we abandon the

inferior one.
How to define “one arm is much better” exactly?

Recall (Hoeffding). Let ns(a) be the number of samples from arm a in round 1, ..., t,
fit(a) be the average reward of arm a so far. Hoeffding Inequality suggests

2

Pr{|fi(a) —p(a)| = ri(a)] 21— —,

where ri(a) = y/ %, and r(a) is called the confidence radius.

However n;(a) should not be fixed (r.v)... Samples

Are not independent anymore!

Optimization for Machine Learning



Upper Confidence Bounds

For each arm a, imagine there is a reward tape 1 x T table with each cell
independently sampled from D,. The j-th time a given arm a is chosen by the
algorithm, its reward is taken from the j-th cell in this arm’s tape.

1%t cell 20d cell j-th cell T-th cell

—~—

averages to vj(a)

Optimization for Machine Learning



Upper Confidence Bounds

For each arm a, imagine there is a reward tape 1 x T table with each cell
independently sampled from D,. The j-th time a given arm a is chosen by the
algorithm, its reward is taken from the j-th cell in this arm’s tape.

1%t cell 2nd cell j-th cell T-th cell

averages to vj(a)

Now we can use Hoeffding Inequality hence for all j

- 2
Pr(|0j(a) —p(a)| < 7j(a)l 21— —,
therefore by union bound on j and arms we get
. A 1
PrVj,a |0j(a) —pla)| =z rj(a)l 21— o,

Optimization for Machine Learning



Upper Confidence Bounds

Definition (Confidence bounds). We define upper/lower confidence bounds for ev-
ery arm a and round t

UCB¢(a) = fis(a) +ri(a), LCBi(a) = fis(a) — re(a).

Optimization for Machine Learning



Upper Confidence Bounds

Definition (Confidence bounds). We define upper/lower confidence bounds for ev-
ery arm a and round t

UCB¢(a) = fis(a) +ri(a), LCBi(a) = fis(a) — re(a).

Definition (UCB Elimination). Consider the following algorithm:

1. Alternate two arms a,a’ until UC By(a) < LC'By(a’).

2. Abandon arm a, and use arm a’. forever since.

Optimization for Machine Learning



Upper Confidence Bounds

Definition (Confidence bounds). We define upper/lower confidence bounds for ev-
ery arm a and round t

UCB¢(a) = fis(a) +ri(a), LCBi(a) = fis(a) — re(a).

Definition (UCB Elimination). Consider the following algorithm:

1. Alternate two arms a,a’ until UC By(a) < LC'By(a’).

2. Abandon arm a, and use arm a’. forever since.

Theorem (Regret). UCB Elimination algorithm achieves regret

E[R(T)] tobe O(/TlogT).

Optimization for Machine Learning



Upper Confidence Bounds

Definition (Confidence bounds). We define upper/lower confidence bounds for ev-
ery arm a and round t

UCB¢(a) = fis(a) +ri(a), LCBi(a) = fiy(a) —ri(a).

Definition (UCB Elimination). Consider the following algorithm:

1. Alternate two arms a,a’ until UCB;(a) < LCBy(a’).

2. Abandon arm a, and use arm a’. forever since.

Theorem (Regret). UCB Elimination algorithm achieves regret

E[R(T)] to be O(y/TlogT).

Much better than before!

Optimization for Machine Learning



Analysis of UCB Elimination

Let us define the “clean” event (we condition on that)

&= {vjalpja) —pua)| <rja);}.

Optimization for Machine Learning



Analysis of UCB Elimination
Let us define the “clean” event (we condition on that)
E={Vj,alpj(a) —p(a)| <rj(a)}.

Observe that the disqualified arm cannot be the best arm. How long did it
take to disqualify it?

Let T be the last round when we did not invoke the stopping rule, namely
when the confidence intervals of the two arms still overlap. It holds that

[u(a) — u(a')| < 2(re(a) +re(a))

Optimization for Machine Learning



Analysis of UCB Elimination
Let us define the “clean” event (we condition on that)
E={Vj,alpj(a) —p(a)| <rj(a)}.

Observe that the disqualified arm cannot be the best arm. How long did it
take to disqualify it?

Let T be the last round when we did not invoke the stopping rule, namely
when the confidence intervals of the two arms still overlap. It holds that

[u(a) — u(a')| < 2(re(a) +re(a))

Moreover because we alternated we have n.(a) = n(a’)

r+(a) and r¢(a’) are O ( logT) :

% hence

T

Optimization for Machine Learning



Analysis of UCB Elimination

Using law of total expectation we have

E[R(T)] = E[R(T)|£] Pr[€] + E[R(T)| £]Pr| £]

Optimization for Machine Learning



Analysis of UCB Elimination

Using law of total expectation we have

E[R(T)] = E[R(T)|€] Pr[€] + E[R(T)| £]Pr[£]
§A><T+T><O(%).

The above gives O(+/TlogT).

Optimization for Machine Learning



More than two arms

Definition (UCB Elimination). Consider the following algorithm:

1. Initially all arms are set “active”;
2. Try all active arms once.
3. Deactivate all arms a s.t. there exists an arm o’ with UC By (a) < LCBy(a’)

4. Repeat until there is one arm left.

Optimization for Machine Learning



More than two arms

Definition (UCB Elimination). Consider the following algorithm:

1. Initially all arms are set “active”;
2. Try all active arms once.
3. Deactivate all arms a s.t. there exists an arm a’ with UC B(a) < LCBy(a’)

4. Repeat until there is one arm left.

Theorem (Regret). UCB Elimination algorithm achieves regret

E[R(T)] to be O(\/KTlogT).

Remarks:
* The proof is almost the same as before. Try to prove it alone.

Optimization for Machine Learning



Conclusion

* |Introduction to Multi-armed bandits.
— Explore-first.
— Epsilon-greedy
— UCB Elimination

e Next lecture we will talk more about
Exploration-Exploitation tradeoff.



