L11 — Week 6
Min-max Optimization: Local Nash
and Last iterate convergence

CS 295 Optimization for Machine Learning

loannis Panageas



Min-max in bilinear

* Previously we motivated the Last iterate convergence.

« We show that Gradient Descent Ascent (GDA) diverges even for xT Ay.

Intuition: Given the bilinear problem below let’s run the continuous GDA.

min max =’ Ay.
reR™ yeR™

Consider continuous GDA that is the system of odes:

Recall GDA:

Lt4+1 — Tt — nvxf(xtvyt)a
Yer1 = Y +NVy f(Te, Yr)-
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Min-max in bilinear

* Previously we motivated the Last iterate convergence.

 We show that Gradient Descent Ascent (GDA) diverges even for xTAy.

Intuition: Given the bilinear problem below let’s run the continuous GDA.

min max =’ Ay.
reR™ yeR™

Consider continuous GDA that is the system of odes:

d_att — —nAy, Recall GDA:
dy
dt

— WAT'?U- Ti41 = Ty — nvxf(xtv yt),
Yer1 = Y +NVy f(Te, Yr)-
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Min-max in bilinear

* Previously we motivated the Last iterate convergence.

 We show that Gradient Descent Ascent (GDA) diverges even for xTAy.

Intuition: Given the bilinear problem below let’s run the continuous GDA.

min max =’ Ay.
reR™ yeR™

Consider continuous GDA that is the system of odes:

—nAy, Recall GDA:

— WAT'T- Ti41 = Ty — nvxf(xtv yt),
Yer1 = Y +NVy f(Te, Yr)-

dx
i
dt

Lemma (Cycles). It holds that ||x||5 + ||y||3 is constant w.r.t t.
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Min-max in bilinear

Proof. It suffices to prove

d 2 2
E{Htz + llyll2} = 0.
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Min-max in bilinear

Proof. It suffices to prove
d 2 2
g Ulxllz + [lyll2} = 0.

Observe that

dx? dx dyj

= 2x;— = —n2x;(Ay),, "

| (AT Y .
p” o =2y, — =n2y; (A" z);.

dt
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Min-max in bilinear

Proof. It suffices to prove
d 2 2
g Ulxllz + [lyll2} = 0.

Observe that

dx? dx dy; dy;
— 21— = —n2x;(Ay); I — 9y~ — 2. (AT 2.
p” Ty n2x;(Ay);, o Yi~ n2y; (A" ),
Hence

d
ANz + lyllz} = —2nx" Ay + 25xT Ay = 0.
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Min-max in bilinear

e Question: Can we fix this behavior? We can use “optimism” (negative momentum).

Xepr = X — 10 Ve f (X, ¥e)
+n/2-Vof(X¢—1,Y¢-1)

Ver1 = Ye + 1V f (x, V)
—N/2-Vyf (X1, Ye-1)
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Min-max in bilinear (OGDA)

Xer1 =X =NV f (X, e) +0/2 - Vo f (Xp-1, Ve-1)

Yes1 =Ye T 1 Vyf(xtryt) —N/2 -V, f(Xe—1,Ye-1)
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Min-max in bilinear (OGDA)

Theorem (Convergence). Consider the bilinear game x' Ay where A is
full rank. Optimistic GDA converges pointwise and reaches an € neighborhood in

- Amax(AAT) 1
=9 (Amin(AAT) 8 ¢

1
4/ Amax (AAT)

choosing learning rate 1 =
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Min-max in bilinear (OGDA)

Theorem (Convergence). Consider the bilinear game x' Ay where A is
full rank. Optimistic GDA converges pointwise and reaches an € neighborhood in

- Amax(AAT) 1
=9 (Amin(AAT) 8 ¢

1
4/ Amax (AAT)

choosing learning rate 1 =

The idea behind the proof is to analyze the following dynamical system

(o )= (= Cogar 760)) (0 )+ (o 50) (50
Vel ) —27AT 0 ye ) 7T\ —25AT 0 Vi1
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Min-max in bilinear (OGDA)

Theorem (Convergence). Consider the bilinear game x Ay where A is
full rank. Optimistic GDA converges pointwise and reaches an € neighborhood in

(Amax(AAT) 1
=9 (Amin(AAT) 8 ¢

1
4/ Amax (AAT)

choosing learning rate nj =

The idea behind the proof is to analyze the following dynamical system
(ot )= = Coaaar 50 )) C)or (g 560) (1)
Vit —27AT 0 ye ) T\ —27AT 0 Vi1

Let’s make it linear system!
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Min-max in bilinear (OGDA)

Consider the linear dynamical system

Xt i1 I —2nA O nA Xt
Vil _ 2n AT 1 —n AT 0 Vi
Zi i1 I 0 0 0 Zy
Wi 0 I 0 0 (o
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Min-max in bilinear (OGDA)

Consider the linear dynamical system

Xty I —2nA 0O nA Xt
Vil _ 2n AT 1 —n AT 0 Vi
Zi i1 I 0 0 0 Zy
Wi 0 I 0 0 Wy

Observe that

Xfi1 I —-2nA 0 nA Xt
yerr | _ | 2nAT T —nAT 0 v
Xt I 0 0 0 Xi_1
Yt 0 I 0 0 Yi—1

Lemma (Eigenvalues). The matrix above has eigenvalues that are less than
one for the appropriate choice of 1.
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Min-max in bilinear (constrained)

Consider the problem

min max =’ Ay.
rEA, YEA,

* Projected Optimistic GDA not clear if works... Let’s do Optimistic MWU!

gLt 1420(Ay")i—n(Ay" ),
¢ e3> i (1+2n(Ayt); —n(Ayt=—1);)°
t+1 _ ot 1-2p(ATa")i+n(AT "),

Yi = YT yia—2n(AT at);4n(AT 2t 1);)
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Min-max in bilinear (constrained)

Consider the problem

min max =’ Ay.
rEA, YyEA,,

e Projected Optimistic GDA not clear if works... Let’s do Optimistic MWU!

gLt 1420(Ay")i—n(Ay" ),
¢ e3> @t (1+2n(Ay?); —n(Ayt=1);)°
t+1 _ ot 1-2p(ATa")i+n(AT "),

Yi = YT yia—2n(AT at);4n(AT 2t 1);)

Theorem (Convergence). Let A be the payoff matrix of a zero sum game and the
game has a unique Nash equilibrium. It holds that for n sufficiently small (depends
on n,m, A, 1 can be exponentially small in n, m), starting from uniform distribution
lim; 00 (x, y') = (x*, y*) under OMWU dynamics
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Min-max in general settings

Min-max theorem is not applicable. How can we solve such a problem?
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Min-max in general settings

* Min-max theorem is not applicable. How can we solve such a problem?

Relax the solution concept...
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Min-max in general settings

Min-max theorem is not applicable. How can we solve such a problem?

Relax the solution concept...

Definition (Local Nash). A critical point (x*,y*) is a local Nash if there
exists a neighborhood U around (x*,y*) so that for all (x,y) € U we have that

f(x%y) < f(x5y7) < flxy”).

* Does there always exist a local Nash? Is it a good solution concept?
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Min-max in general settings

* Min-max theorem is not applicable. How can we solve such a problem?

Relax the solution concept...

Definition (Local Nash). A critical point (x*,y*) is a local Nash if there
exists a neighborhood U around (x*,y*) so that for all (x,y) € U we have that

f(x%y) < f(x5y7) < flxy”).

"+ Doe No! Not sure...
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Min-max in general settings

Theorem (Local Convergence). Under some mild assumptions on f(x,y) and step-
size we have

Local Nash C GDA-stable C OGDA-stable

Remarks
* Thisis a local result!
e Unfortunately the inclusions can be strict!
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Min-max in general settings

Theorem (Local Convergence). Under some mild assumptions on f(x,y) and step-
size we have

Local Nash C GDA-stable C OGDA-stable

Remarks
* Thisis a local result!
e Unfortunately the inclusions can be strict!

Lemma (Inclusion strict). There are functions with critical points that are GDA-

stable but not local Nash. An example is f(x,y) = —§x> — 3y* + &xy.
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Min-max in general settings

Proof. Let f(x,y) = —3x% — 3> + Sxv.
Computing the Jacobian of the update rule of OGDA at (0,0) we get

] — ( 4 10
S TR

Both eigenvalues of Jgpa have magnitude less than 1
(for any 0 < a < 1.34). GDA is contracting around (0, 0).

However it is clear that (0,0) is not a local Nash. Why?
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Min-max in general settings
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Conclusion

* Introduction to min-max optimization.
— Negative momentum for last iterate convergence.
— Bilinear unconstrained and constrained

— Local Nash

e Next lecture we will talk about Multi-Armed
Bandits.



