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GANs

Optimization for Machine Learning

• 𝐷𝑤 is the discriminator, 𝐺𝜃 the generator.
• 𝑄 is the data distribution, 𝐹 say Gaussian (noise)
• 𝐷𝑤 might (or not) capture the probability to classify data point as true!

• The  aforementioned min-max problem is really hard! Many challenges!
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• 𝐷𝑤 is the discriminator, 𝐺𝜃 the generator.
• 𝑝𝑑𝑎𝑡𝑎 is the data distribution, 𝑝𝑛𝑜𝑖𝑠𝑒 say Gaussian (noise).
• 𝐷𝑤 captures the probability to classify data point as true!
• 𝐷 is trying to maximize prob to assign correct label to both samples from data
and from 𝐺. 
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Min-max Optimization

Optimization for Machine Learning

GANs motivate the study of min-max optimization (in general harder than 
minimization), i.e., for some continuous function 𝑓 we want to solve

Remarks
• Domains are typically compact.
• In general the above problem might not have a solution.
• There are guarantees when domains are compact and 𝑓 is convex-concave.



Minimax Theorem
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Remarks
• Many applications, especially in Game Theory.
• If 𝑓 = 𝑥𝑇𝐴𝑦, and the domains are Δ𝑛, Δ𝑚 it captures classic zero sum games
• The above is the value of the game.
• Note that It is always true (min-max inequality):
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Online Gradient Descent (Recap)
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Analysis of Online GD for 𝐿-Lipschitz 
(Recap)

Optimization for Machine Learning

Remarks:

• If we want error 𝜖, we need 𝑇 = Θ
𝐿2𝐷2

𝜖2
iterations (same as GD for L-Lipschitz).
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Minimax Theorem
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Set 𝝐 → 𝟎 and we are done!



Last iterate convergence? 
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Convex-concave settings (with compact domains) are easy. 
Nevertheless in GANs

• Functions are not necessarily convex-concave.
• Time averaging does not help (Jensen’s ineq not applicable).
• Motivation to care about last iterate convergence!
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Convex-concave settings (with compact domains) are easy. 
Nevertheless in GANs

• Functions are not necessarily convex-concave.
• Time averaging does not help (Jensen’s ineq not applicable).
• Motivation to care about last iterate convergence!

Not really…
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Conclusion

• Introduction to min-max optimization.

– GANs.

– Minimax Theorem

– Last iterate convergence?

• Next lecture we will talk more about min-max 
optimization and optimism.


