Cycles in Zero-sum Differential Games and Biological Diversity

Ioannis Panageas (CSAIL-MIT)

joint work with Tung Mai (Gatech), Milena Mihail (Gatech), Will Ratcliff (Gatech), Vijay Vazirani (UC Irvine), Peter Yunker (Gatech).

• Convergence of time average ([FS99'], ...).

- Convergence of time average ([FS99'], ...).
- Last iterate convergence ([PPP17'], [DP18']).

- Convergence of time average ([FS99'], ...).
- Last iterate convergence ([PPP17'], [DP18']).
- Cycling behavior ([PPP17']) or *recurrent* behavior ([PS14'], [PNCS14'], [MPP18'], [BP18']).

- Convergence of time average ([FS99'], ...).
- Last iterate convergence ([PPP17'], [DP18']).
- Cycling behavior ([PPP17']) or *recurrent* behavior ([PS14'], [PNCS14'], [MPP18'], [BP18']).
- Chaotic behavior ([PPP17']).

- Convergence of time average ([FS99'], ...).
- Last iterate convergence ([PPP17'], [DP18']).
- Cycling behavior ([PPP17']) or *recurrent* behavior ([PS14'], [PNCS14'], [MPP18'], [BP18']).
- Chaotic behavior ([PPP17']).

Many applications to Game Theory, Optimization and Learning (GANs).

Definition

Player **y** gets payoff $\mathbf{x}^T P \mathbf{y}$ and **x** gets $-\mathbf{x}^T P \mathbf{y}$. A Nash equilibrium is a solution to:

 $\min_{\mathbf{x}\in\Delta_n}\max_{\mathbf{y}\in\Delta_m}\mathbf{x}^T P\mathbf{y}.$

Rock-Paper-Scissors

$$P_{RPS} = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix}.$$

Time average converges to a Nash equilibrium when players update according to many learning dynamics including

- Fictitious play.
- MWUA and more generally for FTRL, FTPL.

Time average converges to a Nash equilibrium when players update according to many learning dynamics including

- Fictitious play.
- MWUA and more generally for FTRL, FTPL.

The same does not hold for last iterate. The system might exhibit "cycling" behavior e.g.,

[MPP18']

• Recurrent behavior for continuous time FTRL.

Question: What if *P* changes with time? Can we show similarly "cycling" behavior (i.e., recurrent behavior persists)?

Definition (Differential Game)

A game the state space of which is described via a system of differential equations (continuous time dynamical system).¹

For a zero sum game with payoff P(t):

$$\frac{dP_{ij}}{dt} = f_{ij}(\mathbf{x}(t), t), \text{ for all } i, j^2.$$

¹Stochastic games are the discrete time analogue. ²Time homogeneous for our purposes.

- Symmetric zero sum game with *n* strategies (species).
- We use **x** to denote mixed strategy for both players (*x_i* fraction of species *i*).

Define the *n*-RPS game with payoff

$$P_{nRPS} = \begin{bmatrix} 0 & -\alpha & 0 & 0 & \dots & 0 & 0 & \alpha \\ \alpha & 0 & -\alpha & 0 & \dots & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \alpha & 0 & -\alpha \\ -\alpha & 0 & 0 & 0 & \dots & 0 & \alpha & 0 \end{bmatrix}$$

Our Model (cont.)

Our *dynamic* payoff matrix $P^{\mathbf{w}}$ is a convex combination of *n* matrices P_i plus a matrix P_{nRPS} :

$$P^{\mathbf{w}}=w_1P_1+w_2P_2+\cdots+w_nP_n+P_{nRPS},$$

where

$$P_{i} = \begin{bmatrix} 0 & \dots & 0 & -\mu & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & -\mu & 0 & \dots & 0 \\ \mu & \dots & \mu & \underbrace{0}_{(i,i)} & \mu & \dots & \mu \\ 0 & \dots & 0 & -\mu & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & -\mu & 0 & \dots & 0 \end{bmatrix}$$

and $\mu, \alpha > 0$. The weights **w** change with time. P_i favors species *i* when competing with other species.

7

Our Model (cont.)

The dynamics can be described as follows:

$$\frac{dx_i}{dt} = x_i \cdot \left(\sum_j P_{ij}^{\mathbf{w}} x_j - \mathbf{x}^\top P^{\mathbf{w}} \mathbf{x}\right), \ \frac{dw_i}{dt} = w_i \cdot \sum_j w_j (x_j - x_i) \quad \forall i. \ (1)$$

Remark 1.

 x_i is increasing as long as average payoff of strategy *i* is higher than zero and decreasing otherwise. w_i is increasing as long as average frequency is higher than x_i and decreasing otherwise.

Remark 2.

Generalizes in higher dimensions the model of Weitz et. al. appeared in PNAS 16'.

Theorem (Recurrence)

For all but measure zero of initial positions in $\Delta_n \times \Delta_n$, the trajectories of the dynamics (1) return arbitrarily close to their initial position an infinite number of times.

Figures

Figure 1: Trajectories of the vector **x** for different initial positions with $\mu = 0.1$, $\alpha = 1$. Trajectories intersect due to the fact 6 dimensions are projected to a 3D figure. The "cycling" behavior is observed.

Figures (cont.)

Figure 2: Trajectories of the vector **w** for different initial positions with $\mu = 0.1$, $\alpha = 1$. Trajectories intersect due to the fact 6 dimensions are projected to a 3D figure. The "cycling" behavior is observed.

We make use of the following important theorem.

Theorem (Poincaré Recurrence for continuous time)

If a flow preserves volume and has only bounded orbits then for each open set there exist orbits that intersect the set infinitely often.

- Flow: just the evolution of the dynamics.
- Bounded orbits: for each initial point, the trajectory does not diverge, inside a ball.

Volume preservation: Liouville's formula

Figure 3: $\mu(A_0) = \mu(A_t)$ for all A_0, t where μ is the Lebesgue measure in $\mathbb{R}^{n-1} \times \mathbb{R}^{n-1}$ for this talk.

Theorem (Liouville theorem)

Let $\frac{d\mathbf{y}}{dt} = f(\mathbf{y})$ be an ode. It holds that $\frac{d\mu(A_t)}{dt} = \int_{A_t} (\nabla \cdot f) d\mu$ for each initial Lebesgue measurable set A_0 . As long as $\nabla \cdot f = 0$, the flow preserves volume.

We first project our dynamics to \mathbb{R}^{2n-2} according to³ $\Pi(\mathbf{y}) = \left(\log\left(\frac{y_1}{y_n}\right), ..., \log\left(\frac{y_{n-1}}{y_n}\right)\right)$. Boundary of simplex corresponds to vectors with infinity Euclidean norm in \mathbb{R}^{2n-2} .

Lemma (Constant motion of time)

$$\underbrace{\sum_{i=1}^{n} \log\left(\frac{1}{x_i}\right)}_{\geq 0} + \underbrace{\mu \sum_{i=1}^{n} \log\left(\frac{1}{w_i}\right)}_{\geq 0}$$

is independent of time (thus bounded).

$${}^{3}\mathsf{Map} \text{ is bijective. } \Pi^{-1}(\mathbf{z}) = \left(\frac{e^{z_{1}}}{1 + \sum_{j=1}^{n-1} e^{z_{j}}}, \dots, \frac{e^{z_{n-1}}}{1 + \sum_{j=1}^{n-1} e^{z_{j}}}, \frac{1}{1 + \sum_{j=1}^{n-1} e^{z_{j}}}\right)$$

- Provided a framework for proving recurrent behavior.
- Showed recurrent behavior for a class of differential games.
- Question: Generalize so that each strategy has different μ .
- Question: Different zero sum games?
- Question: Discrete time results?
- Question: Apply these techniques to other Learning dynamics.

Thank you!

Available Postdoc positions @SUTD! Email us: ioannis@csail.mit.edu, georgios@sutd.edu.sg