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Abstract— Efficiently solving large-scale sparse linear sys-
tems is important for robot mapping and navigation. Recently,
the subgraph-preconditioned conjugate gradient method has
been proposed to combine the advantages of two reigning
paradigms, direct and iterative methods, to improve the ef-
ficiency of the solver. Yet the question of how to pick a
good subgraph is still an open problem. In this paper, we
propose a new metric to measure the quality of a spanning tree
preconditioner based on support theory. We use this metric to
develop an algorithm to find good subgraph preconditioners
and apply them to solve the SLAM problem. The results show
that although the proposed algorithm is not fast enough, the
new metric is effective and resulting subgraph preconditioners
significantly improve the efficiency of the state-of-the-art solver.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) refers to
the problem of localizing a robot in an unknown environment
while simultaneously building a consistent map. Being able
to efficiently conduct SLAM in large and complex environ-
ments is important for autonomous mobile robots [1], [2].

The smoothing approach had been successfully applied to
solve the SLAM problem [3]. Central to the efficiency of the
smoothing approach is the ability to solve sparse linear sys-
tems efficiently. There are two ways to solve linear systems:
direct methods and iterative methods. Direct methods [4]
are efficient if a good elimination ordering is available, but
they may not scale well and lead to high computational cost.
Iterative methods [5] have better scalability but they suffer
from slow convergence if the problem is ill-conditioned.

Recently, Dellaert et al. [6] proposed the subgraph-
preconditioned conjugate gradients (SPCG) method, which
aims to combine the advantages of direct and iterative
methods to efficiently solve the SLAM problem. The main
idea is to identify a sparse sub-problem (subgraph) that can
be efficiently factorized by direct methods, and use it to build
a preconditioner for the conjugate gradient (CG) method.
They showed that SPCG is superior to using either direct or
iterative methods alone. Yet the question of how to pick a
good subgraph is still an open problem.

In this paper, we propose a new metric to measure the
quality of a spanning tree preconditioner based on the
recently-developed support theory [7]. Then we use this
metric to develop an algorithm based on Markov Chain
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Fig. 1: Illustration of the proposed algorithm with a simple
grid graph. (a) The original graph. (b) The robot’s trajectory
as an initial spanning tree. (c) The spanning tree after
30 iterations of our algorithm. (d) A subgraph is built by
inserting additional high-stretch edges to the spanning tree.

Monte Carlo (MCMC) methods [8] to find a good span-
ning tree, and then augment it with additional edges to
build a good subgraph preconditioner for SLAM. We use
the resulting subgraph preconditioner with the least-squares
preconditioned conjugate gradient method to solve synthetic
and real SLAM problems. The results show that although
the proposed algorithm is not fast enough, our new metric
is effective and the proposed algorithm is able to produce
significantly better subgraph preconditioners.

This paper has three contributions: (1) We present a new
metric based on support theory to measure the quality of
a spanning tree preconditioner for SLAM. (2) On the basis
of this new metric, we propose an algorithm to construct
good subgraph preconditioners. (3) Finally we then apply
these subgraph preconditioners to improve the efficiency of
the state-of-the-art SLAM solver. This paper focuses on the
theoretical contributions above. To the best of our knowl-
edge, this is the first attempt to derive theoretically good
subgraph preconditioners for SLAM problems. Although the
MCMC-based algorithm we develop to find high-quality
preconditioners is not practical in its current form, recent
developments in finding low-stretch spanning trees [9], ultra-
sparsifiers [10], and simple combinatorial solvers [11] make
us believe that this obstacle will be removed in future work.



II. REVIEW

Here we review SLAM formulation to facilitate the ex-
position. We define θ = {θi}ni=1 as the state variables
(e.g., robot poses), and Z = {zj}mj=1 as the measurements
(e.g., odometry and loop-closure). The goal is to obtain the
maximum a posteriori (MAP) estimation

θMAP(Z) = argmax
θ

P (θ)P (Z | θ). (1)

Assuming the variables are independent, and the measure-
ments are conditionally independent, we can factorize the
right-hand side of (1) into

P (θ)P (Z|θ) ∝
n∏
i=1

P (θi)

m∏
j=1

P (zj | θj) (2)

where θj denotes the variables of the jth measurement.
The SLAM problem can also be formulated with the factor

graph representation [12] where each vertex denotes a state
variable, and each factor (edge) is represented by the squared
error term associated with a probability density function in
(2). More specifically, we assume prior and measurement
models are Gaussian, defined by

P (θi) ∝ exp(−‖gi(θi)‖2Γi
) (3)

P (zj | θj) ∝ exp(−‖hj(θj)‖2Ψj
). (4)

where gi(·) denotes the prior model over the ith variable
and hj(·) denotes the model of the jth measurement. In
both models, we assume zero-mean and normally distributed
noise with covariance matrices Γi and Ψj respectively. Here
‖e‖Σ =

√
eTΣ−1e denotes the Mahalanobis distance. By

substituting the probability densities in (2) with the functions
in (3) and (4), and taking negative logarithm, we obtain the
following factor graph representation for the SLAM problem

θMAP(Z) = argmin
θ

n∑
i=1

‖gi(θi)‖2Γi
+

m∑
j=1

‖hj(θj)‖2Ψj
(5)

= argmin
θ

m+n∑
k=1

‖ek(θk)‖2Σk
(6)

where ek(·) is a function θk with covariance matrix Σk.

A. A Smoothing Approach to SLAM

Here we show how to solve (6) via smoothing. In general,
the function in (6) is not convex and has no closed-form
expression to compute the optimum, but assuming we have
some initial estimates of the variables, we can find a local
minimum by using any nonlinear least-squares optimiza-
tion algorithm (e.g., the Gauss-Newton or the Levenberg-
Marquardt algorithm) [13]. The key is to apply the first-order
Taylor expansion to linearize the function as

ek(θk) ≈ ek(θ0
k) + Jk∆θk (7)

where Jk is the Jacobian matrix of ek(·) with respect to θk
at the linearization point θ0

k:

Jk =
∂ek(θk)

∂θk

∣∣∣∣
θ0k

. (8)

If we set (7) to zero, then we obtain Jk∆θk = −ek(θ0
k)

which is linear in ∆θk. Repeating this procedure for all of
the ek(·) functions, we can derive a linear system

A∆θ = b (9)

where A is a rectangular matrix whose kth (block) row
contains the Jacobian matrix Jk in (8), and b is a vector
whose kth (block) row equals −ek(θ0

k). Equation (9) can
be considered as a linearized version of the SLAM problem
whose graph structure is represented by the sparsity pattern
of A. Hereafter we will refer to (9) as the linear system or
the Gaussian factor graph of the SLAM problem, and refer
to A as the Jacobian matrix. We then iteratively solve (9)
to update the current estimates until convergence.

We can see that solving SLAM is equivalent to solving
a sequence of sparse linear systems. Direct and iterative
methods are the two reigning paradigms to solve sparse linear
systems [4], [5], but each of these methods presents its own
advantages and limitations when applied to solving large
SLAM problems [6].

B. Subgraph-Preconditioned Conjugate Gradient Method
Recently, Dellaert et al. [6] proposed the subgraph-

preconditioned conjugate gradient (SPCG) method to solve
the linearized SLAM problem efficiently. The main idea is
to combine the advantages of direct and iterative methods
by identifying a sparse sub-problem (subgraph) and then
solve it with direct methods to build a prior probability
density to precondition the original problem. Choosing a
sparse subgraph has the advantage that solving the induced
sub-problem and applying the preconditioner can both be
performed efficiently.

More specifically, for any linear least-squares problem or
Gaussian factor graph f(x) = ‖AGx − bG‖2, SPCG first
identifies a sparse sub-problem (subgraph) ‖ASx − bS‖2
that can be efficiently solved by direct methods. Note that
subscript G denotes the original graph while the subscript S
denotes a subgraph of G. The tuple (AS ,bS) corresponds
to a subset of rows in (AG,bG). Hence we can split the
function into two terms: f(x) = ‖ASx − bS‖2 + ‖AS̄x −
bS̄‖2 where the subscript S̄ = G\S denotes the complement
of S. Hereafter we will refer to (AS ,bS) as the subgraph
part and (AS̄ ,bS̄) as the constraint part of the problem.

The easiest way to understand preconditioning is through
variable re-parametrization. Consider applying QR factoriza-
tion to AS = QSRS to obtain the solution x̄ = R−1

S QT
SbS

of the subgraph part with the corresponding Gaussian log-
likelihood ‖RSx− cS‖2 where cS = QT

SbS . Therefore, the
original objective function becomes

f(x) = ‖RSx− cS‖2 + ‖AS̄x− bS̄‖2 (10)

Now we re-parametrize the problem in terms of the whitened
deviation from the prior y = RSx − cS = RS(x − x̄). By
substituting x = x̄ + R−1

S y in (10), we obtain

f̄(y) = ‖y‖2 + ‖AS̄R
−1
S y − d‖2 (11)

where d = bS̄ − AS̄x̄. Then we can solve (11) using the
least-squares conjugate gradient (LSCG) method. [14].



III. ASSESSING THE QUALITY OF
SUBGRAPH PRECONDITIONERS

Although SPCG demonstrates promising performance [6],
the question of how to pick a good subgraph is still open.
To this end, we introduce support theory [7] to measure the
quality of subgraph preconditioners.

A. Generalized Condition Number

The generalized condition number is a well-known mea-
sure for the convergence speed of the preconditioned con-
jugate gradient (PCG) method [5]. Namely, the generalized
condition number for a pair of positive and definite matrices
MG and MH is defined as

κ(MG,MH) =
λmax(MG,MH)

λmin(MG,MH)
(12)

where λmax(MG,MH) and λmin(MG,MH) denote the
largest and smallest generalized eigenvalues respectively. The
generalized condition number is inversely proportional to the
worst-case convergence speed of PCG [5]. In SLAM, the
roles of MG and MH are played by the outer product of the
Jacobian matrices, i.e. MG = AT

GAG and MH = AT
HAH .

Hereafter we will refer to MG as the original system matrix
and MH as the preconditioner system matrix.

B. Support Theory

The generalized condition number measures the quality of
a preconditioner in terms of the ratio of extreme eigenvalues;
however, directly optimizing this measure is not trivial.
Recently, support theory [7] has been proposed to assess
the quality of preconditioners for symmetric and positive
definite linear systems. Here we provide a brief introduction
to support theory. The readers may refer to [7] for details.

Central to support theory is the notion of support number:

Definition 1. The support number of a pair of square
matrices MG ∈ Rn×n, and MH ∈ Rn×n is defined as

σ(MG,MH) = min{t ∈ R | τMH �MG,∀τ ≥ t}. (13)

In other words, the support number is the smallest number
of ”copies” that we need for MH in order to dominate
MG in a Loewner sense, that is, for τMH − MG to
be positive semidefinite [15]. Another interpretation of the
support number is that the shape of the quadratic function
associated with τMH −MG is convex.

In particular, the generalized condition number and the
support number are connected via the following property:

Proposition 2. Suppose MG ∈ Rn×n and MH ∈ Rn×n are
symmetric and positive definite, then

κ (MG,MH) = σ (MG,MH)σ (MH ,MG) . (14)

This proposition suggests that MH is a good preconditioner
for MG if both matrices can support each other with as little
additional help as possible. Therefore we can instead focus
on finding a preconditioner that minimizes the product of the
two support numbers in (14).

Now let us turn our discussion back to the Jacobian
matrices (AG and AH ) and explain another important notion
in support theory: the embedding matrix. An embedding
matrix W contains the coefficients to linearly synthesize
each row in matrix AG by using the rows in matrix AH .
This notion is useful to characterize the support number via
the following theorem:

Theorem 3. Suppose AG ∈ Rm×n is in the range of AH ∈
Rp×n, MG = AT

GAG, and MH = AT
HAH , then

σ (MG,MH) = min
W
‖W‖22 subject toWAH = AG. (15)

Theorem 3 shows that the square of the spectral norm (largest
singular value) of any embedding matrix provides an upper
bound for the support number. The better embedding matrix
we identify, the lower upper bound for the support number
we obtain. However, directly working with this metric could
be inefficient because there is no closed-form expression to
compute the spectral norm of a matrix.

Fortunately, there are simpler matrix functions that yield
upper bounds for the spectral norm, and consequently for the
support number. One of them is the Frobenius norm ‖W‖F ,
which is defined as the square root of the sum of squared
elements in the matrix. The consequence of this fact is a well-
known result in numerical linear algebra, namely ‖W‖22 ≤
‖W‖2F [16]. The Frobenius norm is easier to work with as it
decouples the embedding matrix so that each of its rows can
be considered independently. In the next section, we will use
this inequality to develop a metric to evaluate the quality of
any spanning tree preconditioner in SLAM.

C. Subgraph Preconditioners

Here we use support theory to analyze the subgraph
preconditioners. By definition, if S is a subgraph of G,
i.e. AS consists of a subset of the rows of AG, then by
using Theorem 3 we know σ (MS ,MG) ≤ 1 because there
exists an embedding matrix which is a proper subset of an
identity matrix. This statement is true for all well-posed
linear systems. Therefore we only need to analyze the other
support number σ (MG,MS).

The support number σ (MG,MS) bears a graphical inter-
pretation when the Jacobian matrix is an oriented incidence
matrix, where each row has only two nonzeros with the same
magnitude but opposite signs. In this setting, the Jacobian
matrices AG and AS can transformed into weighted graphs
G and S respectively. Boman and Hendrickson showed that
the stretch between G and S is equivalent to the Frobenius
norm of the embedding matrix, which is an upper bound of
the support number σ (MG,MS) [17].

However, the stretch cannot be used to evaluate the
subgraph preconditioners for SLAM because the Jacobian
matrices in SLAM are more general than oriented inci-
dence matrices: they are typically block-structured and each
nonzero block could have arbitrary values. This limitation
motivates us to develop a new metric to measure the quality
of subgraph preconditioners for SLAM.



IV. GENERALIZED STRETCH (GST)

In this section, we will define the notion of stretch for
the Jacobian matrices with the following properties: (1) the
matrices are block-structured, (2) every nonzero block is
invertible, (3) there is exactly one block-row with exactly
one nonzero block, (4) the other block-rows have exactly two
nonzero blocks, and (5) the matrix has full column rank. In
SLAM, this setting resembles a scenario in which the robot
knows its initial pose (a unary prior factor) in the world
coordinate and has sensors (e.g., odometry, loop-closure) to
induce pose constraints (binary factors). Hereafter we will
refer to a matrix satisfying these properties as an A-matrix.
Since we exclusively work with block-structured matrices,
the word “block” will sometimes be omitted for simplicity.

A. Canonical Form of an A-Matrix

To facilitate the exposition, we define the canonical form
of an A-matrix as

A =


A0

A1

...
Am

 (16)

where
A0 =

[
A0,0 0 · · · 0 0

]
(17)

is the row with one nonzero block, and

Ai =
[
· · · Ai,ai · · · Ai,bi · · ·

]
(18)

is the ith row vector with two nonzero blocks (indexed
by ai and bi), m is the number of binary factors, and n
is the number of block variables. Every A-matrix can be
transformed to this canonical form by permuting the rows
and columns. An A-matrix is indexed by the block variables,
and therefore we define

A(i, j) =


A0,0 if i = 0 and j = 0,
Ai,j if 1 ≤ i ≤ m and j ∈ {ai, bi},
0 otherwise.

(19)

B. Transformation to an A-Graph

Here we show how to transform an A-matrix into an
A-graph. We define a graph G = (V,E) where V =
{v1, v2, · · · , vn} denotes a set of vertices, each of which
corresponds to a column in A, and E = {e0, e1, · · · , em}
are the edges of G, each of which corresponds to a row in
A. With slight abuse of notation, we define A(ei) = Ai that
associates an edge to a block row, and A(ei, vj) = A(i, j)
that associates a pair of vertex vj and edge ei to a square
block matrix.

We say that the edge ei is incident to the vertex vj if
A(ei, vj) 6= 0. Moreover, two edges ei and ej are adjacent
if they share a vertex, denoted as ei∩ej . For a pair of adjacent
edges ei and ej , we define a function

rA(ei, ej) = A(ei, ei ∩ ej) ·A(ej , ei ∩ ej)−1, (20)

which is a square matrix that represents the ratio between
two edges with respect to the shared vertex.

C. Path Embedding in a Spanning Tree

Central to our derivation is the notion of path embedding.
Here we show how to compute the path embedding for any
edge with respect to a spanning tree. We choose to investigate
this case because the path embedding in a spanning tree is
unique and can be derived analytically.

More specifically, suppose T = (V,ET ) is a spanning tree
of G, the path embedding for an edge es ∈ E with respect
to T consists of a set of weights

wT (es) = {wT (es, e) | ∀e ∈ ET } (21)

so that es can be perfectly reconstructed, that is,∑
e∈ET

wT (es, e)A(e) = A(es). (22)

Since T is a spanning tree, the weights are unique and can
be derived analytically. Suppose es = (va, vb) is an edge to
be embedded, there are two cases: (1) If es ∈ ET , then the
weights are all zeros except that wT (es, es) is an identity
matrix. (2) If es /∈ ET , then the weights can be derived by
performing Gaussian elimination from the end vertices, va
and vb, to the root vertex vr of T , which is defined as the
vertex with the unary prior factor. Note that vr = v1 in our
canonical representation.

After a series of algebraic calculations, we can derive the
weights with respect to the ratio function defined in (20):

wT (es, e) =


0 if e /∈ PT (va) ∪ PT (vb)

rA(es, e) if e ∩ es = v

−
∑
e′∈DT (e) wT (es, e

′) · rA(e′, e) o/w,
(23)

where PT (v) is defined as e0 plus the edges on the unique
path between v and the vr in T , DT (e) denotes a set of
edges incident to e in T leading to the vertices of greater
depth. The depth of a vertex is defined as its distance to the
root vertex.

D. Generalized Stretch

In support theory, the stretch of an edge is defined as
the squared Frobenius norm of the path embedding for the
oriented incidence matrices [18]. Here we use (23) to define
the notion of generalized stretch for the A-matrices:

gstT (es) =
∑
e∈ET

‖wT (es, e)‖2F. (24)

It has been shown in [17] that the sum of stretches over
all edges in G, namely

gstT (G) =
∑
es∈EG

gstT (es), (25)

measures how well a spanning tree T serves as a precon-
ditioner for a graph G because it corresponds to an upper
bound of the generalized condition number. We will use this
property to derive good subgraph preconditioners.



(a) (b) (c)

Fig. 2: Illustration of one iteration of our algorithm. (a) The
current spanning tree T (solid edges). (b) Suppose the edge
e is sampled, and inserting it into T would induce the blue
cycle. (c) Suppose the edge e′ is sampled from the cycle.
Swapping e and e′ leads to a new tree T ′.

V. FINDING GOOD SUBGRAPH PRECONDITIONERS

To find a good subgraph preconditioner, a common prac-
tice is to find a low-stretch spanning tree as the skeleton,
and then augment it with additional edges to further reduce
the total stretch. Therefore, we first focus on solving the
following problem:

min
T

gstT (G). (26)

Solving (26) is an NP-hard problem. Instead of solving it
directly, we give an algorithm based on MCMC techniques
to find a low-stretch spanning tree. The algorithm assumes
an initial spanning tree T is available. For each iteration, we
sample an edge e /∈ ET with a probability proportional to
gstT (e). Inserting e into the spanning tree leads to a new
subgraph T+ = (V,ET

⋃
e), which contains an induced

cycle CT (e). To obtain a spanning tree again, we pick an
edge e′ ∈ CT (e) uniformly at random, and swap e and e′

to build a new spanning tree T ′. If the new total stretch
gstT ′(G) is smaller than the original total stretch gstT (G),
then we accept T ′ unconditionally. Otherwise, we accept T ′

with a probability following an exponential distribution of
the logarithm of the ratio between two stretches. Thus the
algorithm can be thought of as a Markov Chain based on
Metropolis updates. The above procedure is illustrated in
Figure 2. We repeat this procedure until convergence. In the
end, we output the best spanning tree during the course.

A. Subgraph Construction

Given the best spanning tree T∗ computed in the previous
step, we construct a subgraph by inserting the edges with
high stretch into the spanning tree. The rationale behind
picking these edges is that they are likely to reduce the
generalized condition numbers the most. We have examined
two edge selection strategies. The first is to greedily pick the
edges with the largest stretch. The second is to sample the
edges with a probability according to their stretch. Please
refer to Section VI-C for results. The key steps of the
proposed algorithm are summarized in Algorithm 1.

B. Computational Complexity

Here we summarize the complexity of the each step of
the algorithm. In the initialization step, computing gstT0

(G)
takes O(md) where m is the number of off-tree edges and
d is the average depth of the end vertices of the off-tree

Algorithm 1: The proposed algorithm
Input: G is the graph, T0 is a spanning tree of G
Initialization: s0 = gstT0

(G)
for i = 0 to maximum iterations do

if convergent then break
1. sample an edge e ∈ G with probability ∝ gstTi

(e)
2. let CTi(e) be the unique cycle in T+ = (V,ET

⋃
e)

3. uniformly at random sample an edge e′ from CTi(e)
4. swap e and e′ so that T ′i = (V,ET

⋃
e\e′)

5. compute s′i = gstT ′
i
(G)

if s′i < si then
Ti+1 = T ′i ; si+1 = s′i

else
x = log(

s′i
si
)

α = min(1, λ exp(−λx))
generate a random number q ∼ U [0, 1]
if q ≤ α then Ti+1 = T ′i ; si+1 = s′i
else Ti+1 = Ti; si+1 = si

end
end
let T∗ = argminTi

gstTi
(G)

augment T∗ with edges (see text), and output the subgraph

edges. In a balanced tree, d is close to log(n) where n is
the number of vertices. In the inner loop of the algorithm,
steps one to four can be done in O(m). The fifth step can be
done in O(md) if we recompute it from scratch. Yet it can
be improved by just recomputing the generalized stretches
of the edges associated to the subtree of the edge e′.

VI. RESULTS

We conducted five experiments to evaluate the proposed
algorithm: (1) We evaluated the efficiency of our MCMC
algorithm. (2) We evaluated the quality of different span-
ning tree preconditioners. (3) Given a low-stretch spanning
tree, we evaluated two different edge selection strategies to
construct a subgraph. (4) We evaluated the quality of dif-
ferent subgraph preconditioners. (5) We used these subgraph
preconditioners in the least-squares preconditioned conjugate
gradient (LSPCG) method to solve both synthetic and real
SLAM problems, and compare the running time against the
state-of-the-art sparse direct solver [19].

To facilitate the comparison, we generated a number of
synthetic Blockworld problems, simulating a robot traversing

Fig. 3: The bird’s-eye view of a Blockworld problem with
1,000 robot poses (yellow) and 10,000 constraints (blue).



Fig. 4: The performance of Algo. 1. Fig. 5: The generalized condition num-
bers of spanning tree preconditioners.

Fig. 6: The effectiveness of two edge
augmentation strategies.

a block world with different trajectories. The bird’s-eye view
of this problem is illustrated in Figure 3. For each problem,
we attached a prior factor to the first robot pose to make the
SLAM problems well-posed. In addition, for each robot pose
we added twenty relative constraints to its closest neighbor
poses, and these measurements are contaminated by zero-
mean and normally distributed noise.

For Algorithm 1, we set λ = 103 and considered the
algorithm is convergent if the average decrease of total
stretch in the past 50 iterations is smaller than 10−3. We
ran all of the experiments on a PC with an Intel Core i7
CPU, and reported the tenth percentile, the median and the
ninetieth percentile over at least fifty trials.

A. Efficiency of Our MCMC Algorithm

We evaluated the efficiency of our MCMC algorithm by
measuring the required time and iterations to converge for
the Blockworld problem. For each instance of the Blockworld
problem, starting from a random spanning tree, we applied
our algorithm to find a low-stretch spanning tree and reported
the results in Figure 4. We can see that as the problem
size increases, the number of required iterations stays almost
constant, which indicates that a good tree can be found in a
constant number of edge swaps. However, the required time
increases linearly with the problem size, which negatively
affects the performance of our algorithm for large-scale
problems. We plan to resolve this problem in future work.

B. Generalized Condition Numbers of Spanning Trees

We compared three spanning tree preconditioners for
the Blockworld problem: (1) a random robot trajectory of
traversing the blockworld (odometry), (2) a random spanning
tree of the entire graph (sptree), and (3) the spanning tree
computed by the proposed algorithm, but without additional
edges (gst). The first two settings characterize the empirical
performance of an ad-hoc spanning tree. To build a random
spanning tree, we assigned a random weight from 1 to 100
to each edge of the graph, and computed the maximum-
weighted spanning tree with Kruskal’s algorithm [20].

Once the spanning tree is determined, we used CHOLMOD
[19], an efficient sparse direct solver, to compute the precon-
ditioner, and used ARPACK [21] to compute the generalized
condition numbers. We repeated this procedure for fifty

times and reported the tenth percentile, the median and the
ninetieth percentile in Figure 5. We can see that gst is
significantly better than the other two approaches, and the
results confirms that our algorithm indeed produces better
spanning trees. However, the generalized condition numbers
increase with the problem size which indicates that using a
spanning tree preconditioner is not scalable.

C. Subgraph Construction

Given the low-stretch spanning tree computed in the previ-
ous step, we evaluated the performance of the three edge se-
lection strategies to construct a subgraph. More specifically,
we examined the following three strategies: (1) greedily pick
the edges with the largest stretch (Greedy), (2) uniformly at
random sample edges (Uniform), and (3) probabilistic sample
the edges according to their stretch (Probabilistic).

We conducted experiments on the Blockworld problems.
For each instance of the problems, we applied Algorithm 1
to computed a low-stretch spanning tree which serves as a
baseline (Original). Then we used these strategies to insert
n edges to each of the spanning trees to build subgraphs,
where n is the number of robot poses.

From the results in Figure 6, we can see that these sub-
graph preconditioners can improve the generalized condition
numbers up to four orders of magnitudes. We also observed
that the slopes of growth are flatter than those in the spanning
tree experiments. It implies that inserting additional edges to
a spanning tree indeed leads to a better and more scalable
preconditioner. Comparing these three strategies, we can
see that Greedy is worse than the other two strategies. We
conjecture that it is because the edges chosen by Greedy
may concentrate at a certain part of the graph, and therefore
fail to reduce the stretch for the other parts of the graph.
On the other hand, the edges chosen by the Uniform and
Probabilistic strategies have a higher chance to spread over
the graph, and therefore could reduce the total stretch even
further. The Uniform strategy is better than Greedy up to
an order of magnitude, but its performance is unstable due
its larger variance. Finally, the probabilistic has the best
and stable performance. Therefore, we used the Probabilistic
strategy in the following experiments.



Fig. 7: The generalized condition num-
bers of three subgraph preconditioners. Fig. 8: The timing results of gst+cn . Fig. 9: The timing results of different

linear solvers.

D. Generalized Condition Numbers of Subgraphs

We compared the generalized condition numbers of three
subgraph preconditioners: (1) odometry augmented with ran-
dom edges ( odometry+cn ), (2) sptree augmented with
random edges ( sptree+cn ), and (3) gst augmented with
additional edges sampled by using the Probabilistic strategy
( gst+cn ), where c is a ratio of augmented edges and n is
the number of robot poses.

From the results in Figure 7, we can see that (1) as the
ratio of augmented edges c becomes larger, the generalized
condition numbers of all subgraph preconditioners decrease
consistently. (2) odometry+cn and sptree+cn have similar
performance with different values of c. (3) gst+cn delivers
two to four times better subgraph preconditioners than the
others. These results suggest that our algorithm produces
better subgraph preconditioners.

E. Timing Results on Synthetic Datasets

We evaluated the running time of using different subgraph
preconditioners in the LSPCG method [14] to solve the
Blockworld problem and compared the performance against
the state-of-the-art sparse direct solver ( CHOLMOD [19]).

We generated Blockworld datasets up to twenty thousand
robot poses, and ran the Gauss-Newton algorithm to solve
the nonlinear SLAM problem for ten iterations. In each
iteration, we used either LSPCG or CHOLMOD to solve
the linear systems. For the LSPCG method, we used either
odometry+cn , sptree+cn or gst+cn as the preconditioners.
The stopping criteria for LSPCG are (1) the norm of the
current gradient is smaller than 10−2 times of the initial
gradient, or (2) the number of LSPCG iterations exceeds one
thousand. For CHOLMOD , we use the implementation in
SuiteSparse compiled with GotoBlas2. All of the solvers run
with single thread. Since different settings achieve different
errors in the end, we reported the time to achieve the error
that is ε-close to the optimum, i.e.,

|e− e∗|
|e0 − e∗|

≤ ε (27)

where e0 is the initial error, e is the current error, e∗ is the
minimum achieved error of all solvers, and ε is a threshold.
We set ε = 10−15 in our experiments. Notice that since
our algorithm to find a good subgraph is still inefficient,

we excluded the time spent in Algorithm 1, and focused on
comparing the efficiency of different linear solvers.

We first evaluated the performance of LSPCG solvers
with the gst+cn preconditioners, and showed the results in
Figure 8. We can see that the gst+1n setting is more efficient
than the others. These results suggest that the most efficient
subgraph preconditioner is not necessarily the one with the
most edges, and finding the right amount of additional edges
to augment a spanning tree involves a trade-off: Inserting too
few edges into the subgraph may not lead to an effective
preconditioner, while inserting too many edges into the
subgraph may slow down the overall performance. We will
further investigate this issue in future work.

Then we compared the LSPCG solvers with CHOLMOD
and showed the results in Figure 9. Note that for the
LSPCG solvers, we only showed the results of odometry+1n
, sptree+1n , and gst+1n for clarity. We can see that
CHOLMOD is two to three times slower than the LSPCG
solvers, and it suggests that direct solvers are not suitable for
solving large-scale SLAM problems. Comparing the three
subgraph preconditioners, we can see that odometry+1n
and sptree+1n have similar performance and they are 5̃0%
slower than gst+1n . These results suggest that our subgraph
preconditioners are more effective than the others.

F. Timing Results on Real Dataset

We also evaluated the performance of these solvers on
a real dataset. Existing public SLAM datasets mostly have
highly sparse graphs which cannot demonstrate the advan-
tages of iterative solvers. To this end, we created a real
dataset of 2,000 images with a Videre STOC camera in an
office environment, where the camera constantly visits the
same place to create many loop-closure constraints. Figure 10
shows the sample images and the bird’s-eye view of the
camera trajectory and the pose constraints of this dataset.

We used the visual odometry pipeline presented in [22]
to initialize the robot poses by composing the relative pose
constraints along the image sequence, and then used the
vocabulary tree technique [23] to generate 33,234 loop-
closure constraints.

We used the same algorithm described in the last exper-
iment to solve this dataset and reported the running time
in Table I. We set the scalar c = 1 as it gave the best



(a)
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Fig. 10: The real dataset. (b) The bird’s-eye view of the
camera poses. (c) The bird’s-eye view of the camera poses
overlayed with the pose constraints.

TABLE I: The timing result on the real dataset in seconds.

odometry+1n sptree+1n gst+1n CHOLMOD

Algo. 1 others

4.3 4.4 5.9 3.4 7.9

performance in this experiment. We can see that although
our MCMC algorithm took 5.9 seconds to find the subgraph,
our subgraph preconditioner gst+1n is 21%, 23% and 57%
faster than odometry+1n , sptree+1n and CHOLMOD
respectively in terms of solving the problem.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new metric based on support
theory to evaluate the quality of a spanning tree precondi-
tioner for SLAM. We use this metric to develop an MCMC-
based algorithm to find good subgraph preconditioners. To
the best of our knowledge, this is the first attempt to derive
theoretically good subgraph preconditioners for SLAM. We
apply them to solve synthetic and real SLAM problems,
and the results show that although the proposed algorithm
in its current form is still not efficient enough for practice,
the resulting subgraph preconditioners display significant
improved efficiency over the state-of-the-art solver.

There are several directions for future work. The first is to
improve the efficiency of the proposed algorithm by adapting
the recent results in finding low-stretch spanning trees [9],

ultra-sparsifiers [10] and simple combinatorial solvers [11]
for Laplacian matrices. The second is to generalize the
proposed metric to handle n-ary factors (n > 2). The third is
to generalize other combinatorial notions such as congestion
and dilation [18], and apply them to find good subgraphs for
SLAM. So far we have focused on the batch version of the
SLAM problem; another interesting direction is to adapt the
proposed algorithm to online scenarios.
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