EVOLUTIONARY DYNAMICS IN FINITE POPULATIONS MIX RAPIDLY Ioannis Panageas, Georgia Institute of Technology

Piyush Srivastava, Nisheeth K. Vishnoi

Finite Population Models for Evolution

- Large population with different (geno-)types
 Each type has a *fitness* rate of reproduction
 Mutations can change one to the other
 Subject to evolutionary pressure of selection
- Numerous models: e.g. Wright-Fisher ~1900s
 - Applications beyond evolution
- The problem: time to steady state/mixing time?
 - **Exponential** state space
 - Computationally relevant to obtain statistics of steady state

An Example

- **Types:** $\{0, 1\}$; Population size: N
- Mutation matrix: $Q = \begin{bmatrix} 1 \mu & \mu \\ \mu & 1 \mu \end{bmatrix}$; $0 \rightarrow 1$ w.p. μ and $1 \rightarrow 0$ w.p. μ
- □ Fitnesses: $a_0(=a)$, $a_1(=1)$
- □ Markov chain on : $\{(s,t)|s+t=N, s, t \ge 0\}$

Explosion of State Space

Parameters

- **Types** = $\{1, ..., m\}$
- **Q**: $m \times m$ stochastic **mutation** matrix
- □ $\{a_{\sigma}\}$ for $\sigma \in \{1, ..., m\}$ fitness landscape diagonal matrix A
- \square N = Population Size
- $\square X_{\sigma}(t)$ number of σ at time t; random variable
- $\Box \sum_{\sigma} X_{\sigma}(t) \text{total population at time } t \text{ is } N \quad \forall t$

The Markov Chain

- **Reproduction** Each σ produces a_{σ} copies of itself ; $a_{\sigma}X_{\sigma}(t)$
- Selection N genomes chosen at random with replacement
- Mutation Each selected genome mutates according to Q
- State space of the chain $\sim N^m$. $m = 30, N = 10,000; \gg 2^{350}!$

Convergence and the Mixing Time

 \square When $\mu > 0$, chain is **ergodic**

- □ Mixing time: $t_{mix}(\varepsilon)$: min. t s.t. the distance between the distribution at time t and the steady state is at most ε no matter where you start
 - Simulating and waiting for statistics to stabilize can be misleading
- □ Upper bound on the mixing time
 - translates to computational efficiency of sampling from steady state
 - Addresses the question: the speed of evolution

Prior Work and Our Result

[DSV '12] mixing time ~ log N - restrictive parameter setting

□ [Vishnoi '15] m=2, for all constant a, μ ; $\sim \log N$

[This paper] mixing time ~ log N for all m, Q, A
 evolution guided by any nice dynamical system
 sampling from steady state efficient!

Mixing time bound derived using geometry of the guiding dynamical system

Markov Chains and Dynamical Systems

Recall: $X_{\sigma}(t)$ - number of σ at time t

□ Observation 1: □ $\frac{E[X(t+1)|X(t)]}{N} = \frac{QAX(t)}{\|QAX(t)\|_1} = f(X(t)/N)$ ■ $f: \Delta_m \mapsto \Delta_m$ - dynamical system over simplex ■ f captures the expected motion of the MC

If QA > 0, f has a **unique stable fixed point** v inside the simplex

Markov Chains and Dynamical Systems

■ Coupling method: Show that coupled copies X(t), Y(t) collide fast ■ Coupling time $\leq T (prob \geq \frac{3}{4}) \Rightarrow$ Mixing time $\leq T$

 \square Key: Use driving system f to construct coupling

Try to use stability of f + concentration to make the copies collide

Coupling and the driving system

Condition on f: f has a stable fixed point v

 \square Stability is determined by the Jacobian J of f near $oldsymbol{v}$

 $|\lambda_{max}(J)| < \rho < 1 \text{ for all } x \sim v$

Observation:

- f quickly drives X(t), Y(t) within dist.
 - $\frac{1}{\sqrt{N}}$ to v
- Due to variance, it cannot drive them closer!

But: Coupling method requires a collision $\|X(t) - Y(t)\|_1 < 1/N$

Coupling and the Dynamical System

Couple chains using the driving system *f*

$$E[\|X(t+1) - Y(t+1)\|_1 | X(t), Y(t)] = \|f(X(t)) - f(Y(t))\|_1$$

$$\leq \|J\|_{1-1} \|X(t) - Y(t)\|_1$$

- But f can actually drive the chains farther in one step!
 This problem does not arise when m = 2
- Must use k steps together the above equation does not chain!
 - $|\lambda_{max}(J(x))| < 1 \text{ for all } x \sim v$
 - □ ⇒ For some k, $\|J^k(x)\|_{1-1} < \rho^k < 1$, $x \sim v$
 - Need to handle stochastic noise ■ $X(t+i+1) = f(X(t+i)) + \mathbf{u}_i$ ■ $Y(t+i+1) = f(Y(t+i)) + \mathbf{v}_i$

Perturbed coupled evolutions

- ||X(t + k) Y(t + k)||₁ ≤ ρ^k ||X(t) Y(t)||₁ provided stochastic noise remains small relative to current distance between copies
 Effect of noise worsens as chains come closer!
- Multi-stage argument using stability
 - $\Box \frac{\log N}{N}$ distance w.h.p in $O(\log N)$ steps
 - $\square \frac{1}{N}$ distance with const. probability in $O(\log \log N)$ steps
 - Collision at next step with constant probability

Discussion and Open Questions

Improve dependency on parameters?

Characterize the mixing time of the described generic model for the following cases:
 Function *f* has at least two *attractive* fixed points?
 Limit cycles?

Use tools from Dynamical systems to analyze MC's?