L10 — Week 5
Introduction to Min-max
Optimization
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GANS

In Generative Adversarial Networks (GANs) one would like to solve

m@in max Epng|Dw(z)] — Esnr|[Dy(Go(2))]

* D, is the discriminator, Gy the generator.
* ( is the data distribution, F say Gaussian (noise)
* D,, might (or not) capture the probability to classify data point as true!

 The aforementioned min-max problem is really hard! Many challenges!
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GANs (Goodfellow et al.)

In their seminal paper, Goodfellow et al. defined the following min-max prob-
lem:

meln m{{?’X Ew’vpdata [log D’w (m)] —I_ EZanoise []“Og(l o D'w(G9 (Z)))]

* D,, is the discriminator, Gy the generator.
Paata 1S the data distribution, p,,,ise Say Gaussian (noise).
* D,, captures the probability to classify data point as true!
D istrying to maximize prob to assign correct label to both samples from data
and from G.
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GANs (Goodfellow et al.)

In their seminal paper, Goodfellow et al. defined the following min-max prob-
lem:

mln max Ewdiata [log Dw ('T)] —l_ EZanoise [log(l o Dw (G9 (Z)))]

o) w

Lemma (Optimality). For G fixed, the optimal discriminator D has density

x) = pdata(x)
Dw*( ) B pdata(x) + pG(x)

4

where pg is the implicit distribution of the Generator over the data.
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GANs (Goodfellow et al.)

In their seminal paper, Goodfellow et al. defined the following min-max prob-
lem:

meln m{l?X Ewdiata [log Dw ('T)] —l_ EZanoise [log(l o Dw (G9 (Z)))]

Lemma (Optimality). For G fixed, the optimal discriminator D has density

x) = pdata(x)
Dw*( ) B pdata(x) + pG(x)

where pg is the implicit distribution of the Generator over the data.

4

Proof. For fixed G, D is trying to maximize
/log D(x)paata(x)dr + /log(l — D(G(2))Pnoise(z)dz.
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GANs (Goodfellow et al.)

Proof. For fixed G, D is trying to maximize

/log D(x)paata(x)dr + /log(l — D(G(2))Pnoise(z)dz.

z

The above is nothing but (set z = G(z2))

/logD(x)pdata da:+/log 1 — D(x)pg(x)de.
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GANs (Goodfellow et al.)

Proof. For fixed G, D is trying to maximize

/log D(x)paata(x)dr + /log(l — D(G(2))Pnoise(z)dz.

z

The above is nothing but (set z = G(z2))

/logD(x)pdata daz+/log 1 — D(x)pg(x)de.

Finally, observe that function

f(y) = alogy + blog(1 — y)

achieves maximum at —I—b
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GANs (Goodfellow et al.)

Proof. For fixed G, D is trying to maximize

/log D(x)paata(x)dr + /log(l — D(G(2))Pnoise(z)dz.

z

The above is nothing but (set z = G(z2))

/logD(x)pdata da:+/log 1 — D(x)pg(x)de.

Define cost function C'(G)

C(G) :=Ezmpy.,. [log

Pdata

Pdata + PG

} + Eonpe [log

jge

Pdata 1+ PG

|
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GANs (Goodfellow et al.)

Theorem (Global solution). The global minimum of C(G) is achieved
if and only if
PG = Pdata-

Proof.
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GANs (Goodfellow et al.)

Theorem (Global solution). The global minimum of C(G) is achieved
if and only if
PG = Pdata-

Proof. Observe that for pg.ia = pg we get that C(G) = — log4.

Quick recap KL(p||q) = Ex~p [log ’;E—i” is non-negative!
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GANs (Goodfellow et al.)

Theorem (Global solution). The global minimum of C(G) is achieved
if and only if
PG = Pdata-

Proof. Observe that for pg.ia = pg we get that C(G) = — log4.

Quick recap KL(p||q) = Ex~p [log Z g” is non-negative!

Finally observe that

aa+ aa+
C(G) = —log + KL ( paall P27 ) KL (o P tPE )

2 2
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Min-max Optimization

GANs motivate the study of min-max optimization (in general harder than
minimization), i.e., for some continuous function f we want to solve

min max f(z, y)

Remarks

 Domains are typically compact.

* In general the above problem might not have a solution.

* There are guarantees when domains are compact and f is convex-concave.
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Minimax Theorem

Theorem (Minimax by John von Neumann). Let X C R" and Y C R be
compact convex sets. If f is a continuous function that is convex-concave it holds

minmax f(x,y) = maxmin f(x,
xexyeyf( Y) yeyxexf( y)

Remarks

 Many applications, especially in Game Theory.

e If f = xT Ay, and the domains are A,,, A, it captures classic zero sum games
 The above is the value of the game.

* Note that It is always true (min-max inequality):

infxepc’ Supyey f(x;y) 2 Supyey infxEX f(x’ y)

Optimization for Machine Learning



Minimax Theorem

Theorem (Minimax by John von Neumann). Let X C R" and Y C R be
compact convex sets. If f is a continuous function that is convex-concave it holds

minmax f(x,y) = maxmin f(x,
xexyeyf( Y) yeyxexf( y)

Remarks
 Many applications, especially in Game Theory.
e If f = xT Ay, and the domains are A,,, A, it captures classic zero sum games
 The above is the value of the game. _ L
: . : : Define g(z) = inf f(z,w).
* Note that It is always true (min-max inequality): weW
Vw,Vz, g(z) < f(z,w)

inf,cy Sup,cy f(x,y) > sup,cy ir— Vw,sgpg(z) < sup f(z,w)

— sup g(z) < infsup f(z, w)

— supinf f(z,w) < infsup f(z, w)

z
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Minimax Theorem

Theorem (Minimax by John von Neumann). Let X C R" and Y C R be
compact convex sets. If f is a continuous function that is convex-concave it holds

minmax f(x,y) = maxmin f(Xx,
xeX ye) f( y) yey xeXf( y)

Proof. Let’s use no-regret learning for both ”players”!
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Online Gradient Descent (Recap)

Definition (Online Gradient Descent). Let f : R" — IR be convex function,

differentiable and L-Lipschitz in some compact convex set X of diameter D.
Online GD is defined:

Initialize at some x.
For t:=1 to T do

1. Choose x; and observe ¢;(x;).
2. Yy = Xt — octVEt(xt).
3. xty1 = Hx(yt).

Regret: % (2?21 01 (x¢) — miny Ethl Et(x)) :
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Analysis of Online GD for L-Lipschitz
(Recap)

Theorem (Online Gradient Descent). Let f : R” — IR be convex function,
differentiable and L-Lipschitz in some compact convex set X of diameter D.

It holds
1 & & 3LD
(T Y Cp(x) — min ) Et(x)) 2 T

Remarks:
2Nn2

LD
* Ifwewanterrore, weneedT = @( =

) iterations (same as GD for L-Lipschitz).
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Minimax Theorem

Theorem (Minimax by John von Neumann). Let X C R" and Y C R be
compact convex sets. If f is a continuous function that is convex-concave it holds

minmax f(x,y) = maxmin f(Xx,
xeX ye) f( y) yey xeXf( y)

Proof. Let’s use no-regret learning for both ”players”!

Let x1,...,x7 and yq,...,yr be the iterates as advised by some no-regret algo-
rithm and define & = £ Z;'le z; and § = + Z;-rzl y; and T = O(%).

Choose any z, then from the no-regret property for x we get that

> f(@ey) <=3 fxye) +e
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Minimax Theorem

Theorem (Minimax by John von Neumann). Let X C R" and Y C R be
compact convex sets. If f is a continuous function that is convex-concave it holds

minmax f(x,y) = maxmin f(Xx,
xeX ye) f( y) yey xeXf( y)

Proof. Let’s use no-regret learning for both ”players”!

Let x1,...,x7 and yq,...,yr be the iterates as advised by some no-regret algo-
rithm and define & = £ Z;'le z; and § = + Z;-rzl y; and T = O(%).

Choose any z, then from the no-regret property for x we get that

T f@ey) < 33, f(z,y) +e
< f(x,y) + € by concavity.
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Minimax Theorem

Proof cont.

Choose any y, then from the no-regret property for y we get that

5 f@nu) > 75, flany) — €
> f(z,y) — € by convexity.

Optimization for Machine Learning



Minimax Theorem

Proof cont.

Choose any y, then from the no-regret property for y we get that
% Zt f(xe,ye) > %Zt f(ze,y) —€
> f(z,y) — € by convexity.

We conclude that for all x,y we have

f(@,y) —2¢ < f(x,9).
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Minimax Theorem

Proof cont.

Choose any y, then from the no-regret property for y we get that
% Zt f(xe,ye) > %Zt f(ze,y) —€
> f(z,y) — € by convexity.

We conclude that for all x,y we have

max, f(Z,y) — 2¢ < min, f(x, 9).

A

Finally we get max, min, f(z,y) > min, f(z,7)
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Minimax Theorem

Proof cont.

Choose any y, then from the no-regret property for y we get that
% Zt f(xe,ye) > %Zt f(xe,y) —€
> f(z,y) — € by convexity.

We conclude that for all x,y we have

max, f(Z,y) — 2¢ < min, f(x, 9).

A

Finally we get max, min, f(z,y) > min, f(z,7)

A

> max, f(Z,y) — 2¢
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Minimax Theorem

Proof cont.

Choose any y, then from the no-regret property for y we get that
% Zt f(xe,ye) > %Zt f(xe,y) —€
> f(z,y) — € by convexity.

We conclude that for all x,y we have

max, f(Z,y) — 2¢ < min, f(x, 9).

Finally we get max, min, f(z,y) > min, f(z,7)

> max, f(Z,y) — 2¢

> min, max, f(x,y) — 2e¢
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Minimax Theorem

Proof cont.

Choose a Set € — 0 and we are done! t

%th(ﬁtayt) > %th(mtay) — €
> f(z,y) — € by convexity.

We conclude that for all x,y we have

max, f(Z,y) — 2¢ < min, f(x, 9).

Finally we get max, min, f(z,y) > min, f(z,7)

> max, f(Z,y) — 2¢

> min, max, f(x,y) — 2e¢
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Last iterate convergence?

Convex-concave settings (with compact domains) are easy.
Nevertheless in GANs

* Functions are not necessarily convex-concave.
 Time averaging does not help (Jensen’s ineq not applicable).
* Motivation to care about last iterate convergence!

For the rest of the lecture let’s focus on
min max =’ Ay.
reX ye)y

Can we guarantee last iterate convergence using GD or MWUA?
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Last iterate convergence?

Convex-concave settings (with compact domains) are easy.
Nevertheless in GANs

* Functions are not necessarily convex-concave.
 Time averaging does not help (Jensen’s ineq not applicable).
* Motivation to care about last iterate convergence!

For the rest of the lecture let’s focus on

min max =’ Ay.
reX ye)y

Can we guarantee last iterate convergence using GD or MWUA?

Not really...
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Last iterate convergence

Consider Gradient Descent/Ascent that is

Lit+1 — Tt — nva:f(xta yt)v
Yer1 = Yt + NV f(Te, Yt).

Consider the simplest case f(x,y) = zy. GDA boils down to:

Ti+1 = Tt — NYy,
Yi+1 = Y¢ + NTy.
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Last iterate convergence

Consider Gradient Descent/Ascent that is

Lit+1 — Tt — nva?f(xta yt)v
Yer1 = Yt + NV f(Te, Yt).

Consider the simplest case f(x,y) = zy. GDA boils down to:

Ti+1 = Tt — NYy,
Yi+1 = Y¢ + NTy.

Claim (Divergence). It holds that x? + y? is increasing in t.
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Last iterate convergence

Consider Gradient Descent/Ascent that is

Lit+1 — Tt — vaf(xta yt)v
Yer1 = Yt + NV f(Te, Yt).

Consider the simplest case f(x,y) = zy. GDA boils down to:

Ti+1 = Tt — NYy,
Yi+1 = Y¢ + NTy.

Claim (Divergence). It holds that x? + y? is increasing in t.

Proof.

37%+1 + yt2—|—1 = (772 =+ 1)(33% + yf)
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Last iterate convergence

Consider MWUA that is

t —n(Ayt);
xt+1:mze n( y)?’

) Ly ?

T .ty
41 ype" T
Y, = Z,

Theorem (Divergence). Assume there exists a unique fully mixed Nash (x*,y*)
equilibrium (full support). It holds that the KL divergence between a player
strategies the fully mixed Nash goes to infinity, i.e,

lii’nKL(a?*Hmt) = oo and lignKL(y*Hyt) = 00.
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Conclusion

* |Introduction to min-max optimization.
— GANS.
— Minimax Theorem

— Last iterate convergence?

e Next lecture we will talk more about min-max
optimization and optimism.



