Week 1 - L01
Convex Optimization and Gradient Descent: Basics

CS 295 Optimization for Machine Learning
Ioannis Panageas
Many machine learning problems involve learning parameters $\theta \in \Theta$ of a function, towards achieving an objective. Objectives are characterized by a loss function $L : \Theta \rightarrow \mathbb{R}$.

Example in supervised learning given n samples (x_i, y_i) where x is the input:

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} l(f(x_i, \theta), y_i)$$

Goal: $\min_{\theta \in \Theta} L(\theta)$

Typically solving $\min_{x \in X} f(x)$ is NP-hard (computationally intractable).
Many machine learning problems involve learning parameters $\theta \in \Theta$ of a function, towards achieving an objective. Objectives are characterized by a loss function $L : \Theta \rightarrow \mathbb{R}$.

Example in supervised learning given n samples (x_i, y_i) where x is the input:

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} l(f(x_i, \theta), y_i)$$

Goal: $\min_{\theta \in \Theta} L(\theta)$

Typically solving $\min_{x \in \mathcal{X}} f(x)$ is NP-hard (computationally intractable).

Nevertheless, for certain classes of functions f, strong theoretical guarantees and efficient optimization algorithms exist!

- Classes of functions f: Convex!
- Algorithm: Gradient Descent!
Definitions

Definition (Convex combination). $z \in \mathbb{R}^d$ is a convex combination of $x_1, x_2, ..., x_n \in \mathbb{R}^d$ if

$$z = \sum \lambda_i x_i, \quad \lambda_i \geq 0 \text{ for all } i \text{ and } \sum \lambda_i = 1.$$
Definitions

Definition (Convex combination). $z \in \mathbb{R}^d$ is a convex combination of \(x_1, x_2, \ldots, x_n \in \mathbb{R}^d\) if

\[
z = \sum \lambda_i x_i, \quad \lambda_i \geq 0 \text{ for all } i \text{ and } \sum_i \lambda_i = 1.
\]

Definition (Convex set). \(\mathcal{X}\) is a convex set if the convex combination of any two points in \(\mathcal{X}\) belongs also in \(\mathcal{X}\).
Definitions cont.

Definition (Convex function). A function $f(x)$ is convex if and only if the domain $\text{dom}(f)$ is a convex set and $\forall x, y \in \text{dom}(f), \theta \in [0, 1]$

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y).$$

Concave function f: $-f$ is convex, i.e., inequality above is reversed!

Moreover, if the inequality is strict, f is called **strictly** convex.
Basic Facts

Lemma (First order condition for convexity). A differentiable function $f(x)$ is convex if and only if the domain $\text{dom}(f)$ is a convex set and $\forall x, y \in \text{dom}(f)$

$$f(y) \geq f(x) + \nabla f(x)^\top (y - x).$$

Proof. (\Rightarrow) By convexity we have that (for all $t > 0$)

$$f(ty + (1 - t)x) \leq tf(y) + (1 - t)f(x).$$

Rearranging a bit follows

$$f(x + t(y - x)) \leq t(f(y) - f(x)) + f(x).$$

Dividing by t we conclude:

$$f(y) - f(x) \geq \frac{f(x + t(y - x)) - f(x)}{t}.$$
Basic Facts

Proof (\Rightarrow) cont. Hence

\[
f(y) - f(x) \geq \lim_{t \to 0} \frac{f(x + t(y - x)) - f(x)}{t} = \nabla f(x)^\top (y - x).
\]

directional derivative
Basic Facts

Proof (⇒) cont. Hence

\[
 f(y) - f(x) \geq \lim_{t \to 0} \frac{f(x + t(y - x)) - f(x)}{t} = \nabla f(x) \top (y - x).
\]

This is the directional derivative.

Proof. (⇐) Choose first \(z = tx + (1 - t)y \) for \(t \in (0, 1) \) and moreover it holds that

- \(f(x) \geq f(z) + \nabla f(z) \top (x - z) \).
- \(f(y) \geq f(z) + \nabla f(z) \top (y - z) \).

Multiply first by \(t \), second by \((1 - t) \) and add them up.
Basic Facts cont.

Lemma (Second order condition for convexity). A twice differentiable function $f(x)$ is convex if and only if the domain $\text{dom}(f)$ is a convex set and $\forall x \in \text{dom}(f)$

$$\nabla^2 f(x) \succeq 0.$$

In words, the Hessian of f should be positive semi-definite.

Proof. Exercise 1 for homework...
Definition (Lipschitz function). A function $f : \mathbb{R}^d \rightarrow \mathbb{R}^{d'}$ is L-Lipschitz continuous iff for $L > 0$ and $\forall x, y \in \text{dom}(f)$

$$\|f(x) - f(y)\|_2 \leq L \|x - y\|_2.$$
More Definitions cont.

Definition (Smoothness). A continuously differentiable function $f(x)$ is L-smooth if its gradient is L-Lipschitz, i.e., there exists a $L > 0$ and $\forall x, y \in \text{dom}(f)$

$$\|\nabla f(x) - \nabla f(y)\|_2 \leq L \|x - y\|_2.$$

Definition (Strongly convex). A function $f(x)$ is α-strongly convex if for $\alpha > 0$ and $\forall x \in \text{dom}(f)$

$$f(x) - \frac{\alpha}{2} \|x\|_2^2 \text{ is convex}.$$

Exercise 2. Suppose $f(x)$ is differentiable and α-strongly convex. Then $\forall x, y \in \text{dom}(f)$

$$f(y) - f(x) \geq \nabla f(x)\top (y - x) + \frac{\alpha}{2} \|y - x\|_2^2.$$
Minimizing convex functions

• We examine this class of functions because they are easier to minimize.

Lemma (Gradient zero). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable and convex. x^* is a minimizer if and only if $\nabla f(x^*) = 0$. Hence all minimizers give the same f-value.

Proof. (\Leftarrow) By FOC for convexity we have that $\forall x \in \text{dom}(f)$

$$f(x) \geq f(x^*) + \nabla f(x^*)^\top (x - x^*) = f(x^*).$$
Minimizing convex functions

- We examine **this class** of functions because are easier to minimize.

Lemma (Gradient zero). Let \(f : \mathbb{R}^d \to \mathbb{R} \) be differentiable and convex. \(x^* \) is a minimizer if and only if \(\nabla f(x^*) = 0 \). Hence all minimizers give same \(f \)-value.

Proof. \((\Leftarrow)\) By FOC for convexity we have that \(\forall x \in \text{dom}(f) \)

\[
f(x) \geq f(x^*) + \nabla f(x^*)^\top (x - x^*) = f(x^*).
\]

Proof. \((\Rightarrow)\) Choose \(t > 0 \) small enough such that \(y := x^* - t\nabla f(x^*) \) is in \(\text{dom}(f) \). By Taylor we have

\[
f(y) - f(x^*) = \nabla f(x^*)^\top (y - x^*) + o(\|y - x^*\|_2)
\]

\[
= -t \|\nabla f(x^*)\|_2^2 + o(\|t\nabla f(x^*)\|_2).
\]

For \(t \) small enough \(f(y) - f(x^*) < 0 \) if \(\nabla f(x^*) \neq 0 \) (**contradiction**).
Gradient Descent (GD) (for differentiable functions)

Definition (Gradient Descent). Let \(f : \mathbb{R}^d \rightarrow \mathbb{R} \) be differentiable (want to minimize). The algorithm below is called gradient descent

\[
x_{k+1} = x_k - \alpha \nabla f(x_k).
\]

Remarks
• \(\alpha \) is called the stepsize. Intuitively the smaller, the slower the algorithm.
• \(\alpha \) may or may not depend on \(k \).
• If GD converges, it means that \(\nabla f(x) \rightarrow 0 \), so we should have “convergence” to the minimizer (for \(f \) convex)!
• The minimizers of \(f \) are fixed points of GD.
Analysis of GD for L-Lipschitz

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, convex (want to minimize) and L-Lipschitz. Let $R = \|x_1 - x^*\|_2$, the distance between the initial point x_1 and minimizer x^*. It holds for $T = \frac{R^2L^2}{\epsilon^2}$

$$f \left(\frac{1}{T} \sum_{t=1}^{T} x_t \right) - f(x^*) \leq \epsilon,$$

with appropriately choosing $\alpha = \frac{\epsilon}{L^2}$.

Remarks

- The speed of convergence is independent of dimension d.
- This result gives a rate of $O\left(\frac{1}{\epsilon^2}\right)$. With smoothness assumptions we can do $O\left(\frac{1}{\epsilon}\right)$.
- There is Nesterov’s accelerated method that can achieve $O\left(\frac{1}{\sqrt{\epsilon}}\right)$ (under smoothness).
- With smoothness and strong-convexity assumptions we can do $O\left(\ln\frac{1}{\epsilon}\right)$.
- The theorem does not imply pointwise convergence $f(x_T) \to f(x^*)$.

Optimization for Machine Learning
Analysis of GD for L-Lipschitz

Proof. It holds that

$$f(x_t) - f(x^*) \leq \nabla f(x_t)^\top (x_t - x^*)$$

FOC for convexity,
Proof. It holds that

\[f(x_t) - f(x^*) \leq \nabla f(x_t) \top (x_t - x^*) \]

FOC for convexity,

\[= \frac{1}{\alpha} (x_t - x_{t+1}) \top (x_t - x^*) \]

definition of GD,
Proof. It holds that

\[f(x_t) - f(x^*) \leq \nabla f(x_t)^	op (x_t - x^*) \text{ FOC for convexity,} \]

\[= \frac{1}{\alpha} (x_t - x_{t+1})^	op (x_t - x^*) \text{ definition of GD,} \]

\[= \frac{1}{2\alpha} \left(\|x_t - x^*\|^2_2 + \|x_t - x_{t+1}\|^2_2 - \|x_{t+1} - x^*\|^2_2 \right) \text{ law of Cosines,} \]
Analysis of GD for L-Lipschitz

Proof. It holds that

$$f(x_t) - f(x^*) \leq \nabla f(x_t)^\top (x_t - x^*) \text{ FOC for convexity},$$

$$= \frac{1}{\alpha} (x_t - x_{t+1})^\top (x_t - x^*) \text{ definition of GD,}$$

$$= \frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 + \|x_t - x_{t+1}\|_2^2 - \|x_{t+1} - x^*\|_2^2 \right) \text{ law of Cosines,}$$

$$= \frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2 \right) + \frac{\alpha}{2} \|\nabla f(x_t)\|_2^2 \text{ Def. of GD,}$$

Optimization for Machine Learning
Analysis of GD for L-Lipschitz

Proof. It holds that

$$f(x_t) - f(x^*) \leq \nabla f(x_t)^\top (x_t - x^*)$$

for convexity,

$$= \frac{1}{\alpha} (x_t - x_{t+1})^\top (x_t - x^*)$$

definition of GD,

$$= \frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 + \|x_t - x_{t+1}\|_2^2 - \|x_{t+1} - x^*\|_2^2 \right)$$

law of Cosines,

$$= \frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2 \right) + \frac{\alpha}{2} \|\nabla f(x_t)\|_2^2$$

Def. of GD,

$$\leq \frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2 \right) + \frac{\alpha L^2}{2}$$

Exercise 3. Suppose $f(x)$ is L-Lipschitz continuous. Then $\forall x \in \text{dom}(f)$

$$\|\nabla f(x)\|_2 \leq L.$$
Analysis of GD for L-Lipschitz

Proof cont. Since

$$f(x_t) - f(x^*) \leq \frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2 \right) + \frac{\alpha L^2}{2},$$

taking the telescopic sum we have

$$\frac{1}{T} \sum_{t=1}^{T} f(x_t) - f(x^*) \leq \frac{1}{2\alpha T} (\|x_1 - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2) + \frac{\alpha L^2}{2}.$$

$$\leq \frac{R^2}{2\alpha T} + \frac{\alpha L^2}{2} = \epsilon \text{ by choosing appropriately } \alpha, T.$$

The claim follows by convexity since \(\frac{1}{T} \sum_{t=1}^{T} f(x_t) \geq f \left(\frac{1}{T} \sum_{t=1}^{T} x_t \right)\) (Jensen’s inequality).
Recap Lecture 1

• Introduction to Convex Optimization
 – Easy to minimize objectives (generally is NP-hard).
 – Focus on Gradient Descent.
 – GD has rate of convergence $O\left(\frac{L^2}{\epsilon^2}\right)$ for L-Lipschitz.

• Today
 – GD has rate of convergence $O\left(\frac{L}{\epsilon}\right)$ for L-smooth.
 – GD has rate of convergence $O\left(\frac{L}{\mu \ln \frac{1}{\epsilon}}\right)$ for L-smooth, μ-convex.
 – Projected GD (similar analysis) for constrained optimization.
Analysis of GD for L-smooth

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be differentiable, convex (want to minimize) and L-smooth. Let $R = \|x_1 - x^*\|_2$. It holds for $T = \frac{2R^2L}{\epsilon}$

$$f(x_{T+1}) - f(x^*) \leq \epsilon,$$

with appropriately choosing $\alpha = \frac{1}{L}$.

Remarks

- Speed of convergence is independent of dimension d.
- This result gives a rate of $O\left(\frac{1}{\epsilon}\right)$, different choice of stepsize.
- The theorem implies convergence $f(x_T) \rightarrow f(x^*)$.

Optimization for Machine Learning
Analysis of GD for L-smooth

Before showing the proof, we show some important claims for L-smooth functions.

Claim 1. Let f be a differentiable and L-smooth, then

$$f(y) - f(x) - \nabla f(x)^T (y - x) \leq \frac{L}{2} \|x - y\|_2^2.$$

Proof. It holds that

$$f(y) - f(x) - \nabla f(y)^T (x - y) = \int_0^1 \nabla f(y + t(x - y))^T (x - y) dt - \nabla f(y)^T (x - y)$$
Analysis of GD for L-smooth

Before showing the proof, we show some important claims for L-smooth functions.

Claim 1. Let f be a differentiable and L-smooth, then

\[
f(y) - f(x) - \nabla f(x)^\top (y - x) \leq \frac{L}{2} \|x - y\|_2^2.\]

Proof. It holds that

\[
f(y) - f(x) - \nabla f(y)^\top (x - y) = \int_0^1 \nabla f(y + t(x - y))^\top (x - y) dt - \nabla f(y)^\top (x - y)\]

\[
= \left(\int_0^1 \nabla f(y + t(x - y)) dt - \nabla f(y) \right)^\top (x - y)
\]
Analysis of GD for L-smooth

Before showing the proof, we show some important claims for L-smooth functions.

Claim 1. Let f be a differentiable and L-smooth, then

$$f(y) - f(x) - \nabla f(x)^\top (y - x) \leq \frac{L}{2} \|x - y\|_2^2.$$

Proof. It holds that

$$f(y) - f(x) - \nabla f(y)^\top (x - y) = \int_0^1 \nabla f(y + t(x - y))^\top (x - y) dt - \nabla f(y)^\top (x - y)$$

$$= \left(\int_0^1 \nabla f(y + t(x - y)) dt - \nabla f(y) \right)^\top (x - y)$$

$$= \left(\int_0^1 \{\nabla f(y + t(x - y)) - \nabla f(y)\} dt \right)^\top (x - y)$$
Analysis of GD for L-smooth

Before showing the proof, we show some important claims for L-smooth functions.

Claim 1. Let f be a differentiable and L-smooth, then

$$f(y) - f(x) - \nabla f(x)^\top (y - x) \leq \frac{L}{2} \|x - y\|_2^2.$$

Proof. It holds that

$$f(y) - f(x) - \nabla f(y)^\top (x - y) = \int_0^1 \nabla f(y + t(x - y))^\top (x - y) dt - \nabla f(y)^\top (x - y)$$

$$= \left(\int_0^1 \nabla f(y + t(x - y)) dt - \nabla f(y) \right)^\top (x - y)$$

$$= \left(\int_0^1 \{ \nabla f(y + t(x - y)) - \nabla f(y) \} dt \right)^\top (x - y)$$

using L-smoothness

$$\leq L \int_0^1 t dt \|x - y\|_2^2 = \frac{L}{2} \|x - y\|_2^2.$$
Analysis of GD for L-smooth

Claim 2. Let f be a differentiable, convex and L-smooth, then

$$f(x^*) - f(x) \leq f(x - \frac{1}{L} \nabla f(x)) - f(x) \leq -\frac{1}{2L} \|\nabla f(x)\|_2^2.$$

Proof. Set $z = x - \frac{1}{L} \nabla f(x)$. First inequality is trivial (definition of minizer).

$$f(z) - f(x) \leq \nabla f(x)^\top (z - x) + \frac{L}{2} \|z - x\|_2^2$$ using Claim 1,
Analysis of GD for L-smooth

Claim 2. Let f be a differentiable, convex and L-smooth, then

$$f(x^*) - f(x) \leq f(x - \frac{1}{L} \nabla f(x)) - f(x) \leq -\frac{1}{2L} \|\nabla f(x)\|_2^2.$$

Proof. Set $z = x - \frac{1}{L} \nabla f(x)$. First inequality is trivial (definition of minimizer).

$$f(z) - f(x) \leq \nabla f(x)^\top (z - x) + \frac{L}{2} \|z - x\|_2^2 \text{ using Claim 1,}$$

$$= -\frac{1}{L} \nabla f(x)^\top \nabla f(x) + \frac{L}{2} \frac{1}{L^2} \|\nabla f(x)\|_2^2,$$
Analysis of GD for L-smooth

Claim 2. Let f be a differentiable, convex and L-smooth, then

$$f(x^*) - f(x) \leq f(x - \frac{1}{L} \nabla f(x)) - f(x) \leq -\frac{1}{2L} \|\nabla f(x)\|^2_2.$$

Proof. Set $z = x - \frac{1}{L} \nabla f(x)$. First inequality is trivial (definition of minimizer).

$$f(z) - f(x) \leq \nabla f(x)^	op (z - x) + \frac{L}{2} \|z - x\|^2_2$$ using Claim 1,

$$= -\frac{1}{L} \nabla f(x)^	op \nabla f(x) + \frac{L}{2} \frac{1}{L^2} \|\nabla f(x)\|^2_2,$$

$$= -\frac{1}{2L} \|\nabla f(x)\|^2_2.$$
Analysis of GD for L-smooth

Proof of Theorem. Assume $\|x_t - x^*\|_2$ is decreasing in t (Exercise 4 to prove).

Using Claim 2,

$$f(x_{t+1}) - f(x_t) \leq -\frac{1}{2L} \|\nabla f(x_t)\|_2^2.$$
Analysis of GD for L-smooth

Proof of Theorem. Assume $\|x_t - x^*\|_2$ is decreasing in t (Exercise 4 to prove).

Using Claim 2,

$$f(x_{t+1}) - f(x_t) \leq -\frac{1}{2L} \|\nabla f(x_t)\|_2^2.$$

From convexity we get,

$$f(x_t) - f(x^*) \leq \nabla f(x_t) \top (x_t - x^*) \leq \|\nabla f(x_t)\|_2 \|x_t - x^*\|_2 \quad (C-S \text{ inequality})$$

$$\leq \|\nabla f(x_t)\|_2 \|x_0 - x^*\|_2 \quad (Assumption).$$

Optimization for Machine Learning
Analysis of GD for L-smooth

Proof of Theorem. Assume $\|x_t - x^*\|_2$ is decreasing in t (Exercise 4 to prove).

Using Claim 2,

$$f(x_{t+1}) - f(x_t) \leq -\frac{1}{2L} \|\nabla f(x_t)\|_2^2.$$

From convexity we get,

$$f(x_t) - f(x^*) \leq \nabla f(x_t)^\top (x_t - x^*) \leq \|\nabla f(x_t)\|_2 \|x_t - x^*\|_2$$ (C-S inequality)

$$\leq \|\nabla f(x_t)\|_2 \|x_0 - x^*\|_2$$ (Assumption).

Combining the two

$$f(x_{t+1}) - f(x^*) - (f(x_t) - f(x^*)) \leq -\frac{1}{2L} \frac{(f(x_t) - f(x^*))^2}{R^2}.$$

Setting $\delta_t = f(x_t) - f(x^*)$, we get $\delta_{t+1} \leq \delta_t - \frac{\delta_t^2}{2LR^2}$.

Optimization for Machine Learning
Analysis of GD for L-smooth

Proof of Theorem. Assume $\|x_t - x^*\|_2$ is decreasing in t (Exercise 4 to prove).

Using Claim 2,

$$f(x_{t+1}) - f(x_t) \leq -\frac{1}{2L} \|\nabla f(x_t)\|_2^2.$$

Easy to show (board) $\delta_t \leq \frac{2LR^2}{t-1}$.

QED

Combining the two

$$f(x_{t+1}) - f(x^*) - (f(x_t) - f(x^*)) \leq -\frac{1}{2L} \frac{(f(x_t) - f(x^*))^2}{R^2}.$$

Setting $\delta_t = f(x_t) - f(x^*)$, we get $\delta_{t+1} \leq \delta_t - \frac{\delta_t^2}{2LR^2}$.