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Finite Population Models for Evolution
 Large population with different (geno-)types
 Each type has a fitness – rate of reproduction
Mutations can change one to the other
 Subject to evolutionary pressure of selection

 Numerous models: e.g. Wright-Fisher ~1900s
 Applications beyond evolution

 The problem: time to steady state/mixing time?
 Exponential state space
 Computationally relevant to obtain statistics of steady state



An Example
 Types: ; Population size:
 Mutation matrix: ;   w.p. and w.p. 
 Fitnesses: ૙ , ૚ )
 Markov chain on : 



Explosion of State Space
 Parameters

 Types = 
 stochastic mutation matrix 
 ఙ for – fitness landscape – diagonal matrix 
 = Population Size
 ఙ - number of at time ; random variable  
 ఙఙ - total population at time is 

 The Markov Chain 
 Reproduction - Each produces ఙ copies of itself ; ఙ ఙ
 Selection - genomes chosen at random with replacement 
 Mutation - Each selected genome  mutates according to 
 State space of the  chain ௠ ૜૞૙



Convergence and the Mixing Time
 When ,  chain is ergodic 
 Mixing time: ௠௜௫ min. s.t. the distance between the distribution at time and the steady state is at most – no matter where you start

 Simulating and waiting for statistics to stabilize can be misleading
 Upper bound on the mixing time 

 translates to computational efficiency of sampling from steady state 
 Addresses the question: the speed of  evolution



Prior Work and Our Result
 [DSV ‘12] mixing time - restrictive parameter setting
 [Vishnoi ‘15] m=2, for all constant 
 [This paper] mixing time for all 

 evolution guided by any nice dynamical system
 sampling from steady state efficient!

 Mixing time bound derived using geometry of the guiding dynamical system 



Markov Chains and Dynamical Systems
 Recall: - number of at time 

 Observation 1:
 భ
 ௠ ௠ - dynamical system over simplex
 captures the expected motion of the MC

If , has a unique stable fixed point inside the simplex



Markov Chains and Dynamical Systems
 Coupling method: Show that coupled copies collide fast
Coupling time Mixing time

 Key: Use driving system to construct coupling
 Try to use stability of + concentration to make the copies collide

X(t)

Y(t)

Coupling time



Coupling and the driving system
 Condition on : has a stable fixed point 
 Stability is determined by the Jacobian  J of near 

 ࢞ࢇ࢓ for all 

Observation:
• quickly drives within dist.

to 
• Due to variance, it cannot drive them closer!
But: Coupling method requires a collision



Coupling and the Dynamical System
 Couple chains using the driving system 

ࡱ ࢄ‖ ࢚ + ૚ − ࢅ ࢚ + ૚ ‖૚ ࢄ  ࢚ , [(࢚)ࢅ = ૚
૚ି૚ ૚

 But can actually drive the chains farther in one step!
 This problem does not arise when 

 Must use steps together - the above equation does not chain!
 ࢞ࢇ࢓ for all 
 For some ௞ ૚ି૚ ௞ , 
 Need to handle stochastic noise

 ܺ ݐ + ݅ + 1 = ݂ ܺ ݐ + ݅ ࢏࢛ +
 ܻ ݐ + ݅ + 1 = ݂ ܻ ݐ + ݅ + ࢏࢜



Perturbed coupled evolutions


provided stochastic noise remains small 
relative to current distance between copies

 Effect of noise worsens as chains come closer!

 Multi-stage argument using stability
 distance w.h.p in steps
 distance with const. probability in steps
 Collision at next step with constant probability



Discussion and Open Questions
 Improve dependency on parameters?

 Characterize the mixing time of the described 
generic model for the following cases:
 Function has at least two attractive fixed points?
 Limit cycles?

 Use tools from Dynamical systems to analyze MC's?


