Week 2 - LO4
Stochastic Gradient Descent
(Examples)

CS 295 Optimization for Machine Learning

loannis Panageas



Optimization in ML, SGD to the rescue

Definition (Risk Minimization). Let ¢(x,z) : X x Z — R be a risk function and
D some unknown distribution we can get samples from. We are interested in solving:

min L(x), where L(x) :=E,.p[l(x,z)].
xeX
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Optimization in ML, SGD to the rescue

Definition (Risk Minimization). Let ¢(x,z) : X x Z — R be a risk function and
D some unknown distribution we can get samples from. We are interested in solving:

fcrél? L(x), where L(x) := E,.pll(x,z)].

Approach one:

1. Take enough (say n) samples z; independently and consider the
estimate L(x) := %Zif(x, Z;). By Law of Large Numbers thisis a
close enough with high probability.

2. Run a first order optimization algorithm (say GD) on L(x).

Remark:

If we do not know the form of £(x, z) and we only have oracle access it
is not possible. Also many calculations per iteration...
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Optimization in ML, SGD to the rescue

Definition (Risk Minimization). Let ¢(x,z) : X x Z — R be a risk function and
D some unknown distribution we can get samples from. We are interested in solving:

min L(x), where L(x) :=E,.p[l(x,z)].
xeX

Approach one:

Or use SGD!

2. Run a first order optimization algorithm (say GD) on L(x).

Remark:

If we do not know the form of £(x, z) and we only have oracle access it
is not possible. Also many calculations per iteration...

Optimization for Machine Learning




Optimization in ML, SGD to the rescue

Definition (Risk Minimization). Let ¢(x,z) : X x Z — R be a risk function and
D some unknown distribution we can get samples from. We are interested in solving:

min L(x), where L(x) :=E,.p[l(x,z)].
xeX

Approach two (SGD):
1. For each iterationt + 1, take a fresh sample z; independently from

Z4, ..., Z¢_1 and consider the unbiased estimate V,.£(x¢, z;).
2. Update xi11 = x¢ — a; V£ (x¢, Z¢).
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Optimization in ML, SGD to the rescue

Definition (Risk Minimization). Let ¢(x,z) : X x Z — R be a risk function and
D some unknown distribution we can get samples from. We are interested in solving:

min L(x), where L(x) :=E,.p[l(x,z)].
xeX

For t:=1 to T do
1. sample z ~ D.
2. Pick vy € 94(x4,z).
3. X111 = Xt — KtU¢.

Return % Y Xt
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Optimization in ML, SGD to the rescue

Definition (Risk Minimization). Let ¢(x,z) : X x Z — R be a risk function and
D some unknown distribution we can get samples from. We are interested in solving:

min L(x), where L(x) :=E,.p[l(x,z)].
xeX

Remark:
What if L(x) = %Z?zlgi(x)?

Less Cost per iteration (but you need to “pay” the variance):

1. For each iteration t 4+ 1, take uniformly at random independently
index i from 1, ..., n and consider the (unbiased estimate) V, g;(x).
2. Update xi11 = x; — a;V, g;(x).
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An example (SGD approach)

Definition (MLE for Gaussian). Let z ~ N(u,1) and ¢(x,z) := —logpx(2)
denotes the log-likelihood of N'(x,1). We do not know u. We are interested in solving:

mMin E; (1) [~ 108 px(2)].

Any guesses what is the minimizer of the above?
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An example (SGD approach)

Definition (MLE for Gaussian). Let z ~ N(u,1) and ¢(x,z) := —logpx(2)
denotes the log-likelihood of N'(x,1). We do not know u. We are interested in solving:

mMin E; (1) [~ 108 px(2)].

Of course x™ = u. Remarks on Maximum (log)-Likelihood:

1. Standard approach for parameter estimation of parametric families of
distributions, i.e., create an optimization problem!
2. Under assumptions, Maximum (log) Likelihood Estimator is consistent!

@—XV}_

3. Above boils down to min B, a1 [ 5

4. Let’s do SGD...
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An example (SGD approach)

Definition (MLE for Gaussian). Let z ~ N(u,1) and ¢(x,z) := —logpx(2)
denotes the log-likelihood of N'(x,1). We do not know . We are interested in solving:

(z —x)?

gcréiﬂl’ll]Esz(y’l) [ 2 ] .
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An example (SGD approach)

Definition (MLE for Gaussian). Let z ~ N(u,1) and ¢(x,z) := —logpx(2)
denotes the log-likelihood of N'(x,1). We do not know . We are interested in solving:
: (z = x)?
gcrél]llg E. A1) [ > .

e The derivative is just (z — z) and E[(z — 2)?] = 1 + (z — p)?.
e The second derivative is 1, hence 1-strongly convex.
e Start from zg = 0.

e At iteration t+1, get a fresh sample z; and we have x;11 = ¥y — oy (x — 2¢).
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An example (SGD approach)

Definition (MLE for Gaussian). Let z ~ N(u,1) and ¢(x,z) := —logpx(2)
denotes the log-likelihood of N'(x,1). We do not know . We are interested in solving:
: (z = x)?
1;;1]11'21 E, A1) [ > .

e The derivative is just (z — z) and E[(z — 2)?] = 1 + (z — p)?.
e The second derivative is 1, hence 1-strongly convex.
e Start from zg = 0.

e At iteration t+1, get a fresh sample z; and we have x;11 = ¥y — oy (x — 2¢).

Choosing a; = % (check SGD thm), what is x7?
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An example (SGD approach)

Definition (MLE for Gaussian). Let z ~ N(u,1) and ¢(x,z) := —logpx(2)
denotes the log-likelihood of N'(x,1). We do not know . We are interested in solving:

_ z—x)?
minlE, s, 1) [( > ) ]

e The derivative is just (z — z) and E[(z — 2)?] = 1 + (2 — p)?.

e The second derivative is 1, hence 1-strongly convex.

e Start from zg = 0. Recall forT = © (Elog%) we get error €!

e At iteration t+1, get a fresh sample 2; and we have x;11 = x¢ —az(x: — 2¢).

Choosing a; = % (check SGD thm), what is x1?
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An example (SGD approach)

Definition (MLE for Gaussian). Let z ~ N(u,1) and ¢(x,z) := —logpx(2)
denotes the log-likelihood of N'(x,1). We do not know . We are interested in solving:

_ z—x)?
minlE, s, 1) [( > ) ]

e The derivative is just (z — z) and E[(z — 2)?] = 1 + (x — u)>.

Thvyou can get e-close to u after 6% In 6% itearations! Not tight, why?

® StELU 1Ll L) — Y.

e At iteration t+1, get a fresh sample z; and we have x;11 = ¥y — oy (x — 2¢).

. . . . i |
It is the empirical mean, i.e., x; = ;Zi z;!
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An example (SGD approach)

Problem (Bias of a coin). Assume you are given a coin that gives H with probability
p € (0,1) and T with probability 1 — p. How many tosses do you need to get an
estimate p about p and be sure with probability 99% that |p — p| < €?

Hint: Density f,(z) = p*(1 —p)' =

Optimization for Machine Learning



An example (SGD approach)

Problem (Bias of a coin). Assume you are given a coin that gives H with probability
p € (0,1) and T with probability 1 — p. How many tosses do you need to get an
estimate p about p and be sure with probability 99% that |p — p| < €?

Hint: Density f,(z) = p*(1 — p)*~*

e A discrete probabilist will use Chernoff bounds or Chebyshev!

e A statistitian/optimization guy will solve min, E[—log f.(2)].
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An example (SGD approach)

Problem (Bias of a coin). Assume you are given a coin that gives H with probability
p € (0,1) and T with probability 1 — p. How many tosses do you need to get an
estimate p about p and be sure with probability 99% that |p — p| < €?

Hint: Density f,(z) = p*(1 — p)*~*

e A discrete probabilist will use Chernoff bounds or Chebyshev!

e A statistitian/optimization guy will solve min, E[—log f.(2)].

We would like to solve (of course z* = p is the solution but we don’t know p)

mminE[—zlogat — (1 — 2)log(1 — x)].
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An example (SGD approach)

Problem (Bias of a coin). Assume you are given a coin that gives H with probability
p € (0,1) and T with probability 1 — p. How many tosses do you need to get an
estimate p about p and be sure with probability 99% that |p — p| < €?

Hint: Density f,(z) = p*(1 —p)?

—Zz

e The derivative of £ is just —= + (1 2) — (3“"1__2), which is in absolute value

at most * for x € (¢,1 — €).

e The second derivative of L is 15 + (11_;;32, hence
4(p — p?)-strongly convex in (0,1).
e Start from xy = 1/2.

(zt—2t)
xe(l—xs) "

e At iteration t+1, get a fresh sample z; and we have x;11 = x; — oy
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An example (SGD approach)

Problem (Bias of a coin). Assume you are given a coin that gives H with probability
p € (0,1) and T with probability 1 — p. How many tosses do you need to get an
estimate p about p and be sure with probability 99% that |p — p| < €?

Hint: Density f,(z) = p*(1 — p)*~*

e The derivative of / is inst, — 2 L (1—2) — L2 which is in ahsoliite valnie

You can get e-close to p after L oo In eiz itearations! Not tight, why?

4(p—p

n
® TTICSCCUOIIUO UcrIivative O LIS :E_2 T m, 1IC1IUC

4(p — p?)-strongly convex in (0,1).
e Start from xy = 1/2.

(zt—2¢)

e At iteration t+1, get a fresh sample z; and we have x;11 = x; — oy PREETE
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A strange example.

Problem (Mixture of Gaussians). Assume you have access to i.i.d samples from
z ~ N(u,1). However, there is an adversary that with probability 1/2 corrupts z
and gives you —z. Can you infer/estimate yu?
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A strange example.

Problem (Mixture of Gaussians). Assume you have access to i.i.d samples from
z ~ N(u,1). However, there is an adversary that with probability 1/2 corrupts z
and gives you —z. Can you infer/estimate yu?

1 2 1 2
Need to solve: minE. _ —1lo p(Z=X)7/2 = plztx) /2)] .
T rer A [ 5 (zm 227

e Is it convex? Exercise 5.
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A strange example.

Problem (Mixture of Gaussians). Assume you have access to i.i.d samples from
z ~ N(u,1). However, there is an adversary that with probability 1/2 corrupts z
and gives you —z. Can you infer/estimate yu?

1 2 1 2
Need to solve: minE. _ —1lo p(Z=X)7/2 = plztx) /2)] .
T rer A [ 5 (zm 227

e Is it convex? Exercise 5.
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Conclusion

 Examples on SGD:
— MLE, testing bias of coin.

* Non-convex examples: Mixture of Gaussians

* Next week we will talk about online
learning/optimization!



