Gradient Descent Only Converges to Minimizers: Non-Isolated Critical Points and Invariant Regions

Ioannis Panageas MIT-SUTD Previously Georgia Tech

joint work with Georgios Piliouras (SUTD)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Basics

Results and Proof sketch

Examples

Previous and Future work

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Problem Let $f : \mathbb{R}^N \to \mathbb{R}$ and f is C^2 :

 $\min_{\mathbf{x}\in\mathbb{R}^N}f(\mathbf{x}).$

Problem Let $f : \mathbb{R}^N \to \mathbb{R}$ and f is C^2 :

 $\min_{\mathbf{x}\in\mathbb{R}^N}f(\mathbf{x}).$

Typical way; Gradient Descent (GD)

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k), \tag{1}$$

with constant $\alpha > 0$. A discrete dynamical system $\mathbf{x}_{k+1} = g(\mathbf{x}_k)$.

Problem Let $f : \mathbb{R}^N \to \mathbb{R}$ and f is C^2 :

 $\min_{\mathbf{x}\in\mathbb{R}^N}f(\mathbf{x}).$

Typical way; Gradient Descent (GD)

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k), \tag{1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

with constant $\alpha > 0$. A discrete dynamical system $\mathbf{x}_{k+1} = g(\mathbf{x}_k)$.

Question: Great but any guarantees?

Problem Let $f : \mathbb{R}^N \to \mathbb{R}$ and f is C^2 :

 $\min_{\mathbf{x}\in\mathbb{R}^N}f(\mathbf{x}).$

Typical way; Gradient Descent (GD)

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k), \tag{1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with constant $\alpha > 0$. A discrete dynamical system $\mathbf{x}_{k+1} = g(\mathbf{x}_k)$.

Question: Great but any guarantees?

Answer: If ∇f is L-Lipschitz and α ≤ ¹/_L then GD converges to fixed points.

Problem Let $f : \mathbb{R}^N \to \mathbb{R}$ and f is C^2 :

 $\min_{\mathbf{x}\in\mathbb{R}^N}f(\mathbf{x}).$

Typical way; Gradient Descent (GD)

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k), \tag{1}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

with constant $\alpha > 0$. A discrete dynamical system $\mathbf{x}_{k+1} = g(\mathbf{x}_k)$.

Question: Great but any guarantees?

- Answer: If ∇f is L-Lipschitz and α ≤ ¹/_L then GD converges to fixed points.
- ► Folklore: $f(\mathbf{x}_k) f(\mathbf{x}_{k+1}) \ge \frac{1}{2L} \|\nabla f(\mathbf{x}_k)\|_2^2$.
- ▶ ⇒ f is decreasing ⇒ set-wise convergence (not point-wise!).

Definitions (cont.)

Question: What if f is non-convex?

Definitions (cont.)

Question: What if f is non-convex?

Answer: The best we can hope for is convergence to local minimum!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definitions (cont.)

Question: What if *f* is non-convex?

- Answer: The best we can hope for is convergence to local minimum!
- And we will have it... (under "mild" assumptions)

Important definitions

- ▶ \mathbf{x}^* is a critical point of f if $\nabla f(\mathbf{x}^*) = \mathbf{0}$ (uncountably many!).
- ★ x* is isolated if there is a U around x* and x* is the only critical point in U.
- x^{*} is a saddle point if for all U around x^{*} there are y, z ∈ U such that f(z) ≤ f(x^{*}) ≤ f(y).

- ロト・日本・日本・日本・日本・日本

- \mathbf{x}^* of f is a strict saddle if $\lambda_{\min}(\nabla^2 f(\mathbf{x}^*)) < 0$.
- Set S is called forward or positively invariant w.r.t h: E → ℝ^N with S ⊆ E ⊆ ℝ^N if h(S) ⊆ S.

Theorem (Lee, Simchowitz, Jordan, Recht 16') Let $f : \mathbb{R}^N \to \mathbb{R}$ be a C^2 function, ∇f is globally L-Lipschitz and \mathbf{x}^* be a strict saddle. Assume that $0 < \alpha < \frac{1}{L}$, then

$$\Pr(\lim_k \mathbf{x}_k = \mathbf{x}^*) = 0.$$

If the strict saddle points are isolated, then GD converges to saddle points with probability zero.

Theorem (Lee, Simchowitz, Jordan, Recht 16') Let $f : \mathbb{R}^N \to \mathbb{R}$ be a C^2 function, ∇f is globally L-Lipschitz and \mathbf{x}^* be a strict saddle. Assume that $0 < \alpha < \frac{1}{L}$, then

$$\Pr(\lim_k \mathbf{x}_k = \mathbf{x}^*) = 0.$$

If the strict saddle points are isolated, then GD converges to saddle points with probability zero.

Theorem (Main)

Let $f : S \to \mathbb{R}$ be C^2 in an open convex set $S \subseteq \mathbb{R}^N$ and $\sup_{\mathbf{x} \in S} \|\nabla^2 f(\mathbf{x})\|_2 \leq L < \infty$. If $g(S) \subseteq S$ then the set of initial conditions $\mathbf{x} \in S$ so that gradient descent with $0 < \alpha < 1/L$ converges to a strict saddle point is of (Lebesgue) measure zero, without the assumption that critical points are isolated.

Assume furthermore that $\lim_{k} \mathbf{x}_{k}$ exists and let ν be a prior measure (support S) which is absolutely continuous w.r.t Lebesgue measure. Then with probability 1, GD converges to local minima.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Assume furthermore that $\lim_{k} \mathbf{x}_{k}$ exists and let ν be a prior measure (support S) which is absolutely continuous w.r.t Lebesgue measure. Then with probability 1, GD converges to local minima.

Remarks

Lee et al. result is generalized in two ways:

- ► No global Lipschitz condition.
- Critical points do not have to be isolated.

Assume furthermore that $\lim_{k} \mathbf{x}_{k}$ exists and let ν be a prior measure (support S) which is absolutely continuous w.r.t Lebesgue measure. Then with probability 1, GD converges to local minima.

Remarks

Lee et al. result is generalized in two ways:

- ► No global Lipschitz condition.
- Critical points do not have to be isolated.

Proof steps

▶ 1. Convergence: Show that GD converges (already).

Assume furthermore that $\lim_{k} \mathbf{x}_{k}$ exists and let ν be a prior measure (support S) which is absolutely continuous w.r.t Lebesgue measure. Then with probability 1, GD converges to local minima.

Remarks

Lee et al. result is generalized in two ways:

- No global Lipschitz condition.
- Critical points do not have to be isolated.

Proof steps

- ▶ 1. Convergence: Show that GD converges (already).
- ► 2. Diffeomorphism: Prove that g is a diffeomorphism in S (eigenvalue analysis, show Jacobian is invertible).

- ロ ト - 4 回 ト - 4 □

Assume furthermore that $\lim_{k} \mathbf{x}_{k}$ exists and let ν be a prior measure (support S) which is absolutely continuous w.r.t Lebesgue measure. Then with probability 1, GD converges to local minima.

Remarks

Lee et al. result is generalized in two ways:

- No global Lipschitz condition.
- Critical points do not have to be isolated.

Proof steps

- ▶ 1. Convergence: Show that GD converges (already).
- ► 2. Diffeomorphism: Prove that g is a diffeomorphism in S (eigenvalue analysis, show Jacobian is invertible).
- ► 3. Measure zero: Use center-stable manifold along with Lindelof lemma.

Why are these technicalities important?

 Manifold: Topological space that "looks like" Euclidean space near each point.

Diffeomorphism

A diffeomorphism is a map between manifolds which is continuously differentiable and has a continuously differentiable inverse.

This is a useful technical smoothness condition that allows us to apply standard theorems about dynamical systems. (e.g., Center-Stable Manifold theorem).

Center-Stable Manifold theorem (informally)

If the rule of the dynamics is a diffeomorphism then

For every fixed point **p**, there exists an open ball B_p so that if trajectory q(n) is inside B_p for all n ≥ 0 then p(0) belongs to a (local) center stable manifold W_{sc}(**p**) which has dimension equal to the dimension of the space spanned by eigenvectors of the Jacobian (at **p**) with eigenvalues of absolute value ≤ 1.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Proof Sketch of Step 3

- ► Every strict saddle critical point **p** has a (local) center stable manifold W_{sc}(**p**) of dimension lower than N − 1), hence measure zero in ℝ^{N−1}
- Consider the union of all B_p and pick a countable subcover (Lindelof's lemma: every open cover in ℝ^k has a countable subcover.)
- ► g⁻¹ is C¹, maps null sets to null sets, the set of points that converge to some B_p is measure zero.

• Countable union of measure zero sets is measure zero.

Examples - Non-isolated critical points

$$f(x, y, z) = 2xy + 2xz - 2x - y - z,$$

$$\Rightarrow \nabla f(x, y, z) = (2y + 2z - 2, 2x - 1, 2x - 1).$$

Strict saddle points correspond to the line (1/2, w, 1 - w) for $w \in \mathbb{R}$ (min eigenvalue is $-2\sqrt{2}$).

Therefore...

Set of initial conditions in \mathcal{R}^3 so that GD converges to black line has measure zero.

Examples (cont.) - Forward invariant set

$$f(x,y) = \frac{x^2}{2} + \frac{y^4}{4} - \frac{y^2}{2}$$
, Hessian $J = \begin{pmatrix} 1 & 0 \\ 0 & 3y^2 - 1 \end{pmatrix}$.

- f is not globally Lipschitz (Lee et al result does not apply!)
- ► Critical points are (0,0), (0,1), (0,-1).
- ► For $S = (-1, 1) \times (-2, 2)$, $\sup_{(x,y) \in S} \|\nabla^2 f(x, y)\|_2 \le 11$ (for y = 2 maximum).
- Choose $\alpha = \frac{1}{12} < \frac{1}{11}$, hence $g(x, y) = (\frac{11x}{12}, \frac{13y}{12} - \frac{y^3}{12}) \Rightarrow g(\mathcal{S}) \subseteq \mathcal{S}$

Therefore...

Set of initial conditions in S so that GD converges to (0,0) has measure zero. Start at random, then GD converges to (0,1), (0,-1) with probability 1.

- Vector flows perturbed by noise cannot converge to unstable fixed points [Pemantle 90'].
- Other dynamics? Results for replicator dynamics (evolution, game theory) [Mehta, P, Piliouras 15'].
- Mirror Descent (mirror map strongly convex). Ongoing work [Lee, P, Simchowitz, Jordan, Piliouras, Recht 16'].
- Non-negative matrix factorization (NMF)? Ongoing work [P, Piliouras, Tetali] analyzing Lee and Seung.
- Quantitative versions (stronger assumptions) [Ge, Huang, Jin, Yuan 15'].
- ► Many more...

Thank you!

Postdoc positions open! Where: Singapore

On What: Game Theory, Algorithms, Dynamical Systems

georgios@sutd.edu.sg

- 日本 本語 本 本 田 本 王 本 田 本