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The puzzle of sex: No easy answers

I What is the purpose of sex: A key problem in biology
I Several answers to the problem
I Key high level idea:

Sex = Gene Mixing → Genetic Diversity = Good?

I This talk: Focus on diploid species, where evolution is
described by replicator dynamics.

Computational Question
Does diversity persist in the limit? Yes/No?
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Basic Terms in Biology

I Gene: A unit that determines some characteristic of the
organism, and passes traits to offsprings. Controls the
expression of traits, e.g., eye color, blood type.

I Locus: The specific location of a gene on a chromosome
(plural loci).

I Allele: One of a number of alternative forms of the same gene,
found at the same loci. Different alleles can result in different
observable traits, such as different eye color, blood type, e.t.c.

I Genotype: The genetic constitution of an individual organism.
I Diploid: Having two copies of each chromosome.
I Haploid: Having one copy of each chromosome.
I Panmictic: Every pair of individuals can produce offspring (no

male, female distinction).
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Setting: Panmictic, Diploid 1-Gene with Sex
The species has one gene: X .

Gene X has n possible alleles: X1, X2, . . . , Xn.
Each individual has an unordered genotype of the form Xi Xj .
Let Wij denote the fitness of genotype Xi Xj .
Let xi the frequencies of allele Xi respectively.

When two individuals mate: e.g., Xi Xj and Xi ′Xj′ the possible
offspring combinations are Xi Xj , Xi Xj′ , Xi ′Xj , Xi ′Xj′ and the
number of offsprings is proportional to the corresponding entries of
fitness (symmetric, positive) matrix W .

If two individuals are picked at random and mate, the expected
frequencies (of next generation) reduce to (called replicator
dynamics):

x ′i = xi
(W x)i
xT W x where (W x)i =

∑
j

Wijxj .

x is a vector that lies in the simplex of size n, denoted by ∆n.
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Related work

Dynamics on Haploids
I Chastain, Livnat, Papadimitriou, Vazirani ’14: Strong

connection between Game Theory, MWUA and haploid
evolution.

I Mehta, P, Piliouras ’15: In the limit, under mild conditions on
fitness matrix, haploid dynamics converges to monomorphic
populations (no diversity).

Complexity
I Nissan ’06 and then Etessami, Lochbihler ’08 studied the

question of whether a game has an evolutionary stable
strategy (ESS).

I Conitzer ’13 showed this to be ΣP
2 -complete.

I See also Ibsen-Jensen, Chatterjee and Nowak ’15.



Decision Problem

I Input: A n × n positive symmetric matrix W .

I Question: Assume that we start at random from ∆n (space of
possible allele frequencies). Is the probability positive that the
limit point of replicator dynamics will have support greater
than one (aka diverse)?

Replicator dynamics : x ′i = xi
(W x)i
xT W x .

Losert and Akin ’82
If W is positive then we have the following two facts:

I Replicator dynamics converges to a fixed point x∗ (limit
point).

I The update rule is a diffeomorphism on ∆n.
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Our results

Theorem (Main result 1)
Given a n × n fitness matrix W for a diploid organism with single
locus, it is NP-hard to decide if, under evolution (replicator
dynamics), diversity will survive (by converging to a specific mixed
equilibrium with positive probability) when starting allele
frequencies are picked at random from ∆n.

Theorem (Main result 2)
If the entries of a fitness matrix W are i.i.d. from an atomless (say
continuous) distribution then with probability at least 1/3 (over
random entries and initial population), diversity will survive.
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Dynamical systems to the rescue

Using techniques from dynamical systems, in particular
Center-stable manifold theorem and the two facts mentioned
above:

Lemma
The set of initial conditions in ∆n so that the dynamics converges
to “unstable” fixed points is of measure zero.

A fixed point p is “unstable” if the corresponding Jacobian of the
rule at p has an eigenvalue greater than 1.

Easy remark
We need to characterize the “stable” fixed points to answer our
question!
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High level intuition

Tossing a coin, 3 possible steady (equilibrium) states:

I Tail “Stable”

I Head “Stable”

I Landing on its edge
“Unstable”

Do the set of “stable” fixed points contain mixed fixed points
(support greater than one)?



Lemma
A fixed point p is “stable” iff the strategy profile (p, p) is a Nash
equilibrium of the 2-player symmetric coordination game (W , W )
and also TW is negative semi-definite. We also call it stable Nash.
TW is the resulting matrix if we subtract first row/column from all
other rows/columns of W and then remove the first row/column.

Definition
Naturally, we define strict stable Nash.

Lemma
The set of fixed points with positive measure of attraction is
sandwiched between strict stable Nash and stable Nash fixed
points.
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Proof of Theorem 2

It is easy to prove via inclusion-exclusion arguments (avoiding
correlations):

Lemma
If the entries of a positive symmetric matrix W are i.i.d. from an
atomless (say continuous) distribution then with probability at
least 1/3− o(1) we have that every diagonal entry Wii is
dominated by Wij , Wji for some j (different for every i).

Hence, we don’t have pure symmetric Nash equilibrium!

Therefore all the Nash stable and strict Nash stable fixed points
must be mixed!
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Proof of Theorem 1

Use same reduction for both notions of stability. The reduction is
from clique. Let E ′ be the adjacency matrix of input graph G , so
that all zero entries are replaced by −h (a large number depending
on the graph size). Define the following fitness matrix W :

E ′

-ε

k-1

k-1

k-1

k-1

h

h

-ε

-ε

-ε

-ε

-ε

I If G has a clique of size
k then (W , W ) has a
mixed strict Nash stable.

I If (W , W ) has a mixed
Nash stable, then G has
a clique of size k.

I We can make W
positive, by adding the
same number c > 0 to
every entry (“stability”
does not change!).



Future work

I Introduce mutations.
I Changing environments.
I Generalize results for more genes, the equations are more

complicated!
I More connections between theoretical computer science and

evolution.



Thank you!



Center-Stable Manifold theorem

Center-Stable Manifold theorem (informally)
If the rule of the dynamics is a diffeomorphism then

I For every fixed point p, there exists an open ball Bp so that if
x(n) is inside Bp for all n ≥ 0 then x(0) belongs to a (local)
center stable manifold Wsc(p) which has dimension equal to
the dimension of the space spanned by eigenvectors of the
Jacobian (at p) with absolute value ≤ 1.


