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How do people form opinions?

How do we form
opinions?

Big question in social
sciences.

I Influence: Tendency of people to become similar to those with
whom they interact.

I Selection: Get more influence from some people and less from
others (according to some trait).

A lot of mathematical models have been introduced in
physics/computer science etc.
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Kempe et al. model

Given a graph G(V ,E ),
I Nodes u correspond to opinions/types/parties etc. x t

u
population mass of supporters of u (time t).

I An edge (u, v) represents the fact that u and v interact.
I At every time step, population flow f t

u→v migrates from u to
v , for all edges (u, v) in the graph.

I Kempe et al. flow fu→v = xuxv
(

1
(α−1)xu+1 −

1
(α−1)xv +1

)
=

xuxv
[
(xv − xu) (a−1)

((a−1)xu+1)((a−1)xv +1)

]
, where α ≥ 1 constant.

The dynamics are given by the update rule

x t+1
u = x t

u +
∑

v∈N(u)
f t
v→u.
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Kempe et al. model (cont.)

Picture from Kempe et al.

A small graph showing religions, with the possible transitions
between agnostics, atheists, casual protestants, devout protestants,
casual catholics, and devout catholics.

I They show that the dynamics converges to fixed points.
I They also show a fixed point is Lyapunov-stable if and only if

the active nodes (i.e., those that have positive population
mass) form an independent set.

I Question: “Predict the equilibrium to which the system
converges starting from a given initial mass vector”.
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Our model

Given a graph G(V ,E ),
I Nodes u correspond to opinions/types/parties etc. x t

u
population mass of supportes of u (time t).

I Edges (u, v) capture the interactions among u and v .
I At every time step, population f t

u→v migrates from u to v .

I We choose fu→v = xuxv Fuv (xv − xu).

Add new features: Births and deaths of opinions
I Birth: with probability p, a new type v is created and takes

mass from the existing types.
I Death: a type with mass smaller than ε dies out and move its

mass to the existing types.
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Main Theorems

Assumptions on Fuv :
I continuously differentiable,
I Fuv is odd and increasing,
I Fuv (0) = 0.

Theorem (Main 1)
Suppose that maxz∈[−1,1] |Fuv (z)| < 1/2 for all uv ∈ E (G). If the
initial mass vector x(0) is chosen from a (continuous) atomless
distribution, then the dynamics converges point-wise with
probability 1 to a point whose active types form an independent
set in G.

Remark: This theorem holds assuming no births and deaths.
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Main Theorems (cont.)

I Set αmin = minz F ′uv (z) and αmax = maxz F ′uv (z).
I Dynamics is (T , d)-stable if and only if ∀T ≤ t ≤ T + d , no

population mass moves at step t.

Theorem (Main 2a)
Assume that αmin > 0. Let p < min

(
ε4αmin

3 , 2
3

)
and t > 1

ε4αmin−3p .
With probability at least 1− e−tp/6, the dynamics is(

T , 1
3p

)
-stable for some T ≤ t (“stable for long enough”).

Theorem (Main 2b)
Let αmax ≤ p/512 and t ≥ (16/p) log2(1/ε). The dynamics at
step t has at most 72 log(1/ε) types with probability at least
1− 3ε (no explosion).
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Remarks and proof steps

Proof steps of Main 1
I 1. Convergence: Show that opinion dynamics converges

pointwise. Find a Lyapunov (potential function) that strictly
increases (unless dynamics reaches a fixed point)

I 2. Diffeomorphism: Prove that the function of the update rule
is a diffeomorphism in S (eigenvalue analysis, show Jacobian
is invertible).

I 3. Measure zero: Use center-stable manifold theorem.
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Why are these technicalities important?

I Manifold: Topological space that ”looks like” Euclidean space
near each point.

I Diffeomorphism
A diffeomorphism is a map between manifolds which is
continuously differentiable and has a continuously
differentiable inverse.

This is a useful technical smoothness
condition that allows us to apply stan-
dard theorems about dynamical sys-
tems. (e.g., Center-Stable Manifold
theorem).



Center-Stable Manifold theorem

Center-Stable Manifold theorem (informally)
If the rule of the dynamics is a diffeomorphism then

I For every fixed point p, there exists an open ball Bp so that if
trajectory q(n) is inside Bp for all n ≥ 0 then p(0) belongs to
a (local) center stable manifold Wsc(p) which has dimension
equal to the dimension of the space spanned by eigenvectors
of the Jacobian (at p) with eigenvalues of absolute value ≤ 1.



Examples - Phase portrait



Previous work

I D. Kempe, J. M. Kleinberg, S. Oren, and A. Slivkins.
Selection and influence in cultural dynamics.

I R. Hegselmann and U. Krause. Opinion dynamics and
bounded confidence: models, analysis and simulation.

I A. Montanari and A. Saberi. The spread of innovations in
social networks.

I E. Mossel, J. Neeman, and O. Tamuz. Majority dynamics and
aggregation of information in social networks.

I Many more...



Future work

I Rate of convergence (without births and deaths): How
fast does our migration dynamics converge point-wise to fixed
points for different choices of functions Fuv ? How does the
structure of G influence the time needed for convergence?

I Average case analysis: Which independent sets are more
likely to occur if we start at random in the simplex. Assuming
Fuv (z) = auv z (linear functions) or Fuv (z) = auv z3 etc
(cubic), do the values of αuv ’s affect the likelihood of the
linearly stable fixed points1?

I Continuous time version (our theorems still hold).

1this likelihood of a fixed point is called region of attraction.



Thank you!


