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Definitions

Problem
Let f : RN → R and f is C2:

min
x∈RN

f (x).

Typical way; Gradient Descent (GD)

xk+1 = xk − α∇f (xk), (1)

with constant α > 0. A discrete dynamical system xk+1 = g(xk).

Question: Great but any guarantees?
I Answer: If ∇f is L-Lipschitz and α ≤ 1

L then GD converges to
fixed points.

I Folklore: f (xk)− f (xk+1) ≥ 1
2L ‖∇f (xk)‖22.

I ⇒ f is decreasing ⇒ set-wise convergence (not point-wise!).
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Definitions (cont.)

Question: What if f is non-convex?

I Answer: The best we can hope for is convergence to local
minimum!

I And we will have it... (under “mild” assumptions)

Important definitions
I x∗ is a critical point of f if ∇f (x∗) = 0 (uncountably many!).
I x∗ is isolated if there is a U around x∗ and x∗ is the only

critical point in U.
I x∗ is a saddle point if for all U around x∗ there are y, z ∈ U

such that f (z) ≤ f (x∗) ≤ f (y).
I x∗ of f is a strict saddle if λmin(∇2f (x∗)) < 0.
I Set S is called forward or positively invariant w.r.t

h : E → RN with S ⊆ E ⊆ RN if h(S) ⊆ S.
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Previous work and our results

Theorem (Lee, Simchowitz, Jordan, Recht 16’)
Let f : RN → R be a C2 function, ∇f is globally L-Lipschitz and
x∗ be a strict saddle. Assume that 0 < α < 1

L , then

Pr(lim
k

xk = x∗) = 0.

If the strict saddle points are isolated, then GD converges to saddle
points with probability zero.

Theorem (Main)
Let f : S → R be C2 in an open convex set S ⊆ RN and
supx∈S

∥∥∇2f (x)
∥∥

2 ≤ L <∞. If g(S) ⊆ S then the set of initial
conditions x ∈ S so that gradient descent with 0 < α < 1/L
converges to a strict saddle point is of (Lebesgue) measure zero,
without the assumption that critical points are isolated.
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Remarks and proof steps

Corollary
Assume furthermore that limk xk exists and let ν be a prior
measure (support S) which is absolutely continuous w.r.t Lebesgue
measure. Then with probability 1, GD converges to local minima.

Remarks
Lee et al. result is generalized in two ways:

I No global Lipschitz condition.
I Critical points do not have to be isolated.

Proof steps
I 1. Convergence: Show that GD converges (already).
I 2. Diffeomorphism: Prove that g is a diffeomorphism in S

(eigenvalue analysis, show Jacobian is invertible).
I 3. Measure zero: Use center-stable manifold along with

Lindelof lemma.
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Why are these technicalities important?

I Manifold: Topological space that ”looks like” Euclidean space
near each point.

I Diffeomorphism
A diffeomorphism is a map between manifolds which is
continuously differentiable and has a continuously
differentiable inverse.

This is a useful technical smoothness
condition that allows us to apply stan-
dard theorems about dynamical sys-
tems. (e.g., Center-Stable Manifold
theorem).



Center-Stable Manifold theorem

Center-Stable Manifold theorem (informally)
If the rule of the dynamics is a diffeomorphism then

I For every fixed point p, there exists an open ball Bp so that if
trajectory q(n) is inside Bp for all n ≥ 0 then p(0) belongs to
a (local) center stable manifold Wsc(p) which has dimension
equal to the dimension of the space spanned by eigenvectors
of the Jacobian (at p) with eigenvalues of absolute value ≤ 1.



Step 3. Measure zero

Proof Sketch of Step 3
I Every strict saddle critical point p has a (local) center stable

manifold Wsc(p) of dimension lower than N − 1), hence
measure zero in RN−1

I Consider the union of all Bp and pick a countable subcover
(Lindelof’s lemma: every open cover in Rk has a countable
subcover.)

I g−1 is C1, maps null sets to null sets, the set of points that
converge to some Bp is measure zero.

I Countable union of measure zero sets is measure zero.



Examples - Non-isolated critical points

f (x , y , z) = 2xy + 2xz − 2x − y − z ,
⇒ ∇f (x , y , z) = (2y + 2z − 2, 2x − 1, 2x − 1).

I Strict saddle points correspond to the
line (1/2,w , 1− w) for w ∈ R
(min eigenvalue is −2

√
2).

Therefore...
Set of initial conditions in R3 so that GD converges to black line
has measure zero.



Examples (cont.) - Forward invariant set

f (x , y) = x2

2 + y4

4 −
y2

2 ,Hessian J =
(

1 0
0 3y2 − 1

)
.
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1.5 I f is not globally Lipschitz (Lee et al result
does not apply!)

I Critical points are (0, 0), (0, 1), (0,−1).
I For S = (−1, 1)× (−2, 2),

sup(x ,y)∈S
∥∥∇2f (x , y)

∥∥
2 ≤ 11 (for y = 2

maximum).
I Choose α = 1

12 <
1
11 , hence

g(x , y) = (11x
12 ,

13y
12 −

y3

12) ⇒ g(S) ⊆ S

Therefore...
Set of initial conditions in S so that GD converges to (0, 0) has
measure zero. Start at random, then GD converges to
(0, 1), (0,−1) with probability 1.



Previous and Future work

I Vector flows perturbed by noise cannot converge to unstable
fixed points [Pemantle 90’].

I Other dynamics? Results for replicator dynamics (evolution,
game theory) [Mehta, P, Piliouras 15’].

I Mirror Descent (mirror map strongly convex). Ongoing work
[Lee, P, Simchowitz, Jordan, Piliouras, Recht 16’].

I Non-negative matrix factorization (NMF)? Ongoing work [P,
Piliouras, Tetali] analyzing Lee and Seung.

I Quantitative versions (stronger assumptions) [Ge, Huang, Jin,
Yuan 15’].

I Many more...
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