L09 — Week 5

Non-convex Optimization: GD +
noise converges to second order
stationarity

CS 295 Optimization for Machine Learning

loannis Panageas



Recap

Theorem (GD avoids strict saddles). Let f : R" — IR be a twice differentiable
function, L-smooth and x* be a strict saddle point and € < 1/L. For any continu-
ous distribution D, if we sample initialization xq from D, GD converges to x* with
probability zero.
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Theorem (GD avoids strict saddles). Let f : R" — IR be a twice differentiable
function, L-smooth and x* be a strict saddle point and € < 1/L. For any continu-
ous distribution D, if we sample initialization xq from D, GD converges to x* with
probability zero.

e Thisis only true in the unconstrained case!
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Recap

Theorem (GD avoids strict saddles). Let f : R" — IR be a twice differentiable
function, L-smooth and x* be a strict saddle point and € < 1/L. For any continu-
ous distribution D, if we sample initialization xq from D, GD converges to x* with
probability zero.

e Thisis only true in the unconstrained case!

Example (Bad example for constrained). Consider the following optimization
problem:

ih—xye PV 4 L2 <
rtgcl’1yn xye +2y stx+y <0.
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Theorem (GD avoids strict saddles). Let f : R" — IR be a twice differentiable
function, L-smooth and x* be a strict saddle point and € < 1/L. For any continu-

ous distribution D, if we sample initialization xq from D, GD converges to x* with

probability zero.
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This is only true in the unconstrained cz 08} |

Example (Bad example for constrained g4}

problem:

05

-0.5
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Vanishing step-sizes

Theorem (GD avoids strict saddles with vanishing stepsize). Let f : R" —
R be a twice differentiable function, L-smooth and x* be a strict saddle point and
€ is of order Q(1) (vanishing). For any continuous distribution D, if we sample
initialization xg from D, GD converges to x* with probability zero.
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Vanishing step-sizes

Theorem (GD avoids strict saddles with vanishing stepsize). Let f : R" —
R be a twice differentiable function, L-smooth and x* be a strict saddle point and
€ is of order Q(1) (vanishing). For any continuous distribution D, if we sample
initialization xg from D, GD converges to x* with probability zero.

Fact (GD for Quadratic). Let f(x) = +xT Ax. GD boils down to:

Xti1 = Xt — €tAXs = (I — € A)xy.

Therefore 2441 = [, (I — e, A)xg

z=t
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Vanishing step-sizes

Theorem (GD avoids strict saddles with vanishing stepsize). Let f : R" —
R be a twice differentiable function, L-smooth and x* be a strict saddle point and
€ is of order Q(1) (vanishing). For any continuous distribution D, if we sample
initialization xg from D, GD converges to x* with probability zero.

Fact (GD for Quadratic). Let f(x) = +xT Ax. GD boils down to:

Xti1 = Xt — €tAXs = (I — € A)xy.

Therefore 2441 = [, (I — e, A)xg

z=t

Since A is symmetric, A = PT AP with A diagonal matrix, P'P = 1.

Therefore ;4 = P ngt(l — €, A)Pxyg
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Vanishing step-sizes

Therefore z;,; = P ngt(f — €, A)Px

Observe that ngt(I —€,A) = A’ where A’ is diagonal with entry (,7)

H(l — Ez)\@)

z
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Vanishing step-sizes

Therefore z;,; = P ngt(f — €, A)Px

Observe that ngt(I —€,A) = A’ where A’ is diagonal with entry (,7)

H(l — Ez)\@)

z

Hence the eigenvalues are e M(1=¢:A:) o g=Ai 2 ¢-

Assume that A\; < 0 As long as > - €, = oo then for GD to converge to zero,
we must have that Pxzg L e;.
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Definitions

Assumption (Hessian Lipschitz). We assume that the twice differentiable functions
we are deadling with have Hessian p-Lipschitz, that is

| V2 = V2F )|, < pllx =yl
Definition (Approximate first/second order stationary point). We provide the
following definitions:

o A point x* is an e—first order stationary point (or critical point) of f

if Vi), <e

o A point x* of f is an e—strict saddle point if it is an e-first order stationary
point and Amin (V2 f(x*)) < —./p€

o The e-first order points that are not e-strict saddles are called e-second order
stationary points.
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Convergence to first order stationarity

Theorem (GD converges to first-order stationarity). For any € > 0, assume the
differentiable function is L-smooth and let « = L. Moreover, let f(x*) be the global
minimum of f. Then, the gradient descent algorithm in

Xt11 = Xt —aV f(x¢)

will visit an e-stationary point at least once in at most T := 2L/ (xogz— S terations.

Proof. Recall
1 1

flx = V() = f(x) < =57 IVF@)l3-
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Convergence to first order stationarity

Theorem (GD converges to first-order stationarity). For any € > 0, assume the
differentiable function is L-smooth and let « = L. Moreover, let f(x*) be the global
minimum of f. Then, the gradient descent algorithm in

Xt11 = Xt —aV f(x¢)

will visit an e-stationary point at least once in at most T := 2L/ (xogz— S terations.

Proof. Recall
1 1

flx = V() = f(x) < =57 IVF@)l3-

Assume that ||V f(x¢)||, > e fort =1, ..., T. We get that

flar) = f(er—1) + flar-1) — f(@r—2) + ... + f(21) — f(@0)< — %
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Convergence to first order stationarity

Theorem (GD converges to first-order stationarity). For any € > 0, assume the
differentiable function is L-smooth and let « = L. Moreover, let f(x*) be the global
minimum of f. Then, the gradient descent algorithm in

Xt11 = Xt —aV f(x¢)

will visit an e-stationary point at least once in at most T := 2L/ (xogz— S terations.

Proof. Recall

1 1

flx = V() = f(x) < =57 IVF@)l3-

2

Therefore f(z*) — f(zo) < f(zr) — flzo)< — ST = f(2*) — f(=0).
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Convergence to first order stationarity

Theorem (GD converges to first-order stationarity). For any € > 0, assume the
differentiable function is L-smooth and let « = L. Moreover, let f(x*) be the global
minimum of f. Then, the gradient descent algorithm in

Xt11 = Xt —aV f(x¢)

will visit an e-stationary point at least once in at most T := 2L/ (xogz— S terations.

Proof. Recall

1 1

flx = V() = f(x) < =57 IVF@)l3-

2

Therefore f(z*) — f(zo) < f(zr) — flzo)< — ST = f(2*) — f(=0).

Contradiction!
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Perturbed Gradient Descent

Definition (Perturbed Gradient Descent). Let f : R? — R be a differentiable
function. The Perturbed Gradient Descent is defined as follows:

1. Initialization z, stepsize 1, perturbation radius r.

2. For t=1 ... T do

3. w1 =2 —n(Vf(xs) +&) with & ~ N(0, (r?/d)])
4. End For

Theorem (PGD converges to second-order stationarity). Let f be a twice dif-
ferentiable L-smooth function with Hessian p-Lipschitz. For any €,5 > 0, set 1 =

1 _ e AT i _ _ : :
O(1), r=0 (1084 47(00) ) PGD will visit an e-second-order stationary point at

least once with probability at least 1 — ¢ in at most T = O (L(f(xol;f(x*)) log4 1%)

iterations.
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Analysis of Perturbed Gradient
Descent

e High level proof strategy:

1) When the current iterate is not an e-second order stationary point,
it must either (a) have a large gradient or (b) have a strictly negative eigenvalue the Hessian.

2) We can show in both cases that yield a significant decrease in function value
in a controlled number of iterations.

3) Since the decrease cannot be more that f(xy) — f(x™) (global minimum is bounded)
we can reach contradiction.
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Analysis of Perturbed Gradient
Descent

Lemma (Descent Lemma). Assume f is twice differentiable L-smooth and 1 = 1.
Then it holds with probability 1 — ¢

2
flxrer) — fxy) < — vaz(zt)” +0 (r4/d2 10g%) :

Proof.

Fxin) = f(xe) S V() T (a1 — xt) + 5 [|x001 — xtH% L-smooth,
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Analysis of Perturbed Gradient
Descent

Lemma (Descent Lemma). Assume f is twice differentiable L-smooth and 1 = %
Then it holds with probability 1 — ¢

2
flxrer) — fxy) < — vaz(zt)” +0 (r4/d2 10g%) :

Proof.
flxea) = f(xr) < VFQx) T (01 — xe) + § 241 — x| L-smooth,

— —LVf(x) V() — L& VF(xe) + 5L [VF(x) + &2,
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Analysis of Perturbed Gradient
Descent

Lemma (Descent Lemma). Assume f is twice differentiable L-smooth and 1 = 1.
Then it holds with probability 1 — ¢

2
flxrer) — fxy) < — vaz(zt)” +0 (r4/d2 10g%) :

Proof.
flxrp1) = F(xe) < VF(xe) T (xeg1 — xe) + 5 | xe11 — x| L-smooth,
—IVF(x)TVF() — 1&T V() + 55 V() + &l

< =1 V()13 + 57 1615
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Analysis of Perturbed Gradient
Descent

Lemma (Descent Lemma). Assume f is twice differentiable L-smooth and 1 = 1.
Then it holds with probability 1 — ¢

2
flxrer) — fxy) < — vaz(zt)” +0 (r4/d2 10g%) :

Proof.
Fxin) = f(xe) S V() T (a1 — xt) + 5 [|x001 — xtH% L-smooth,
~IVf(a) V() — 1& V() + 55 [VFx) + &5,

< L IVF)5+ 2 &3

This is of order ©(€?) if we are in case (a).
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Analysis of Perturbed Gradient
Descent

Lemma (Escaping saddle points). Assume f is twice differentiable L-smooth and
has hessian p-Lipschitz. Moreover assume that ||V f(xo)||, < € and also
Amin(V2f(x9)) < —,/0€. Assume we run PGD from x, then

t LvVd _e(os* 4
Pr(f(xs) — f(xg) < _E] >1— \/\;_;e ©(log pe),

for t = L @(log* f%) and t' = j%@(log4 p%).

5
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Analysis of Perturbed Gradient
Descent

Lemma (Escaping saddle points). Assume f is twice differentiable L-smooth and
has hessian p-Lipschitz. Moreover assume that ||V f(xo)||, < € and also
Amin(V?f(x9)) < —/0€. Assume we run PGD from x, then

t LvVd _e(os* 4
Pr(f(xs) — f(xg) < _E] >1— \/\;_;e ©(log pe),

fort = L O(log* L) and t' = j—;_€®(10g4 p%).

€ pe

5

Since f(x*) — f(x) is bounded and t is ©(t'¢?),
after © (L );f (z0)) we reach a second order
stationary point (contradiction otherwise).
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Conclusion

* |Introduction to Non-convex Optimization.
— Perturbed Gradient Descent avoids strict saddles!

— Same is true for Perturbed SGD.

e Next two lectures we will talk about Min-max
optimization.



