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Problem
Let f: RN - R and f is C2:

in f(x).
i 0

Typical way; Gradient Descent (GD)

Xpg4+1 = X — Osz(Xk), (1)

with constant oz > 0. A discrete dynamical system xx11 = g(xx).
Question: Great but any guarantees?

> Answer: If Vf is L-Lipschitz and a < % then GD converges to
fixed points.
» Folklore: f(xx) — f(xks1) > 2—1,_ HVf(xk)H%.

» = f is decreasing = set-wise convergence (not point-wise!).
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Definitions (cont.)

Question: What if f is non-convex?

>

>

Answer: The best we can hope for is convergence to local
minimum!

And we will have it... (under “mild” assumptions)

Important definitions

>

>

x* is a critical point of f if Vf(x*) = 0 (uncountably many!).

X*

is isolated if there is a U around x* and x* is the only
critical point in U.

x* is a saddle point if for all U around x* there are y,z € U

such that f(z) < f(x*) < f(y).
x* of f is a strict saddle if Amin(V2f(x*)) < 0.

Set S is called forward or positively invariant w.r.t
h:&— RN with S C & CRNif h(S)CS.



Previous work and our results
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Theorem (Main)

Let f : S — R be C? in an open convex set S C RN and
supyes [|[V2F(x)|, < L < oc. If g(S) C S then the set of initial
conditions x € S so that gradient descent with 0 < a < 1/L
converges to a strict saddle point is of (Lebesgue) measure zero,
without the assumption that critical points are isolated.
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Remarks and proof steps

Corollary

Assume furthermore that limy x, exists and let v be a prior
measure (support S) which is absolutely continuous w.r.t Lebesgue
measure. Then with probability 1, GD converges to local minima.

Remarks
Lee et al. result is generalized in two ways:
» No global Lipschitz condition.

» Critical points do not have to be isolated.

Proof steps

» 1. Convergence: Show that GD converges (already).

» 2. Diffeomorphism: Prove that g is a diffeomorphism in S
(eigenvalue analysis, show Jacobian is invertible).

> 3. Measure zero: Use center-stable manifold along with
Lindelof lemma.



Why are these technicalities important?

» Manifold: Topological space that "looks like” Euclidean space
near each point.

» Diffeomorphism
A diffeomorphism is a map between manifolds which is
continuously differentiable and has a continuously
differentiable inverse.

This is a useful technical smoothness
condition that allows us to apply stan-
dard theorems about dynamical sys-
tems. (e.g., Center-Stable Manifold
theorem).




Center-Stable Manifold theorem

Center-Stable Manifold theorem (informally)
If the rule of the dynamics is a diffeomorphism then

> For every fixed point p, there exists an open ball By so that if
trajectory q(n) is inside B, for all n > 0 then p(0) belongs to
a (local) center stable manifold W;.(p) which has dimension
equal to the dimension of the space spanned by eigenvectors
of the Jacobian (at p) with eigenvalues of absolute value < 1.

WL(p))
\ /



Step 3. Measure zero

Proof Sketch of Step 3

» Every strict saddle critical point p has a (local) center stable
manifold Wsc(p) of dimension lower than N — 1), hence
measure zero in RV-1

» Consider the union of all B, and pick a countable subcover
(Lindelof's lemma: every open cover in R¥ has a countable
subcover.)

» g Lis C!, maps null sets to null sets, the set of points that
converge to some B, is measure zero.

» Countable union of measure zero sets is measure zero.



Examples - Non-isolated critical points

f(x,y,z) =2xy +2xz — 2x — y — z,
= Vf(x,y,z) =2y +2z—-2,2x —1,2x — 1).

» Strict saddle points correspond to the
line (1/2,w,1 — w) for w € R
(min eigenvalue is —2v/2).

Therefore...
Set of initial conditions in R> so that GD converges to black line
has measure zero.



Examples (cont.) - Forward invariant set

%2
2

4 2
f(x,y)= —i—y—};,HessianJ:(l 0 )

4 0 3y>—1

| <ssssevirrssss | » fis not globally Lipschitz (Lee et al result
does not apply!)

» Critical points are (0,0), (0,1),(0,—1).

» For S =(-1,1) x (-2,2),
SUP(x,y)es ||V2f(x,y)}|2 <11 (fory =2
maximum).
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» Choose o« = ﬁ < 1—11 hence

3
gx,y) = -N)=g8)CS

Therefore...

Set of initial conditions in S so that GD converges to (0, 0) has
measure zero. Start at random, then GD converges to
(0,1),(0, —1) with probability 1.



Previous and Future work

> Vector flows perturbed by noise cannot converge to unstable
fixed points [Pemantle 90'].

» Other dynamics? Results for replicator dynamics (evolution,
game theory) [Mehta, P, Piliouras 15'].

» Mirror Descent (mirror map strongly convex). Ongoing work
[Lee, P, Simchowitz, Jordan, Piliouras, Recht 16'].

» Non-negative matrix factorization (NMF)? Ongoing work [P,
Piliouras, Tetali] analyzing Lee and Seung.

» Quantitative versions (stronger assumptions) [Ge, Huang, Jin,
Yuan 15'].

» Many more...
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