Gradient Descent Only Converges to Minimizers: Non-Isolated Critical Points and Invariant Regions

Ioannis Panageas MIT-SUTD Previously Georgia Tech

joint work with **Georgios Piliouras** (SUTD)

KORKARYKERKER POLO

[Basics](#page-2-0)

[Results and Proof sketch](#page-12-0)

[Examples](#page-20-0)

[Previous and Future work](#page-22-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Problem Let $f : \mathbb{R}^N \to \mathbb{R}$ and f is C^2 :

 $\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x})$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Problem Let $f : \mathbb{R}^N \to \mathbb{R}$ and f is C^2 :

 $\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x})$.

Typical way; Gradient Descent (GD)

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k), \tag{1}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

with constant $\alpha > 0$. A discrete dynamical system $\mathbf{x}_{k+1} = g(\mathbf{x}_k)$.

Problem Let $f : \mathbb{R}^N \to \mathbb{R}$ and f is C^2 :

 $\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x})$.

Typical way; Gradient Descent (GD)

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k), \tag{1}
$$

with constant $\alpha > 0$. A discrete dynamical system $\mathbf{x}_{k+1} = g(\mathbf{x}_k)$.

Question: Great but any guarantees?

Problem Let $f : \mathbb{R}^N \to \mathbb{R}$ and f is C^2 :

 $\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x})$.

Typical way; Gradient Descent (GD)

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k), \tag{1}
$$

KELK KØLK VELKEN EL 1990

with constant $\alpha > 0$. A discrete dynamical system $\mathbf{x}_{k+1} = g(\mathbf{x}_k)$.

Question: Great but any guarantees?

Answer: If ∇f is *L*-Lipschitz and $\alpha \leq \frac{1}{l}$ $\frac{1}{L}$ then GD converges to fixed points.

Problem Let $f : \mathbb{R}^N \to \mathbb{R}$ and f is C^2 :

 $\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x})$.

Typical way; Gradient Descent (GD)

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k), \tag{1}
$$

KORKARYKERKER POLO

with constant $\alpha > 0$. A discrete dynamical system $\mathbf{x}_{k+1} = g(\mathbf{x}_k)$.

Question: Great but any guarantees?

- **Answer:** If ∇f is *L*-Lipschitz and $\alpha \leq \frac{1}{l}$ $\frac{1}{L}$ then GD converges to fixed points.
- ► Folklore: $f(\mathbf{x}_k) f(\mathbf{x}_{k+1}) \geq \frac{1}{2l}$ $\frac{1}{2L} \left\| \nabla f(\mathbf{x}_k) \right\|_2^2$ 2 .
- $\triangleright \Rightarrow f$ is decreasing \Rightarrow set-wise convergence (not point-wise!).

Definitions (cont.)

Question: What if f is non-convex?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Definitions (cont.)

Question: What if f is non-convex?

 \triangleright Answer: The best we can hope for is convergence to local minimum!

KO K K Ø K K E K K E K V K K K K K K K K K

Definitions (cont.)

Question: What if f is non-convex?

- \triangleright Answer: The best we can hope for is convergence to local minimum!
- And we will have it... (under "mild" assumptions)

Important definitions

- ► **x**^{*} is a critical point of *f* if $\nabla f(\mathbf{x}^*) = \mathbf{0}$ (uncountably many!).
- ► **x**^{*} is isolated if there is a U around **x**^{*} and **x**^{*} is the only critical point in U.
- ► \mathbf{x}^* is a saddle point if for all U around \mathbf{x}^* there are $\mathbf{y}, \mathbf{z} \in U$ such that $f(z) \leq f(x^*) \leq f(y)$.

K □ K K 레 K K 화 K X 화 X X X X X X X 자

- ► \mathbf{x}^* of f is a strict saddle if $\lambda_{\text{min}}(\nabla^2 f(\mathbf{x}^*)) < 0$.
- Set S is called forward or positively invariant w.r.t $h:\mathcal{E}\rightarrow\mathbb{R}^N$ with $\mathcal{S}\subseteq\mathcal{E}\subseteq\mathbb{R}^N$ if $h(\mathcal{S})\subseteq\mathcal{S}.$

Theorem (Lee, Simchowitz, Jordan, Recht 16') Let $f: \mathbb{R}^N \to \mathbb{R}$ be a C^2 function, ∇f is globally L-Lipschitz and x^* be a strict saddle. Assume that $0 < \alpha < \frac{1}{L}$, then

$$
\Pr(\lim_k \mathbf{x}_k = \mathbf{x}^*) = 0.
$$

If the strict saddle points are isolated, then GD converges to saddle points with probability zero.

KORKARYKERKER POLO

Theorem (Lee, Simchowitz, Jordan, Recht 16') Let $f: \mathbb{R}^N \to \mathbb{R}$ be a C^2 function, ∇f is globally L-Lipschitz and x^* be a strict saddle. Assume that $0 < \alpha < \frac{1}{L}$, then

$$
\Pr(\lim_k \mathbf{x}_k = \mathbf{x}^*) = 0.
$$

If the strict saddle points are isolated, then GD converges to saddle points with probability zero.

Theorem (Main)

Let $f: \mathcal{S} \rightarrow \mathbb{R}$ be \mathcal{C}^2 in an open convex set $\mathcal{S} \subseteq \mathbb{R}^N$ and $\sup_{\mathbf{x}\in\mathcal{S}}\|\nabla^2f(\mathbf{x})\|_2\leq L<\infty.$ If $g(\mathcal{S})\subseteq\mathcal{S}$ then the set of initial conditions **x** ∈ S so that gradient descent with 0 *< α <* 1*/*L converges to a strict saddle point is of (Lebesgue) measure zero, without the assumption that critical points are isolated.

Assume furthermore that $\lim_k x_k$ exists and let *v* be a prior measure (support S) which is absolutely continuous w.r.t Lebesgue measure. Then with probability 1, GD converges to local minima.

Assume furthermore that lim^k **x**^k exists and let *ν* be a prior measure (support S) which is absolutely continuous w.r.t Lebesgue measure. Then with probability 1, GD converges to local minima.

KORKARYKERKER POLO

Remarks

Lee et al. result is generalized in two ways:

- \triangleright No global Lipschitz condition.
- \triangleright Critical points do not have to be isolated.

Assume furthermore that lim^k **x**^k exists and let *ν* be a prior measure (support S) which is absolutely continuous w.r.t Lebesgue measure. Then with probability 1, GD converges to local minima.

Remarks

Lee et al. result is generalized in two ways:

- \triangleright No global Lipschitz condition.
- \triangleright Critical points do not have to be isolated.

Proof steps

 \blacktriangleright 1. Convergence: Show that GD converges (already).

Assume furthermore that lim^k **x**^k exists and let *ν* be a prior measure (support S) which is absolutely continuous w.r.t Lebesgue measure. Then with probability 1, GD converges to local minima.

Remarks

Lee et al. result is generalized in two ways:

- \triangleright No global Lipschitz condition.
- \triangleright Critical points do not have to be isolated.

Proof steps

- \blacktriangleright 1. Convergence: Show that GD converges (already).
- \triangleright 2. Diffeomorphism: Prove that g is a diffeomorphism in S (eigenvalue analysis, show Jacobian is invertible).

Assume furthermore that lim^k **x**^k exists and let *ν* be a prior measure (support S) which is absolutely continuous w.r.t Lebesgue measure. Then with probability 1, GD converges to local minima.

Remarks

Lee et al. result is generalized in two ways:

- \triangleright No global Lipschitz condition.
- \triangleright Critical points do not have to be isolated.

Proof steps

- \blacktriangleright 1. Convergence: Show that GD converges (already).
- ▶ 2. Diffeomorphism: Prove that g is a diffeomorphism in S (eigenvalue analysis, show Jacobian is invertible).
- \triangleright 3. Measure zero: Use center-stable manifold along with Lindelof lemma.KID KA KERKER KID KO

Why are these technicalities important?

 \triangleright Manifold: Topological space that "looks like" Euclidean space near each point.

• Diffeomorphism

A diffeomorphism is a map between manifolds which is continuously differentiable and has a continuously differentiable inverse.

This is a useful technical smoothness condition that allows us to apply standard theorems about dynamical systems. (e.g., Center-Stable Manifold theorem).

KORKAR KERKER SAGA

Center-Stable Manifold theorem (informally)

If the rule of the dynamics is a diffeomorphism then

 \triangleright For every fixed point **p**, there exists an open ball B_n so that if trajectory $q(n)$ is inside B_p for all $n \geq 0$ then $p(0)$ belongs to a (local) center stable manifold $W_{sc}(\mathbf{p})$ which has dimension equal to the dimension of the space spanned by eigenvectors of the Jacobian (at **p**) with eigenvalues of absolute value ≤ 1 .

K □ K K 레 K K 화 K X 화 X X X X X X X 자

Proof Sketch of Step 3

- ▶ Every strict saddle critical point **p** has a (local) center stable manifold $W_{sc}(\mathbf{p})$ of dimension lower than $N-1$), hence measure zero in \mathbb{R}^{N-1}
- \triangleright Consider the union of all B_p and pick a countable subcover (Lindelof's lemma: every open cover in \mathbb{R}^k has a countable subcover.)
- ► g^{-1} is C^1 , maps null sets to null sets, the set of points that converge to some B_p is measure zero.

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + 4 D + + E + + D + + E + + O + O + + + + + + + +

 \triangleright Countable union of measure zero sets is measure zero.

Examples - Non-isolated critical points

$$
f(x, y, z) = 2xy + 2xz - 2x - y - z,
$$

\n
$$
\Rightarrow \nabla f(x, y, z) = (2y + 2z - 2, 2x - 1, 2x - 1).
$$

 \triangleright Strict saddle points correspond to the line $(1/2, w, 1 - w)$ for $w \in \mathbb{R}$ (min eigenvalue is $-2\sqrt{2}$).

Therefore

Set of initial conditions in \mathcal{R}^3 so that GD converges to black line has measure zero.**KORK EXTERNE PROVIDE**

Examples (cont.) - Forward invariant set

$$
f(x,y) = \frac{x^2}{2} + \frac{y^4}{4} - \frac{y^2}{2},
$$
 Hessian $J = \begin{pmatrix} 1 & 0 \\ 0 & 3y^2 - 1 \end{pmatrix}$.

- \triangleright f is not globally Lipschitz (Lee et al result does not apply!)
- ^I Critical points are (0*,* 0)*,*(0*,* 1)*,*(0*,* −1).
- For $S = (-1, 1) \times (-2, 2)$, $\sup_{(\mathsf{x}, \mathsf{y}) \in \mathcal{S}} \left\| \nabla^2 f(\mathsf{x}, \mathsf{y}) \right\|_2 \le 11$ (for $\mathsf{y} = 2$ maximum).
- Choose $\alpha = \frac{1}{12} < \frac{1}{11}$, hence $g(x,y)=(\frac{11x}{12},\frac{13y}{12}-\frac{y^3}{12}) \Rightarrow g(\mathcal{S}) \subseteq \mathcal{S}$

Therefore...

Set of initial conditions in S so that GD converges to $(0,0)$ has measure zero. Start at random, then GD converges to (0*,* 1)*,*(0*,* −1) with probability 1.**KORKARYKERKER POLO**

- \triangleright Vector flows perturbed by noise cannot converge to unstable fixed points [Pemantle 90'].
- \triangleright Other dynamics? Results for replicator dynamics (evolution, game theory) [Mehta, P, Piliouras 15'].
- \triangleright Mirror Descent (mirror map strongly convex). Ongoing work [Lee, P, Simchowitz, Jordan, Piliouras, Recht 16'].
- \triangleright Non-negative matrix factorization (NMF)? Ongoing work [P, Piliouras, Tetali] analyzing Lee and Seung.
- \triangleright Quantitative versions (stronger assumptions) [Ge, Huang, Jin, Yuan 15'].

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

 \blacktriangleright Many more...

Thank you!

Postdoc positions open! **Where:** Singapore

On What: Game Theory, Algorithms, Dynamical Systems

georgios@sutd.edu.sg

KO KA KO KERKER KONGK