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Long-term behavior in Dynamics

Given a continuous or discrete time (learning) dynamics we are
interested in its long-term behavior...

• Convergence of time average ([FS99’], ...).
• Last iterate convergence ([PPP17’], [DP18’]).
• Cycling behavior ([PPP17’]) or recurrent behavior ([PS14’],

[PNCS14’], [MPP18’], [BP18’]).
• Chaotic behavior ([PPP17’]).

Many applications to Game Theory, Optimization and Learning
(GANs).
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2-player zero sum games

Definition
Player y gets payoff xT Py and x gets −xT Py. A Nash equilibrium
is a solution to:

min
x∈∆n

max
y∈∆m

xT Py.

Rock-Paper-Scissors

PRPS =


0 −1 1
1 0 −1
−1 1 0

 .
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2-player zero sum games (cont.)

Time average converges to a Nash equilibrium when players update
according to many learning dynamics including

• Fictitious play.
• MWUA and more generally for FTRL, FTPL.

The same does not hold for last iterate. The system might exhibit
“cycling” behavior e.g.,

[MPP18’]

• Recurrent behavior for continuous time FTRL.
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Dynamic payoff matrix P

Question: What if P changes with time? Can we show
similarly “cycling” behavior (i.e., recurrent behavior persists)?

Definition (Differential Game)
A game the state space of which is described via a system of
differential equations (continuous time dynamical system).1

For a zero sum game with payoff P(t):

dPij
dt = fij(x(t), t), for all i , j2.

1Stochastic games are the discrete time analogue.
2Time homogeneous for our purposes.
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Our Model

• Symmetric zero sum game with n strategies (species).
• We use x to denote mixed strategy for both players (xi

fraction of species i).

Define the n-RPS game with payoff

PnRPS =



0 −α 0 0 . . . 0 0 α

α 0 −α 0 . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . α 0 −α
−α 0 0 0 . . . 0 α 0


.

6



Our Model (cont.)

Our dynamic payoff matrix Pw is a convex combination of n
matrices Pi plus a matrix PnRPS :

Pw = w1P1 + w2P2 + · · ·+ wnPn + PnRPS ,

where

Pi =



0 . . . 0 −µ 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 −µ 0 . . . 0
µ . . . µ 0︸︷︷︸

(i ,i)

µ . . . µ

0 . . . 0 −µ 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 −µ 0 . . . 0


and µ, α > 0. The weights w change with time. Pi favors species i
when competing with other species. 7



Our Model (cont.)

The dynamics can be described as follows:

dxi
dt = xi · (

∑
j

Pw
ij xj −x>Pwx), dwi

dt = wi ·
∑

j
wj(xj −xi ) ∀i . (1)

Remark 1.
xi is increasing as long as average payoff of strategy i is higher
than zero and decreasing otherwise. wi is increasing as long as
average frequency is higher than xi and decreasing otherwise.

Remark 2.
Generalizes in higher dimensions the model of Weitz et. al.
appeared in PNAS 16’.
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Our Main theorem

Theorem (Recurrence)
For all but measure zero of initial positions in ∆n ×∆n, the
trajectories of the dynamics (1) return arbitrarily close to their
initial position an infinite number of times.
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Figures

Figure 1: Trajectories of the vector x for different initial positions with
µ = 0.1, α = 1. Trajectories intersect due to the fact 6 dimensions are
projected to a 3D figure. The “cycling” behavior is observed.
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Figures (cont.)

Figure 2: Trajectories of the vector w for different initial positions with
µ = 0.1, α = 1. Trajectories intersect due to the fact 6 dimensions are
projected to a 3D figure. The “cycling” behavior is observed.
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Proof steps

We make use of the following important theorem.

Theorem (Poincarťe Recurrence for continuous time)

If a flow preserves volume and has only bounded orbits then for
each open set there exist orbits that intersect the set infinitely
often.

• Flow: just the evolution of the dynamics.
• Bounded orbits: for each initial point, the trajectory does not

diverge, inside a ball.
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Volume preservation: Liouville’s formula

Figure 3: µ(A0) = µ(At) for all A0, t where µ is the Lebesgue measure
in Rn−1 × Rn−1 for this talk.

Theorem (Liouville theorem)

Let dy
dt = f (y) be an ode. It holds that dµ(At )

dt =
∫

At
(∇ · f )dµ for

each initial Lebesgue measurable set A0. As long as ∇ · f = 0, the
flow preserves volume. 13
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Coming up with a potential

We first project our dynamics to R2n−2 according to3

Π(y) =
(

log
(

y1
yn

)
, ..., log

(
yn−1

yn

))
. Boundary of simplex

corresponds to vectors with infinity Euclidean norm in R2n−2.

Lemma (Constant motion of time)
n∑

i=1
log
( 1

xi

)
︸ ︷︷ ︸

≥0

+µ
n∑

i=1
log
( 1

wi

)
︸ ︷︷ ︸

≥0

is independent of time (thus bounded).

3Map is bijective. Π−1(z) =
(

ez1

1+
∑n−1

j=1
ezj

, . . . , ezn−1

1+
∑n−1

j=1
ezj

, 1
1+
∑n−1

j=1
ezj

)
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Open Questions and Conclusion

• Provided a framework for proving recurrent behavior.
• Showed recurrent behavior for a class of differential games.
• Question: Generalize so that each strategy has different µ.
• Question: Different zero sum games?
• Question: Discrete time results?
• Question: Apply these techniques to other Learning dynamics.

15



Thank you!

Available Postdoc positions @SUTD!
Email us: ioannis@csail.mit.edu, georgios@sutd.edu.sg
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