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SUMMARY

The aim of this thesis is the analysis of complex systems that appear in

different research fields such as evolution, optimization and game theory, i.e., we

focus on systems that describe the evolution of species, an algorithm which opti-

mizes a smooth function defined in a convex domain or even the behavior of rational

agents in potential games. The mathematical equations that describe the evolution

of such systems are continuous or discrete dynamical systems (in particular they can

be Markov chains). The challenging part in the analysis of these systems is that they

live in high dimensional spaces, i.e., they exhibit many degrees of freedom. Under-

standing their geometry is the main goal to analyze their long-term behavior, speed

of convergence/mixing time (if convergence can be shown) and to perform average-

case analysis. In particular, the stability of the equilibria (fixed points) of these

systems plays a crucial role in our attempt to characterize their structure. However,

the existence of many equilibria (even uncountably many) makes the analysis more

difficult. Using mathematical tools from dynamical systems theory, Markov chains,

game theory and non-convex optimization, we have a series of results:

As far as evolution is concerned, (i) we show that mathematical models of haploid

evolution imply the extinction of genetic diversity in the long term limit (for fixed

fitness matrices) resolving a conjecture in genetics and moreover, (ii) we show that in

case of diploid evolution the diversity usually persists, but it is NP-hard to predict

it. Finally, (iii) we extend the results of haploid evolution when the fitness matrix

changes per a Markov chain and we examine the role of mutation in the survival of

the population.

Furthermore, we focus on a wide class of Markov chains, inspired by evolution.

xiii



These Markov chains are guided by a dynamical system defined in the simplex. Our

key contribution is (iv) connecting the mixing time of these Markov chains and the

geometry of the dynamical systems that guide them.

Moreover, as far as game theory is concerned, (v) we propose a novel quantitative

framework for analyzing the efficiency of potential games with many equilibria. The

notion we use is not so pessimistic as price of anarchy and not so optimistic as price of

stability; it captures the expected long-term performance of a system. Informally, we

define the expected system performance as the weighted average of the social costs of

all equilibria where the weight of each equilibrium is proportional to the (Lebesgue)

measure of its region of attraction. Using replicator dynamics as our benchmark, we

provide bounds of this notion for several classes of potential games.

Last but not least, using similar techniques, (vi) we show that gradient descent

converges to local minima with probability one, for cost functions in several settings

of interest, even when the set of critical points is uncountable.

xiv



CHAPTER I

INTRODUCTION

The thesis aims at the analysis of complex systems motivated by interdisciplinary

areas such as Evolution, Game Theory and Optimization. Given a system, natural

questions people address are: does the system reach a steady/equilibrium state, and

if yes how fast, i.e., what is the speed of convergence; if there are multiple equilibria,

which is the “right” one; can the long term behavior of the system be predicted; what

can be said about its average performance; is the system robust under noise? Theo-

retical computer science community is particularly interested in all these questions.

We will try to answer them for a variety of complex systems. All these systems are

described mathematically by (discrete or continuous) dynamical systems. The branch

of mathematics that tries to understand their behavior is called dynamical system

theory and has its origins in Newtonian mechanics. The function (update rule) that

describes mathematically a dynamical system is an implicit relation that describes

the state of the system into the future (for a short amount of time). This relation can

be either a differential equation dx
dt

= f(x) (continuous time) or a difference equation

xt+1 = g(xt) (discrete time). A dynamical system may have simple behavior and be

easy to analyze (e.g., when f, g is linear, when the system is gradient or hamiltonian,

see Figure 2) or may have chaotic behavior (highly sensitive to initial conditions, see

Figure 1). In Section 1.1, we provide all definitions, techniques and theorems, as far

as dynamical systems are concerned, which are necessary for the rest of the thesis.

Later on, we describe the evolutionary dynamics we particularly focus on, some basic

definitions and tools for Markov chains and Game theory. The chapter ends with

some notation and the organization of this thesis.
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Figure 1: Lorenz attractor.

1.1 Dynamical systems: overview

1.1.1 Definitions

Continuous time dynamical systems. Let f : S → Rn be continuously differ-

entiable with S ⊂ Rn, S an open set. An autonomous continuous (time) dynamical

system is of the form

dx

dt
= f(x). (1)

Since f is continuously differentiable, the ordinary differential equation (1) along with

the initial condition x(0) = x0 ∈ S has a unique solution for t ∈ I(x0) (some time

interval) and we can represent it by φ(t,x0), called the flow of the system. This is a

generalization of Picard-Lindelőf theorem (see [110]). φt(x0) ··= φ(t,x0) corresponds

to a function of time which captures the trajectory of the system with x0 the given

starting point. The flow is continuously differentiable, its inverse exists (denoted by

φ−t(x0)) and is also continuously differentiable, i.e., the flow is a diffeomorphism in

the so-called maximal interval of existence I. It is also true that φt ◦ φs = φt+s for

t, s, t + s ∈ I and therefore φk = φk1 for k ∈ N (composition of φ1 k times as long

as 1, k ∈ I). p ∈ S is called an equilibrium if f(p) = 0. In that case, it holds that

φt(p) = p for all t ∈ I, i.e., p is a fixed point of the function φt(x) for all t ∈ I.

Finally, a fixed point p is called isolated if there is a neighborhood U around p and

p is the only fixed point in U .

2



Figure 2: Gradient system.

Remark 1. If f is globally Lipschitz1, then the flow is defined for all t ∈ R, i.e.,

I = R. One way to enforce the dynamical system to have a well-defined flow for all

t ∈ R is to renormalize the vector field by ‖f(x)‖ + 1, i.e., the resulting dynamical

system will be

dx

dt
=

f(x)

‖f(x)‖ + 1
, (2)

because the function becomes globally 1-Lipschitz. The two dynamical systems (before

and after renormalization) are topologically equivalent ([110], p.184). Formally this

means that there exists a homeomorphism H which maps trajectories of (1) onto

trajectories of (2) and preserves their orientation by time. In words it means that

the two systems have the same behavior/geometry (same fixed points, convergence

properties).

Discrete time dynamical systems. Let f : S → Rn be a continuous function. An

autonomous discrete (time) dynamical system is of the form

xt+1 = f(xt), (3)

with update rule f . The point p is called a fixed point or equilibrium of f if f(p) = p.

A sequence (f t(x0))t∈N is called a trajectory of the dynamics with x0 as starting point.

1A function is called globally Lipschitz or just Lipschitz if there exists a L so that for all x,y
it holds ‖f(x)− f(y)‖ ≤ L ‖x− y‖. A function is locally Lipschitz if for each point x there is an
ε-neighborhood of x, and a constant K(x, ε) so that f satisfies the Lipschitz condition for all y, z in
that neighborhood with constant K.

3



Besides the notion of fixed point, there is the notion of periodic orbit or limit cycle.

The definition below is about discrete time systems and is used in Chapter 5. 2

Definition 1 (Periodic orbits). C = {x1, . . . ,xk} is called a periodic orbit of size

k if xi+1 = f(xi) for 1 ≤ i ≤ k − 1 and f(xk) = x1.

If a dynamical system converges in the sense that limk→∞ f
k(x) (discrete case)

or limt→∞ φt(x) (continuous case) exists, then the limit is an equilibrium point. In

dynamical systems, we are interested in the set of initial conditions that converge

to a particular equilibrium point. This is captured by the notion of the region of

attraction of an equilibrium point. Formally the region of attraction of a fixed point

p is Rp = {x ∈ S : limt→∞ φt(x) = p} for continuous and for discrete it is Rp = {x ∈

S : limk→∞ f
k(x) = p}. But how can one show convergence? This will be partially

answered in the next section.

1.1.2 Convergence and stability

Lyapunov functions and convergence. One way to show that a dynamical system

converges, is via Lyapunov type functions. A Lyapunov (or potential) type3 function

V : S → R is a function that strictly decreases along every non-trivial trajectory of

the dynamical system. Formally, for continuous time dynamical systems it holds that

dV
dt
≤ 0 with equality only when f(x) = 0. For discrete time dynamical systems, it is

true that V (x) ≥ V (f(x)) with equality only at fixed points. Intuitively, a Lyapunov

function is an energy function of the system, in the sense that we hope the system

prefers a stable energy state.

Therefore, given a dynamical system, one has to come up with a Lyapunov func-

tion to show convergence; this is a hard task in general, especially for discrete dynam-

ical systems. Nevertheless, using the theorem below and by doing reverse engineering,

2There exists the analogous notion for continuous time systems.
3We say Lyapunov type because this is not the formal definition of a Lyapunov function, but a

generalized refinement.
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we are able to construct Lyapunov functions for specific (discrete time) evolutionary

dynamics that appear in Chapters 4 and 5. It turns out that the dynamical systems

we are looking at in these specific chapters have the same structure with the ones

that are induced by the following theorem.

Theorem 1.1 (Baum and Eagon Inequality [14]). Let P (x) = P ({xij}) be a

polynomial with nonnegative coefficients, homogeneous of degree d in its variables

{xij}. Let x = {xij} be any point of the domain D : xij ≥ 0,
∑qi

j=1 xij = 1, i =

l, . . . , p, j = l, . . . , qi. For x = {xij} ∈ D, let Ξ(x) = Ξ{xij} denote the point of D

whose i, j coordinate is

Ξ(x)ij =

(
xij

∂P

∂xij

∣∣∣∣
(x)

)
·
(

qi∑
j=1

xij
∂P

∂xij

∣∣∣∣
(x)

)−1

.

Then P (Ξ(x)) > P (x) unless Ξ(x) = x.

Local behavior. Assume now that for a fixed point p, we use Taylor’s theorem

(around p) and we get

f(x) = p + J(p)(x− p) + o(‖x− p‖), where J(p) is the Jacobian at p.

It follows that the linear function p + J(p)(x − p) is a good approximation to the

(nonlinear) function f(x) in the neighborhood of the fixed point p. It is very natural

to expect the behavior of the system near the fixed point p is (well) approximated

by the behavior of the linear system with matrix the Jacobian of f at p. Analyzing

a linear dynamical system is very standard; can be done by spectral analysis of the

underlying matrix. So it seems that we can say something about the behavior of the

system, at least locally around the fixed points, via analysis of the linearized system.

Below, we give some definitions due to Lyapunov, based on the local behavior of

dynamical systems around fixed points.

Definition 2 (Stable). Let S ⊆ Rn be an open set. A fixed point p of (1) is

called stable if for every ε > 0, there exists a δ = δ(ε) > 0 such that for all x with
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‖x− p‖ < δ we have that ‖φt(x)− p‖ < ε for every t ≥ 0. For discrete time systems

(3), a fixed point p is called stable if for every ε > 0, there exists a δ = δ(ε) > 0

such that for all x with ‖x− p‖ < δ we have that
∥∥fk(x)− p

∥∥ < ε for every k ≥ 0.

Otherwise it is called unstable.

In words, a fixed point p is stable so that, if the starting point of the dynamics is

sufficiently close to p, then the dynamics remains close to p for all subsequent times.

Definition 3 (Asymptotically stable). Let S ⊆ Rn be an open set. A fixed point

p of (1) is called asymptotically stable, if it is stable and there exists a δ > 0 such that

for all x with ‖x− p‖ < δ, we have that ‖φt(x)− p‖ → 0 as t → ∞. For discrete

time systems (3), a fixed point p is called asymptotically stable, if it is stable and there

exists a δ > 0 such that for all x with ‖x− p‖ < δ, we have that
∥∥fk(x)− p

∥∥ → 0

as k →∞.

In words, a fixed point p is asymptotically stable so that, if the starting point of the

dynamics is sufficiently close to p, then the dynamics converge to p as t→∞. This

is a stronger notion than the notion of a stable fixed point.

Arguably one of the most important theorems in dynamical systems is the next

theorem and is used extensively in this thesis. It connects the stability of a fixed

point p with the spectral properties of the Jacobian matrix of the update rule at p.

Theorem 1.2 (Eigenvalues and stability [110]). As far as continuous dynamical

systems (1) are concerned, at fixed point p if J(p) has at least one eigenvalue with

positive real part, then p is unstable. If all the eigenvalues have real part negative then

p is asymptotically stable. Moreover, for discrete dynamical systems (3), at fixed point

p if J(p) has at least one eigenvalue with absolute value > 1, then p is unstable. If

all the eigenvalues have absolute value < 1 then it is asymptotically stable.

In Chapters 2, 4 and 6 we use the following refinement of stability.
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Definition 4 (Linearly stable). For continuous time dynamical systems (1), a

fixed point p is called linearly stable, if the eigenvalues of J(p) of f have real part

at most zero. Otherwise, it is called linearly unstable. Analogously, for discrete time

dynamical systems (3), a fixed point p is called linearly stable, if the eigenvalues of

J(p) of f are at most 1 in absolute value. Otherwise, it is called linearly unstable.

Center-stable manifold theorem. The Center-stable Manifold Theorem 1.3 men-

tioned below is one of the most important results in the local qualitative theory of

continuous and discrete dynamical systems. It is written in terms of discrete time

systems; we will explain in a moment how to use it for continuous time systems. The

theorem shows that near a fixed point p, a nonlinear system has center-stable and

unstable manifolds S and U tangent at p to the center-stable and unstable subspaces

Es⊕Ec and Eu of the linearized system xk+1 = p+J(p)(xk−p). Furthermore, S and

U are of the same dimensions as Es ⊕ Ec and Eu and the set of starting points in a

neighborhood of p so that the dynamics converges to p lies in S. As far as continuous

dynamical systems are concerned, we work with the function φ1(x) (setting t = 1,

this is called the time one map). Hence the same theorem holds for continuous time

dynamical systems, but the eigenspaces (described below) correspond to eigenvalues

with real part negative, zero and positive respectively4. We use Center-stable Man-

ifold Theorem in a way to prove that the set of initial conditions that satisfy some

property is of measure zero (see Theorems 2.8, 3.6 and 6.4).

Theorem 1.3 (Center-stable Manifold Theorem [128]). Let p be a fixed point

for the Cr local diffeomorphism f : U → Rn where U ⊂ Rn is an open neighborhood of

p in Rn and r ≥ 1. Let Es⊕Ec⊕Eu be the invariant splitting of Rn into generalized

eigenspaces of J(p) corresponding to eigenvalues of absolute value less than one, equal

to one, and greater than one. To the J(p) invariant subspace Es ⊕ Ec, there is an

4The version for continuous dynamical systems is used in Chapter 6
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associated local f invariant Cr embedded disc W sc
loc tangent to the linear subspace at

p and a ball B around p such that:

f(W sc
loc) ∩B ⊂ W sc

loc. If fn(x) ∈ B for all n ≥ 0, then x ∈ W sc
loc. (4)

In words, it means that there exists a ball B around the fixed point p so that if the

trajectory lies in B for all times, then the trajectory should lie in a manifold W sc
loc of

dimension the number of eigenvalues of the Jacobian of the update rule at p that have

absolute value at most one. We suggest the reader to see [110] for more information

on dynamical systems. Below we give a brief introduction to evolutionary dynamical

systems.

1.2 Evolution and dynamical systems

Evolutionary dynamical systems are central to the sciences due to their versatility

in modeling a wide variety of biological, social and cultural phenomena [100]. Such

dynamics are often used to capture the deterministic, infinite population setting, and

are typically the first step in our understanding of seemingly complex evolutionary

processes.

The mathematical introduction of (infinite population) evolutionary processes is

dating back to the work of Fisher, Haldane, and Wright in the beginning of the

twentieth century. These processes to a large extent are simple, almost toy-like, but

concrete. One example is the replicator equations, first introduced by Fisher [51] in

30’s for genotype evolution, the simplest form (continuous/discrete) of which is the

following:

ẋi(t) = xi(t)((Ax(t))i − x(t)>Ax(t)) (continuous),

xi(t+ 1) = xi(t)
(Ax(t))i

x(t)>Ax(t)
(discrete),

where A is a payoff matrix (generally non-negative), x a vector that lies in simplex

and (Ax)i denotes
∑

j Aijxj. Observe that in the nonlinear dynamics above, simplex
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is invariant (if we start from a probability distribution, the vector remains a proba-

bility distribution). This dynamics is called replicator dynamics and has been used

numerous times in biology, evolution, game theory and genetic algorithms.

Theoretical computer science community is particularly interested in evolution.

Valiant [134] started viewing evolution through the lens of computation and after that

we have witnessed an accumulation of papers and problem proposals [79, 136, 135,

135, 39]. In [24, 23], a surprisingly strong connection was discovered between standard

models of evolution in mathematical biology and Multiplicative Weights Updates

Algorithm (MWUA), a ubiquitous model of online learning and optimization. These

papers establish that mathematical models of biological evolution are tantamount

to applying MWUA, on coordination games. This connection allows for introducing

insights from the study of game theoretic dynamics into the field of mathematical

biology. The aforementioned papers are a stepping stone for our results in Chapters

2, 3 and 4.

In Chapter 2 we show that mathematical models of haploid5 evolution imply the

extinction of genetic diversity in the long term limit, a widely believed conjecture

in genetics [12]. In game theoretic terms we show that in the case of coordination

games, under minimal genericity assumptions, (modified) discrete replicator dynamics

converge to pure Nash equilibria for all but a zero measure of initial conditions.

Moreover, in Chapter 3 our contribution is to establish complexity theoretic hard-

ness results implying that even in the textbook case of single locus (gene) diploid

models, predicting whether diversity survives (in the limit) or not given its fitness

landscape is algorithmically intractable.

Last but not least, in Chapter 4 we study the role of mutation in changing envi-

ronments in the presence of sexual reproduction. Following [139], we model changing

environments via a Markov chain, with the states representing environments, each

5See Section A.1 for (non-technical) definition of biological terms.
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with its own fitness matrix. In this setting, we show that in the absence of mutation,

the population goes extinct, but in the presence of mutation, the population survives

with positive probability.

All the above mentioned results assume that the population size is infinite (contin-

uum of individuals). However, real populations are finite and often lend themselves

to substantial stochastic effects (such as random drift) and it is often important to

understand these effects as the population size varies. Hence, stochastic or finite pop-

ulation versions of evolutionary dynamical systems are appealed to in order to study

such phenomena. While there are many ways to translate a deterministic dynamical

system into a stochastic one, one thing remains common: the mathematical analysis

becomes much harder as differential equations are easier to analyze and understand

than stochastic processes.

One such stochastic version, motivated by the Wright-Fisher model in population

genetics, whose deterministic version is Eigen’s evolution equations [43], was studied

by Dixit et al. [39]. Here, the population is fixed to a size N and there are m types of

individuals. The process has 3 stages. In the replication (R) stage, every individual

of type i in the current population is replaced by ai individuals of type i and an in-

termediate population is created. In the selection (S) stage, the population is culled

back to size N by sampling with replacement N individuals from this intermediate

population. Finally, we have the mutation (M) stage, where each individual is mu-

tated in this intermediate population independently and stochastically according to

some matrix Q of size m×m. Qij corresponds to the probability an individual of type

i to change its type to j. This RSM (from the initials of the three stages) process

is a Markov chain with state space {x ∈ Nm so that
∑m

i=1 xi = N}. However, the

number of states in the RSM process is roughly Nm (when m is small compared to

N), and a mixing time that grows too fast as a function of the size of the state space

can therefore be prohibitively large.
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In Chapter 5 we develop techniques for bounding the mixing time of a wide class

of Markov chains (where the previous process is included) called evolutionary. Essen-

tially, we make a novel connection between evolutionary Markov chains and dynamical

systems on the probability simplex. This allows us to use the local and global stabil-

ity properties of the fixed points of such dynamical systems and prove several results.

Roughly we show that if there exists one stable fixed point in the dynamical system,

then the chain is rapidly mixing (O(logN) mixing time), otherwise the mixing time

is slow (eΩ(N) mixing time). In section below, we give all the necessary definitions

and facts about Markov chains that will be used in Chapter 5.

1.3 Markov chains basics

A Markov chain is a random process that undergoes transitions from one config-

uration to another on a (finite) state space Ω. The process is memoryless, i.e., the

probability of moving from one configuration to another depends only on the current

configuration (not on history). Formally, a Markov chain is a sequence of random

variables X(0),X(1),X(2), . . . satisfying the Markov property, namely that the prob-

ability of moving to next state depends only on the present state and not on the

previous states

P
[
X(t+1) = x|X(1) = x1, . . . ,X

(t) = xt
]

= P
[
X(t+1) = x|X(t) = xt

]
. (5)

A time-homogeneous Markov chain, which has the property that the r.h.s of (5) is

the same for all t, is associated with a transition matrix P = {P (x,y)}, where each

entry corresponds to the probability with which to move from one state to another.

Formally it holds

P (x,y) = P
[
X(t+1) = y | X(t) = x

]
,

for all x,y ∈ Ω and t.

We focus on the class of ergodic Markov chains. A Markov chain is called ergodic

if there exists a time t ∈ N so that P t(x,y) > 0 for all x,y ∈ Ω. For finite (state)
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Markov chains, ergodicity is equivalent to irreducibility and aperiodicity. A Markov

chain is irreducible if for any two states x,y ∈ Ω, there exists an integer t so that

P t(x,y) > 0, i.e., it is possible to get to any state from any state and is called

aperiodic, if for all x, it holds that gcd{t : P t(x,x) > 0} = 1. 6

A stationary distribution π is defined to be invariant with respect to the transition

matrix P , i.e., it satisfies π> = π>P . It can be shown that an ergodic Markov chain

has a unique stationary distribution π and converges to it. This is a very useful fact

in algorithms and theoretical computer science. One easy case in order to compute

π is when the Markov chain is reversible. A Markov chain is said to be reversible if

there is a distribution π which satisfies the detailed balanced equations, namely

for all x,y we have π(x)P (x,y) = π(y)P (y,x).

In this case, it can be easily checked that π is a stationary distribution.

One way to sample from a distribution π is to create an ergodic Markov chain

that converges to π and this is commonly used in theoretical computer science and

machine learning. For the sampling to be efficient, the underlying Markov chain must

converge fast to the stationary distribution π. Chapter 5 is devoted to bounding the

time a Markov chain needs to get close to the stationary distribution (with respect

to some metric between distributions), for a specific class of Markov chains inspired

by evolution.

1.3.1 Mixing time and coupling method

Mixing time. As mentioned above, an ergodic Markov chain converges to a unique

stationary distribution π. Since we talk about convergence for distributions, we need

to define an appropriate metric. The most commonly used is the total variation

distance (essentially `1 distance).

6Therefore if a Markov chain has loops, i.e., P (x,x) > 0 for all x, then it is aperiodic.
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Definition 5 (Total variation distance (TV)). For distributions µ and ν on Ω,

their variation distance is defined as

‖µ− ν‖TV =
1

2

∑
x∈Ω

|µ(x)− ν(x)| = max
S⊆Ω

µ(S)− ν(S). (6)

We are now ready to define the mixing time of an ergodic Markov chain, notion that

captures how much time the chain needs to get close to the stationary distribution.

Definition 6 (Mixing time [75]). Let M be an ergodic Markov chain on a finite

state space Ω with stationary distribution π. Then, the mixing time tmix(ε) is defined

as the smallest time t such that for any starting state X(0), the distribution of the

state X(t) at time t is within total variation distance ε of π. The term mixing time is

also used for tmix(ε) for a fixed value of ε < 1/2.

We say that a Markov chain is rapidly mixing (or mixes rapidly) if the mixing

time is polynomial in log |Ω| and slowly mixing if it is exponential in log |Ω|. A phase

transition occurs when a small change in a parameter such as temperature, learning,

mutation parameter, causes a large-scale change to the system. Classic example in

nature is water; when it is heated and temperature reaches 100 degree Celsius, the

water changes from liquid to gas. In terms of Markov chains, a phase transition

occurs when a small change in a parameter, changes the mixing from rapid to slow or

vice-versa. In Section 5.7.4 we provide a phase transition result for the mixing time

of a specific Markov chain that describes evolution of grammar acquisition.

Coupling method. It is clear that the mixing time is a very important notion, both

from theoretical and practical perspective, and a lot of research focuses on bounding

the mixing time for specific classes of Markov chains (e.g., glauber dynamics). One

of the most common techniques for rigorously proving bounds on the mixing time is

coupling.

Definition 7 (Coupling). A coupling for distributions µ, ν on finite Ω, is a joint
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distribution ξ on Ω× Ω with µ and ν as the marginals:

For all x ∈ Ω,
∑
y∈Ω

ξ(x,y) = µ(x) and

For all y ∈ Ω,
∑
x∈Ω

ξ(x,y) = ν(y).

There always exists an optimal coupling which exactly captures the total variation

distance. The following lemma is used extensively in this thesis.

Lemma 1.4 (Coupling lemma [4]). Let µ, ν be two probability distributions on Ω.

Then,

‖µ− ν‖TV = min
ξ

P(X,Y)∼ξ [X 6= Y] ,

where the minimum is taken over all valid couplings C of µ and ν. The expression

(X,Y) ∼ ξ means that random variable (X,Y) is chosen from the distribution ξ.

Therefore for a given coupling ξ′ it also holds that

‖µ− ν‖TV ≤ P(X,Y)∼ξ′ [X 6= Y] .

The general technique to bound the mixing time of a Markov chain is the following:

Consider two arbitrary starting states X(0) and Y(0). Assume we can construct a

coupling ξ for two stochastic processes X and Y which are started at X(0) and Y(0)

and as long as X(t0) = Y(t0) for some t0 ∈ N then X(t) = Y(t) for all t ≥ t0. Let T

be the first (random) time such that X(T ) = Y(T ). From the Coupling Lemma 1.4, if

it can be shown that P [T > t] ≤ 1/4 for some t ∈ N, and for every pair of starting

states, then ∥∥P t(X(0), .)− P t(Y(0), .)
∥∥

TV
=
∥∥X(t) −Y(t)

∥∥
TV

≤ P
[
X(t) 6= Y(t)

]
≤ 1

4
,

and hence tmix(1/4) ≤ t since

max
x∈Ω

∥∥P t(x, .)− π
∥∥

TV
≤ max

x,y∈Ω

∥∥P t(x, .)− P t(y, .)
∥∥

TV
,
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where π is the stationary distribution.

Remark 2. Typically in theoretical computer science we consider tmix(1/4) as the

mixing time, i.e., for ε = 1
4
. It is well-known that if one is willing to pay an additional

factor of log 1/δ, one can bring down the error from 1/4 to δ for any δ > 0; see [75].

1.4 Game theory and equilibrium selection

Nash’s theorem [94] on the existence of fixed points in game theoretic dynam-

ics ushered in an exciting new era in the study of economics. At a high level, the

inception of the Nash equilibrium concept allowed, to a large degree, the disentan-

glement between the study of complex behavioral dynamics and the study of games.

Equilibria could be concisely described, independently from the dynamics that gave

rise to them, as solutions of algebraic equations. Crucially, their definition was sim-

ple, intuitive, analytically tractable in many practical instances of small games, and

arguably instructive about real life behavior. The notion of a solution to (general)

games, which was introduced by the work of von Neumann in the special case of

zero-sum games [138], would be solidified as a key landmark of economic thought.

This mapping from games to their solutions, i.e., the set of equilibria, grounded eco-

nomic theory in a solid foundation and allowed for a whole new class of questions in

regards to numerous properties of these sets including their geometry, computability,

and resulting agent utilities.

Unfortunately, unlike von Neumann’s essentially unique behavioral solution to

zero-sum games, it became immediately clear that Nash equilibrium fell short from

its role as a universal solution concept in a crucial way. It is non-unique. It is straight-

forward to find games7 with constant number of agents, strategies and uncountably

many distinct equilibria with different properties in terms of support sizes, symme-

tries, efficiency, and practically any other conceivable attribute of interest. This raises

7An example of such a game can be found in Section 6.7.2, Lemma 6.27.
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a natural question. How should we analyze games with multiple Nash equilibria?

The centrality of the general equilibrium selection problem can hardly be overesti-

mated. Indeed, according to Ariel Rubinstein “No other task may be more significant

within game theory. A successful theory of this type may change all of economic the-

ory.” 8. Accordingly, a wide range of radically different approaches to this challenge

have been explored by economists, social scientists, and computer scientists alike.

Despite their differing points of view, they share a common high level goal. The goal

is to reduce the number of admissible equilibria and, if possible, effectively pinpoint

a single one as target for analytical inquiry. This way, the multi-valued equilibrium

correspondence becomes a simple function and prediction uncertainty vanishes. Al-

though no single approach stands out as providing the definitive answer, each has

allowed for significant headway in specific classes of interesting games, and some have

sprung forth standalone lines of inquiry. Next, we mention two approaches that have

inspired our work (Chapter 6): risk dominance and price of anarchy analysis.

Risk dominance is an equilibrium refinement process that centers around uncer-

tainty about opponent behavior, introduced by Harsanyi and Selten [60]. A Nash equi-

librium is considered risk dominant if it has the largest basin of attraction (i.e., less

risky)9. The benchmark example is the Stag Hunt game, shown in figure 10(a) of

Chapter 6. In such symmetric 2x2 coordination games a strategy is risk dominant if

it is a best response to the uniformly random strategy of the opponent.

Price of anarchy [72] follows a much more quantitative approach (see also Def-

initions 9, 10). The point of view here is that of optimization and the focus is on

extremal equilibria. Price of anarchy, defined as the ratio between the social welfare

of the worst equilibrium and that of the optimum tries to capture the loss in efficiency

8Endorsement for book [60]
9Although risk dominance [60] was originally introduced as a hypothetical model of the method

by which perfectly rational players select their actions, it may also be interpreted [91] as the result
of evolutionary processes.
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due to the lack of centralized authority.

A plethora of similar concepts, based on normalized ratios, has been defined

(e.g., price of stability [5] focuses on best case equilibria). Tight bounds on these

quantities have been established for large classes of games [29, 120]. However, these

bounds do not necessarily reflect the whole picture. They usually correspond to

highly artificial instances. Even in these bad instances, typically there exist sizable

gaps between their price of anarchy and price of stability, allowing for the possibility

of significantly tighter analysis of system performance. More to the point, worst case

equilibria maybe unlikely in themselves by having a negligible basin of attraction [70].

Based on geometric characterizations of dynamical systems such as point-wise

convergence, computing regions of attraction and system invariants10, in Chapter 6

we propose a novel quantitative framework for analyzing the efficiency of potential

games with many equilibria. The predictions of different equilibria are weighted by

their probability to arise under evolutionary dynamics (replicator dynamics) given

random initial conditions. This average case analysis is shown to offer the possibility

of novel insights in classic game theoretic challenges, including quantifying the risk

dominance in stag-hunt games and allowing for more nuanced performance analysis

in networked coordination and congestion games with large gaps between price of

stability and price of anarchy.

1.4.1 Two-player Games and Nash equilibrium

In this section we provide some necessary definitions and facts about two-player

games where each player has finitely many pure strategies (moves). This part is

necessary for Chapters 2, 3 and 6. Let Si, i = 1, 2 be the set of strategies for player

i, and let m ··= |S1| and n ··= |S2|. Then a two-player game can be represented by

two payoff matrices A and B of dimension m×n, where payoff to the players are Aij

10Invariant functions remain constant along every system trajectory.
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and Bij respectively if the first-player plays i and the second plays j.

Players may randomize among their strategies. The set of mixed strategies for the

first player is ∆m = {x = (x1, . . . , xm) | x ≥ 0,
∑m

i=1 xi = 1}, and for the second player

is ∆n = {y = (y1, . . . , yn) | y ≥ 0,
∑n

j=1 yj = 1}. By mixed strategy (or fixed point)

we mean strictly mixed strategy (or fixed point), i.e., x such that |SP (x)| > 1 (size

of support greater than 1), and non-mixed strategies are called pure (deterministic).

The expected payoffs of the first-player and second-player from a mixed-strategy

(x,y) ∈ ∆m ×∆n are, respectively∑
i,j

Aijxiyj = x>Ay and
∑
i,j

Bijxiyj = x>By.

Definition 8 (Nash equilibrium (NE) [98]). A strategy profile is said to be a Nash

equilibrium (NE) strategy profile if no player achieves a better payoff by a unilateral

deviation [94]. Formally for two-player games, (x,y) ∈ ∆m×∆n is a NE if and only

if ∀x′ ∈ ∆m, x>Ay ≥ x′>Ay and ∀y′ ∈ ∆n, x>By ≥ x>By′. 11

There is also the notion of strict Nash equilibrium which is used in Chapter 3.

Definition 9 (Strict Nash equilibrium (SNE)). NE x is strict if ∀k /∈ SP (x), (Ax)k <

(Ax)i, where i ∈ SP (x).

Given strategy y for the second-player, the first-player gets (Ay)k from her k-th

strategy. Clearly, her best strategies are arg maxk(Ay)k, and a mixed strategy fetches

the maximum payoff only if she randomizes among her best strategies. Similarly, given

x for the first-player, the second-player gets (x>B)k from k-th strategy, and same

conclusion applies. These can be equivalently stated as the following complementarity

type conditions. Let (x,y) be a Nash equilibrium, then it holds

∀i ∈ S1, xi > 0 ⇒ (Ay)i = maxk∈S1(Ay)k

∀j ∈ S2, yj > 0 ⇒ (x>B)j = maxk∈S2(x
>B)k.

(7)

11In a similar way, NE is defined for more players, given a utility function for each player.
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We end this section by giving the definition of symmetric and coordination games.

Important part of Chapter 6 is devoted to analyze the efficiency of equilibria in

coordination games.

Symmetric Game. Game (A,B) is said to be symmetric if B = A>. In a symmetric

game the strategy sets of both the players are identical, i.e., m = n, and S1 = S2.

We use n, S and ∆n to denote number of strategies, the strategy set and the mixed

strategy set respectively of the players in such a game. A Nash equilibrium profile

(x,y) ∈ ∆n × ∆n is called symmetric if x = y. Note that at a symmetric strategy

profile (x,x) both the players get payoff x>Ax. Using (7) it follows that (x,x) is a

symmetric NE of game (A,A>), with payoff x>Ax to both players, if and only if,

∀i ∈ S, xi > 0⇒ (Ax)i = max
k

(Ax)k (8)

Coordination Game. In a coordination game B = A, i.e., both the players get the

same payoff regardless of who is playing what. Note that such a game always has a

pure equilibrium, namely arg max(i,j) Aij.

1.4.2 Replicator on congestion/network coordination games

In this section we provide the definitions of congestion and network coordination

games, one of the most well-studied classes of games. Congestion and network co-

ordination games are potential games. This means that there exists a single global

function Φ called the potential (depending on the strategies players choose) so that

if a player changes his strategy unilaterally, the change in his payoff is equal to the

change in Φ. This Φ is essentially the analogue of a Lyapunov function and is used

to prove convergence to Nash equilibria in many (game) dynamics. Local optima of

Φ are Nash equilibria, and it is also true that potential games have at least a pure

Nash equilibrium (easy to prove via potential arguments).

Later in the section, we describe the equations of continuous replicator dynamics

for congestion and coordination games, as have appeared in [70]. Replicator dynamics

19



is a learning dynamics and describes the rational behavior of the players in a game. As

we will see in Chapter 6, replicator dynamics in congestion and network coordination

games, has some nice properties concerning convergence and stability. Additionally,

we give the definition of price of anarchy and the notation we use for the rest of thesis

concerning game theory (especially in Chapter 6).

Congestion Games. A congestion game (Rosenthal [119]) is defined by the tuple

(N ; E ; (Si)i∈N ; (ce)e∈E) where N is the set of agents (with N = |N |), E is a set of

resources (also known as edges or bins or facilities), and each player i has a set Si

of subsets of E (Si ⊆ 2E). Each strategy si ∈ Si is a set of edges (a path), and ce

is a cost (negative utility) function associated with facility e. We will also use small

Greek characters like γ, δ to denote different strategies/paths. For a strategy profile

s = (s1, s2, . . . , sN), the cost of player i is given by ci(s) =
∑

e∈si ce(`e(s)), where `e(s)

is the number of players using e in s (the load of edge e). In linear congestion games,

the latency functions are of the form ce(x) = aex + be where ae, be ≥ 0. Measures

of social cost (sc(s)) include the makespan, which is equal to the cost of the most

expensive path and the sum of the costs of all the agents.

Network (Polymatrix) Coordination Games. A coordination (or partnership)

game is a two player game where in each strategy outcome both agents receive the

same utility. In other words, if we flip the sign of the utility of the first agent then

we get a zero-sum game. An N -player polymatrix (network) coordination game is

defined by an undirected graph G(V,E) with |V | = N vertices and each vertex

corresponds to a player. An edge (i, j) ∈ E(G) corresponds to a coordination game

between players i, j. We assume that we have the same strategy space S for every

edge. Let Aij be the payoff matrix for the game between players i, j and Aγδij be the

payoff for both (coordination) if i, j choose strategies γ, δ respectively. The set of

players will be denoted by N and the set of neighbors of player i will be denoted by

N(i). For a strategy profile s = (s1, s2, . . . , sN), the utility of player i is given by

20



ui(s) =
∑

j∈N(i) A
sisj
ij . The social welfare of a state s corresponds to the sum of the

utilities of all the agents sw(s) =
∑

i∈V ui(s).

The price of anarchy is defined as:

PoA=
maxs∈NE Social Cost(s)

mins∗∈×iSi Social Cost(s∗)
, (9)

for cost functions and similarly

PoA=
maxs∗∈×iSi Social Welfare(s∗)

mins∈NE Social Welfare(s)
, (10)

for utilities. 12

We denote by ∆(Si) = {p ≥ 0 :
∑

γ piγ = 1} the set of mixed (randomized)

strategies of player i and ∆ = ×i∆(Si) the set of mixed strategies of all players. For

congestion games we use ciγ = Es−i∼p−ici(γ, s−i) to denote the expected cost of player

i given that he chooses strategy γ and ĉi =
∑

δ∈Si piδciδ to denote his expected cost.

Similarly, for network coordination games we use uiγ = Es−i∼p−iui(γ, s−i) to denote

the expected utility of player i given that he chooses strategy γ and ûi =
∑

δ∈Si piδuiδ

to denote his expected utility.

1.4.3 Continuous replicator dynamics

Replicator dynamics [132, 125, 70] is described by the following system of differen-

tial equations, adjusted to congestion and network coordination games respectively:

dpiγ
dt

= piγ
(
ĉi − ciγ

)
,
dpiγ
dt

= piγ
(
uiγ − ûi

)
(11)

for each i ∈ N , γ ∈ Si. Observe that if ĉi > ciγ then
dpiγ
dt

> 0, i.e., piγ is increasing

with respect to time, thus player i tends to increase the probability he chooses strategy

γ. Similarly if ĉi < ciγ then
dpiγ
dt

< 0, i.e., piγ is decreasing w.r.t time, thus player

i tends to decrease the probability he chooses strategy γ. 13 Replicator dynamics

capture similar rational behavior in the case of network coordination games.

12Recall that NE denotes the set of Nash equilibria.
13Replicator dynamics describes rational behavior in a sense.
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Remark 3 (Nash equilibria ⊆ Fixed points). An interesting observation about

the replicator is that its fixed points are exactly the set of randomized strategies such

that each agent experiences equal costs across all strategies he chooses with positive

probability. This is a generalization of the notion of Nash equilibrium, since equi-

libria furthermore require that any strategy that is played with zero probability must

have expected cost at least as high as those strategies which are played with positive

probability.

1.5 Notation and organization

Notation. Throughout this thesis we use the following notation: We use boldface

letters, e.g., x, to denote column vectors and denote a vector’s i-th coordinate by

xi. We use x−i to denote x after removing the i-th coordinate. For two vectors x,y,

(x; y) denotes the concatenation of them. To denote a row vector we use x>. The

set {1, . . . , n} is denoted by [1 : n] or [n] and int S is the interior of set S.

We denote the probability simplex on a set of dimension n as ∆n. Time indices are

denoted by (super)scripts. Thus, a time indexed scalar s at time t is denoted as s(t), st

or s(t) while a time indexed vector x at time t is denotes as x(t), xt or x(t). The letters

X and Y (with time (super)scripts and coordinate subscripts, as appropriate) will

be used to denote random vectors. Scalar random vectors and matrices are denoted

by capital letters. Boldface 1 denotes a vector all whose entries are 1. Moreover we

denote by R,N,Z the set of reals, natural numbers and integers respectively.

For any square matrix A, we denote by sp (A) , ‖A‖1 , ‖A‖2, the spectral radius,

1 → 1 norm and operator norm of A respectively. Define Amax, Amin the largest,

smallest entry in matrix A and (Ax)i ··=
∑

j Aijxj. We also use ‖x‖2, ‖x‖1, ‖x‖ (or

‖x‖∞) for the `2, `1, `∞ norm of vector x respectively.

By ∇2f(x) we denote the Hessian of a twice differentiable function f : E → R,

for some set E ⊆ Rn. For a function f, by fn we denote the composition of f with
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itself n times, namely f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

. We use J(x) 14 to denote the Jacobian matrix

(of some function clear from the context) at the point x.

Organization. The thesis is organized as follows: In Chapter 2 we show that (i)

mathematical models of haploid evolution imply the extinction of genetic diversity

in the long term limit. In Chapter 3 we focus on diploid evolution and show that

(ii) diversity might persist in the limit but is NP-hard to predict that. Moreover, in

Chapter 4 we complement our results on haploid evolution by analyzing the role of

mutation in the survival of the population if the environments change. Furthermore,

in Chapter 5 we provide (iii) a connection between dynamical systems and the mixing

time of a wide class of Markov chains inspired by evolution. In Chapter 6 we propose

(iv) a novel framework to analyze the efficiency of potential games with many Nash

equilibria. Finally, in Chapter 7, using the machinery developed in Chapter 2, we

show (v) that gradient descent converges to minimizers with probability 1.

14In some cases we also use Jx,J x.
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CHAPTER II

EVOLUTIONARY DYNAMICS IN HAPLOIDS

2.1 Introduction

Decoding the mechanisms of biological evolution has been one of the most in-

spiring contests for the human mind. The modern theory of population genetics has

been derived by combining the Darwinian concept of natural selection and Mendelian

genetics. Detailed experimental studies of a species of fruit fly, Drosophila, allowed

for a unified understanding of evolution that encompasses both the Darwinian view

of continuous evolutionary improvements and the discrete nature of Mendelian genet-

ics. The key insight is that evolution relies on the progressive selection of organisms

with advantageous mutations. This understanding has lead to precise mathematical

formulations of such evolutionary mechanisms, dating back to the work of Fisher,

Haldane, and Wright [18] in the beginning of the twentieth century.

The existence of dynamical models of genotypic evolution, however, does not offer

by itself clear, concise insights about the future states of the phenotypic landscape1.

Which allele combinations, and as a result, which attributes will take over? Predic-

tion of the evolution of the phenotypic landscape is a key, alas not well understood,

question in the study of biological systems [145].

Despite the advent of detailed mathematical models, still at the forefront of our

understanding lie experimental studies and simulations. Of course, this is to some

extent inevitable since the involved dynamical systems are nonlinear and hence a

complete theoretical understanding of all related questions seems intractable [126, 40].

Nevertheless, some rather useful qualitative statements have been established.

1See Section A.1 for (non-technical) definition of biological terms.
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Nagylaki [92] showed that, when mutations do not affect reproduction success by

a lot2, the system state converges quickly to the so-called Wright manifold, where

the distribution of genotypes is a product distribution of the allele frequencies in the

population. In this case, in order to keep track of the distribution of genotypes in the

population it suffices to record the distribution of the different alleles for each gene.

The overall distribution of genotypes can be recovered by simply taking products of

the allele frequencies. Nagylaki et al. [93] have also shown that under hyperbolicity

assumptions (e.g., isolated equilibria) such systems converge.

Chastain et al. [23] have built on Nagylaki’s work by establishing an informa-

tive connection between these mathematical models of population genetics and the

multiplicative update algorithm (MWUA). MWUA is a ubiquitous online learning

dynamics [8], which is known to enjoy numerous connections to biologically rele-

vant mathematical models. Specifically, its continuous time limit is equivalent to the

replicator dynamics (in its standard continuous form) [70] and its equivalent up to

a smooth change of variables to the Lotka-Volterra equations [61]. In [23] another

strong such connection was established. Specifically, under the assumption of weak

selection standard models of population genetics are shown to be closely related to ap-

plying discrete replicator dynamics on a coordination game (see Meir and Parkes [87]

paper for a more detailed examination of this connection). Discrete replicator dynam-

ics (MWUA variant), which Chastain et al. refer to as discrete MWUA, is already a

well established dynamics in the literature of mathematical biology and evolutionary

game theory [82, 61] under the name discrete (time, version of) replicator dynamics

and to avoid confusion we will refer to it by its standard name.

The coordination game is as follows: Each gene is an agent and its available strate-

gies are its alleles. Any combination of strategies/alleles (one for each gene/agent)

2This is referred to as the weak selection regime and it corresponds to a well supported principle
known as Kimura’s neutral theory.
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gives rise to a specific genotype/individual. The common utility of each gene/agent

at that genotype/outcome is equal to the fitness of that phenotype. In the weak

selection regime this is a number in [1− s, 1 + s] for some small s > 0. If we interpret

the frequency of the allele in the population as mixed (randomized) strategies in this

game then the population genetics model reduces to each agent/gene updating their

distribution according to discrete replicator dynamics.

In discrete replicator dynamics the rate of increase of the probability of a given

strategy is directly proportional to its current expected utility. In population genetic

terms, this expected utility reflects the average fitness of a specific allele when matched

with the current mixture of alleles of the other genes. Livnat et al. [78] coined the

term mixability to refer to this beneficial attribute. In other words, an allele with high

mixability achieves high fitness when paired against the current allele distribution.

Naturally, this trait is not a standalone characteristic of an allele but depends on the

current state of the system. An allele that enjoys a high mixability in one distribution

of alleles, might exhibit a low mixability in another. So, although mixability offers a

palpable interpretation of how evolutionary models behaves in a single time step, it

does not offer insights about the long term behavior.

Game theory, however, can provide us with clues about the long term behavior

as well. Specifically, discrete replicator dynamics converges to sets of fixed points in

variants of coordination games [82] (see also Chapter 6). This allows for a concise

characterization of the possible limit points of the population genetics model, since

they coincide with the set of equilibria (fixed points). In [24] it was observed that

random two agent coordination games (in the weak selection payoff regime) exhibit (in

expectation) exponentially many such mixed strategies. The abundance of such mixed

Nash equilibria seems like a strong indicator that (i) the long term system behavior

will result in a state of high genetic variance (highly mixed population), (ii) we cannot

even efficiently enumerate the set of all biologically relevant limiting behaviors, let
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alone predict them. We show that this intuition does not reflect accurately the

dynamical system behavior.

Our contribution. We show that given a generic two agent coordination games,

starting from all but a zero measure of initial conditions, discrete MWUA converges to

pure, strict Nash equilibria (see Theorem 2.9). The genericity assumption is minimal

and merely requires that any row/column of the payoff matrix have distinct entries.

This genericity assumption, is trivially satisfied with probability one, if the entries

of the matrix are i.i.d from a distribution that is continuous and symmetric around

zero, say uniform in [−1, 1] as in the full version of [24]. This class of games contains

instances with uncountably many Nash equilibria, e.g., if the payoff matrix is A =
1 4

4 1

2 3

 for both. Our results carry over even if the game has uncountably many

Nash equilibria.

Biological Interpretation. Our work sheds new light on the role of natural se-

lection in haploid genetics. We show that natural selection acts as an antagonistic

process to the preservation of genetic diversity. The long term preservation of genetic

diversity needs to be safeguarded by evolutionary mechanisms which are orthogonal

to natural selection such as mutations and speciation (see Chapter 4 mutations and

dynamic environments). This view, although may appear linguistically puzzling at

first, is completely compatible with the mixability interpretation of [78, 23]. Mix-

ability implies that good “mixer” alleles, i.e., alleles that enjoy high fitness in the

current genotypic landscape) gain an evolutionary advantage over their competition.

On the other hand, the preservation of mixed populations relies on this evolution-

ary race between alleles having no clear long term winner with the average-over-time

mixability of two, or more, alleles being roughly equal (in game theoretic terms, in

order for two strategies to be played with positive probability by the same agent in
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the long run, it must be the case that the time-average expected utilities of these

two strategies are roughly equal. The time average here is over the history of play

so far). As with actual races, ties are rare and hence mixability leads to non-mixed

populations in the long run. According to recent PNAS commentary [12] some of

the points in [23] raised questions when compared against commonly held beliefs in

mathematical biology.

“Chastain et al. suggest that the representation of selection as (partially)

maximizing entropy may help us understand how selection maintains di-

versity. However, it is widely believed that selection on haploids (the rele-

vant case here) cannot maintain a stable polymorphic equilibrium. There

seems to be no formal proof of this in the population genetic literature. . . ”

Our argument above helps bridge this gap between belief and theory.

2.2 Related work

The earliest connection, to our knowledge, between MWUA and genetics lies in

[70], where such a connection is established between MWUA (in its usual exponential

form) and replicator dynamics [132, 125], one of the most basic tools in mathematical

ecology, genetics, and mathematical theory of selection and evolution. Specifically,

MWUA is up to first order approximation equivalent to replicator dynamics. Since

the MWUA variant examined in [23] is an approximation of its standard exponential

form, these results follow a unified theme. MWUA in its classic form is up to first or-

der approximation equivalent to models of evolution. The MWUA variant examined

in [23] was introduced by Losert and Akin in [82] in a paper that also brings biology

and game theory together. Specifically, they prove the first point-wise convergence to

equilibria for a class of evolutionary dynamics resolving an open question at the time.

We build on the techniques of this paper, while also exploiting the (in)stability anal-

ysis of mixed equilibria along the lines of [70]. The connection between MWUA and
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replicator dynamics by [70] also immediately implies connections between MWUA

and mathematical ecology. This is because replicator dynamics is known to be equiv-

alent (up to a diffeomorphism) to the classic prey/predator population models of

Lotka-Voltera [61].

As a result of the discrete nature of MWUA, its game theoretic analysis tends to

be trickier than that of its continuous time variant, the replicator. Analyzed settings

of this family of dynamics include zero-sum games [3, 123], congestion games [70],

games with non-converging behavior [37, 57, 11] and as well as families of network

coordination games (see Chapter 6). New techniques can predict analytically the

limit point of replicator systems starting from randomly chosen initial condition.

This approach is referred to as average case analysis of game dynamics (Chapter 6).

2.3 Technical Overview

Technically, our result is based mostly on two prior works. In [70] the generic

instability of mixed Nash was established for other variants of MWUA, including the

replicator equation. Our instability analysis follows along similar lines. Any linearly

stable equilibrium is shown to be a weakly stable Nash equilibrium [70]. A weakly

stable Nash is a Nash equilibrium that satisfies the extra property that if you force any

single randomizing agent to play any strategy in his current support with probability

one, all other agents remain indifferent between the strategies in their support. This is

a strong refinement of the Nash equilibrium property and in two agent coordination

games under our genericity assumption it coincides with the notion of pure Nash.

Since mixed equilibria are linearly unstable, by applying the Center-Stable Manifold

Theorem 1.3 we establish that locally the set of initial conditions that converge to such

an equilibrium is of measure zero. To translate this to a global statement about the

size of the region of attraction technical smoothness conditions must be established

about the discrete time map. For continuous time systems, such as the replicator
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[70], these are standard. Our analysis does not require any additive noise. Also, our

system is deterministic, implying a stronger convergence result.

In the case of coordination games with isolated equilibria our theorem follows

by combining the zero measure regions of attraction of all unstable equilibria via

union bound arguments. The case of uncountably infinite equilibria is tricky and

requires specialized arguments. Intuitively the problem lies on the fact that a) black

box union bound arguments do not suffice, b) the standard convergence results in

potential games merely imply convergence to equilibrium sets, i.e., the distance of

the state from the set of equilibria goes to zero, instead of the stronger point-wise

convergence, i.e., every trajectory has a unique (equilibrium) limit point. Set-wise

convergence allows for complicated non-local trajectories that weave infinitely often

in and out of the neighborhood of an equilibrium making topological arguments hard.

Once point-wise convergence has been established (Theorem 2.3), the continuum of

equilibria can be chopped down into countable many pieces via Lindelőf’s lemma A.1

and once again standard union bound arguments suffice. Nagylaki et al. point-wise

convergence result [93] does not apply here, because their hyperbolicity assumption

is not satisfied. Further, assuming s→ 0, they analyze a continuous time dynamical

system governed by a differential equation. Unlike Nagylaki the system we analyze is

discrete MWUA, and establish point-wise convergence to pure Nash equilibria almost

always following the work of Losert and Akin [82], even if hyperbolicity is not satisfied

(uncountably many equilibria).

We close the chapter with some technical observations about the speed of diver-

gence from the set of unstable equilibria as well as discussing an average case analysis

approach for predicting the probabilities that we converge to any of the pure equilib-

ria given a random initial condition (this approach is analyzed in detail and for many

classes of games in Chapter 6). We believe that these observations could stimulate

future work in the area.
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2.4 Preliminaries

In this section we formally describe the dynamics under consideration, and its

equivalence with MWUA in evolution. Moreover, we describe some known results

about this dynamics, shown by Losert and Akin [82].

2.4.1 Haploid evolution and MWUA

Chastain et al. [23] observed that the update rule derived by Nagylaki [92] for

allele frequencies, during evolutionary process under weak selection, is exactly mul-

tiplicative weight update algorithm (MWUA) applied on coordination game, where

genes are players and alleles are their strategies. Formally, if fitness values of a genome

defined by a combination of alleles (strategy profile) is from [1− s, 1 + s] for a small

s > 0 (weak selection), then for the two-gene (two-player) case such a fitness matrix

can be written as B = 1m×n + εC3, where each Cij ∈ R and ε � 1. This, defines

a coordination game (B,B). Further, the change in allele frequencies in each new

generation is as per the following rule:

∀i, xi(t+ 1) =
xi(t)(1 + ε(Cy(t))i)

1 + εx(t)>Cy(t)
; ∀j, yj(t+ 1) =

yj(t)(1 + ε(C>x(t))j)

1 + εx(t)>Cy(t)
. (12)

Using the fact that B = 1m×n + εC, this can be reformulated as,

xi(t)(1 + ε(Cy(t))i)

1 + εx(t)>Cy(t)
= xi(t)

(By(t))i
x(t)>By(t)

;
yj(t)(1 + ε(C>x(t))j)

1 + εx(t)>Cy(t)
= yj(t)

(B>x(t))j
x(t)>By(t)

.

We study convergence of discrete MWUA through this reformulation, i.e., discrete

replicator dynamics. In general, given a game (A,B)4 consider the update rule (map)

f : ∆m ×∆n → ∆m ×∆n,

For (x,y) ∈ ∆m ×∆n if (x′,y′) = f(x,y), then
∀i ∈ S1, x′i = xi

(Ay)i
x>Ay

,

∀j ∈ S2, y′j = yj
(x>B)j
x>By

.

(13)

3m,n are the number of alleles (strategies) for first and second gene (player) respectively.
4A,B have size m× n.
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Clearly, x′ ∈ ∆m,y
′ ∈ ∆n, and therefore f is well-defined. Starting with (x(0),y(0)),

the strategy profile at time t ≥ 1 is (x(t),y(t)) = f(x(t−1),y(t−1)) = f t(x(0),y(0)).

2.4.2 Losert and Akin

Losert and Akin showed a very interesting result on the convergence of discrete

replicator dynamics when applied on evolutionary games [18] with positive matrix.

These games are symmetric games, where pure strategies are species and the player

is playing against itself, i.e., symmetric strategy (x = y). Consider a k × k positive

matrix A, and the following dynamics, called discrete replicator dynamics, starting

with z(0) ∈ ∆k

zi(t+ 1) = zi(t)
(Az(t))i

z(t)>Az(t)
. (14)

Clearly, z(t+ 1) ∈ ∆k, ∀t ≥ 1. Thus, there is a map fs : ∆k → ∆k corresponding to

the above dynamics, where if z′ = fs(z) then z′i = zi
(Az)i
z>Az

, implying

z(t+ 1) = fs(z(t)) = f t+1
s (z(0)). (15)

If z(t) is a fixed point of fs then z(t′) = z(t), ∀t′ ≥ t. Losert and Akin [82] proved

that the above dynamical system converges point-wise to fixed point, and that map

f is a diffeomorphism in an open set that contains ∆k. Formally:

Theorem 2.1 (Convergence and diffeomorhism [82]). Let {z(t)} be an orbit for

the dynamic of (14). As t→∞, z(t) converges to a unique fixed point q. Additionally,

the map fs corresponding to (14) is a diffeomorphism in an neighborhood of ∆k.

2.5 Proving the result

2.5.1 Point-wise convergence and diffeomorphism

In this section we show that the discrete replicator dynamics of (13), when applied

to a two-player coordination game (B,B), converges point-wise to a fixed point of f

under weak selection. Further, map f is diffeomorphism. Essentially we will reduce
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the problem to applying discrete replicator dynamics on symmetric game with positive

matrix and then use the result of Losert and Akin [82] (Theorem 2.1).

Under weak selection regime we have Bij ∈ [1− s, 1 + s], ∀(i, j), for some s < 1.

Let ε < 1− s, and consider the following matrix

A =

 εm×m B − ε

B> − ε εn×n

 . (16)

We will show that applying dynamics of (13) on game (B,B>) starting at (x(0),y(0))

is same as applying (14) on game (A,A>) starting at z(0) = (x(0)
2
, y(0)

2
).

Lemma 2.2 (Reduction to replicator dynamics). Given (x(0),y(0)) ∈ ∆m×∆n,

let z(0) = (x(0)
2
, y(0)

2
), then ∀t ≥ 0, (x(t),y(t)) = 2 · z(t), where x(t) and y(t) are as

per (13) and z(t) is as per (14).

Proof. We will show the result by induction. By hypothesis the base case of t = 0

holds. Suppose, it holds up to time t, then let x = x(t + 1), y = y(t + 1) and

(x′,y′) = z(t + 1). Now, ∀i ≤ m + n, zi(t + 1) = zi(t)
(Az(t))i

z(t)>Az(t)
together with

z(t) = 1
2
(x(t),y(t)) gives us

∀i ≤ m,x′i =
xi(t)

2

ε
∑
i xi(t)

2
+ (By(t))i

2
− ε∑j yj(t)

2
x(t)>By(t)

4
+ y(t)B>x(t)

4

=
2xi(t)

4

(By(t))i
x(t)>By(t)

=
xi
2
.

Similarly, we can show that ∀j ≤ n, y′j =
yj
2

, and the lemma follows.

Lemma 2.2 establishes equivalence between games (B,B) and (A,A>) in terms of

dynamics, and thus the next theorem follows using Theorem 2.1.

Theorem 2.3 (Convergence and diffeomorphism for haploid evolution). Let

{x(t),y(t)} be an orbit for the dynamic of (13). As t approaches ∞, (x(t),y(t))

converges to a unique fixed point (p,q). Additionally, the map F corresponding to

(13) is a diffeomorphism in an neighborhood of ∆m ×∆n.

33



2.5.2 Convergence to pure NE almost always

In Section 2.5.1 we saw that dynamics of (13) converges to a fixed point regardless

of where we start in coordination games with weak selection. However, which equi-

librium it converges to depends on the starting point. In this section we show that it

almost always converge to a pure Nash equilibrium under mild genericity assumptions

on the game matrix. In the light of the known fact that a coordination game (B,B),

where Bijs are chosen uniformly at random from [1−s, 1+s], may have exponentially

many mixed NE [24], this result comes as a surprise.

To show the result, we use the concept of weakly stable Nash equilibrium [70]. This

is a refinement of the classic notion of equilibrium and we show that for coordination

games it coincides with pure NE under some mild assumptions. Further, we connect

them to stable fixed points of f (13) by showing that all stable fixed points of f are

weakly stable NE. Finally, using the Center-Stable Manifold Theorem 1.3 we show

that dynamics defined by f converges to stable fixed points except for a zero measure

set of starting points.

Definition 10 (Weakly stable NE). A Nash equilibrium (x,y) is called weakly

stable if fixing one of the players to choosing a pure strategy in the support of her

strategy with probability one, leaves the other player indifferent between the strategies

in his support, e.g., let T1 and T2 are supports of x and y respectively, then for

any i ∈ T1 if the first player plays i with probability one then the second player is

indifferent between all the strategies of T2, and vice-versa.

Note that pure NE are always weakly stable, and coordination games always have

pure NE. Further, for a mixed-equilibrium to be weakly stable, for any i ∈ T1 all the

Bij’s corresponding to j ∈ T2 are the same. Thus, the next lemma follows.

Lemma 2.4 (Weakly stable NE implies pure). If coordinates of a row or a

column of B are all distinct, then every weakly stable equilibrium is a pure NE.

34



Proof. To the contrary suppose (x,y) is a mixed weakly stable NE, then for T1 =

{i | xi > 0} and T2 = {j | yj > 0} we have ∀i ∈ T1, Bij = Bij′ , ∀j 6= j′ ∈ T2, a

contradiction.

Remark 4. We note that the games analyzed in [24], where entries of matrix B are

chosen uniformly at random from the interval [1− s, 1 + s], will have distinct entries

in each of its rows/columns with probability one, and thereby due to Lemma 2.4 all

its weakly stable NE are pure NE.

Stability of a fixed point is defined based on eigenvalues of Jacobian matrix eval-

uated at the fixed point. So let us first describe the Jacobian matrix of function f .

We denote this matrix by J which is m+ n×m+ n, and let fk denote the function

that outputs k-th coordinate of f . Then, ∀i 6= i′ ≤ m and ∀j 6= j′ ≤ n

Jii = dfi
dxi

= (By)i
x>By

− xi
(

(By)i
x>By

)2

, J(m+j)(m+j) =
dfm+j

dyj
= (B>x)i

x>By
− yi

(
(B>x)i
x>By

)2

,

Jii′ = dfi
dxi′

= −xi (By)i·(By)i′
(x>By)2

, J(m+j)(m+j′) =
dfm+j

dyj′
= −yj (B>x)j ·(B>x)j′

(x>By)2
,

Ji(m+j) = dfi
dyj

= xi
Bij ·(x>By)−(By)i(B

>x)j
(x>By)2

, J(m+j)i =
dfm+j

dxi
= yj

Bij ·(x>By)−(B>x)j(By)i
(x>By)2

.

Now in order to use Center-Stable Manifold Theorem (see Theorem 1.3), we need

a map whose domain is full-dimensional around the fixed point. However, an n-

dimensional simplex (∆n) in Rn has dimension n− 1, and therefore the domain of f ,

namely ∆m × ∆n is of dimension m + n − 2 in space Rm+n. Therefore, we need to

take a projection of the domain space and accordingly redefine the map f . We note

that the projection we take will be fixed point dependent; this is to keep the proof of

Lemma 2.6 relatively less involved later.

Let r = (p,q) be a fixed point of map f in ∆m ×∆n. Define i(r) and j(r) to be

coordinates of p and q respectively that are non-zero, i.e., pi(r) > 0 and qj(r) > 0.

Consider the mapping zr : Rm+n → Rm+n−2 so that we exclude from each player

1, 2 the variables xi(r), yj(r) respectively. We substitute the variables xi(r) with 1 −∑
i 6=i(r) xi and yj(r) with 1−∑j 6=j(r) yj. Consider map f under the projection zr, and let
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Jr denote the projected Jacobian at r. Then, ∀i, i′ ∈ [m]\{i(r)} and ∀j, j′ ∈ [n]\{j(r)}

we get that

Jr
ii = (By)i

x>By
− xi

(
(By)i
x>By

)2

+ xi
(By)i·(By)i(r)

(x>By)2
,

Jr
(m+j)(m+j) =

(B>x)j
x>By

− yj
(

(B>x)j
x>By

)2

+ yj
(B>x)j ·(B>x)j(r)

(x>By)2
,

Jr
ii′ = −xi (By)i·(By)i′

(x>By)2
+ xi

(By)i·(By)i(r)
(x>By)2

,

Jr
(m+j)(m+j′) = −yj (B>x)j ·(B>x)j′

(x>By)2
+ yj

(B>x)j ·(B>x)j(r)
(x>By)2

,

Jr
i(m+j) = xi

Bij ·(x>By)−(By)i(B
>x)j

(x>By)2
− xi Bij(r)·(x

>By)−(By)i(B
>x)j(r)

(x>By)2
,

Jr
(m+j)i = yj

Bij ·(x>By)−(B>x)j(By)i
(x>By)2

− yj Bi(r)j ·(x
>By)−(B>x)j(By)i(r)

(x>By)2
.

(17)

The characteristic polynomial of Jr at r is

∏
i:pi=0

(
λ− (Bq)i

p>Bq

) ∏
j:qj=0

(
λ− (B>p)j

p>Bq

)
× det(λI − Jr),

where Jr corresponds to Jr at r by deleting rows i, columns j with pi = 0 and qj = 0.

Lemma 2.5 (Linearly stable implies NE). Every linearly stable fixed point is a

Nash Equilibrium.

Proof. Assume that a linearly stable fixed point r is not a Nash equilibrium. Without

loss of generality suppose player t = 1 can deviate and gain. Since r is a fixed point

of map f , ∀pi > 0 ⇒ (Bq)i = p>Bq. Hence, there exists a strategy i ≤ m such that

pi = 0 and (Bq)i > p>Bq. Then the characteristic polynomial has (Bq)i
p>Bq

> 1 as a

root, a contradiction.

We are going to show that the dynamics of (13) converge to linearly stable fixed

point except for measure zero starting conditions. However, what we want is that

it almost always converge to weakly stable NE. So, let us first establish a relation

between stable fixed points and weakly stable NE.

Lemma 2.6 (Linearly stable implies weakly stable NE). Every linearly stable

fixed point is a weakly stable Nash equilibrium.
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Proof. Let k × k be the size of matrix Jr. If k = 0 then the equilibrium is pure and

therefore is stable. For the case when k > 0, let Tp and Tq be the support of p and

q respectively, i.e., Tp = {i | pi > 0} and similarly Tq. If we show that ∀i, i′ ∈ Tp
and ∀j, j′ ∈ Tq, M

i,i′,j,j′ = (Bij − Bi′j) − (Bij′ − Bi′j′) = 0, then using argument

similar to Theorem 3.8 in [70], the lemma follows. We show this using the expression

of tr((Jr)2) (tr denotes the trace).

Claim 2.7. tr((Jr)2) =

k + 1
(p>Bq)2

∑
i<i′:i,i′ 6=i(r)
j<j′:j,j′ 6=j(r)

piqjpi′qj′(M
i,i′,j,j′)2 +

1

(p>Bq)2

∑
i:i 6=i(r)
j:j 6=j(r)

piqjpi(r)qj(r)(M
i,i(r),j,j(r))2

+ 1
(p>Bq)2

∑
j<j′:j,j′ 6=j(r)

i:i 6=i(r)

pipi(r)qjqj′(M
i,i(r),j,j′)2 +

1

(p>Bq)2

∑
j:j 6=j(r)

i<i′:i,i′ 6=i(r)

pipi′qjqj(r)(M
i,i′,j,j(r))2.

Proof of Claim. Since Jrii′ = 0, Jr(m+j)(m+j′) = 0 for i 6= i′ and j 6= j′, and Jrii = 1,

Jr(m+j)(m+j) = 1 we get that

tr((Jr)2) = k +
∑
i,j

Jri(m+j)Jr(m+j)i.

We consider the following cases:

• Let i < i′ with i, i′ 6= i(r) and j < j′ with j, j′ 6= j(r) and we examine the term

1
(p>Bq)2

piqjpi′qj′ in the sum and we get that it appears with

[[M i,i′,j,j(r)]× [M i,i(r),j,j′ ] + [M i,i′,j,j(r)]× [M i(r),i′,j,j′ ]

+[M i,i′,j(r),j′ ]× [M i,i(r),j,j′ ] + [M i,i′,j(r),j′ ]× [M i(r),i′,j,j′ ]

=(M i,i′,j,j′)2.

• Let i 6= i(r) and j 6= j(r). The term 1
(p>Bq)2

piqjpi(r)qj(r) in the sum appears in

multiplication with (M i,i(r),j,j(r))2.

• Let i < i′ with i, i′ 6= i(r) and j 6= j(r). The term 1
(p>Bq)2

piqjpi′qj(r) in the sum
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appears with

[M i,i′,j,j(r)]× [M i,i(r),j,j(r)] + [M i,i′,j,j(r)]× [M i(r),i′,j,j(r)]

=(M i,i′,j,j(r))2.

• Similarly to the previous case, for j < j′ with j, j′ 6= j(r) and i 6= i(r). The

term 1
(p>Bq)2

piqjpi(r)qj′ in the sum appears with (M i,i(r),j,j′)2.

The trace of (Jr)2 can not be larger than k, otherwise there exists an eigenvalue with

absolute value greater than one contradicting r being a stable fixed point. From the

above claim, it is clear that tr((Jr)2) ≥ k and it is exactly k if and only if M i,i′,j,j′ = 0,

∀i, i′ ∈ T1 and j, j′ ∈ T2, and the lemma follows.

We show that except for zero measure starting points (x(0),y(0)) the dynamics of

(13) converges to stable fixed points using the Center-Stable Manifold Theorem 1.3,

which proves the next theorem.

Theorem 2.8 (Replicator converges to stable fixed points). The set of initial

conditions in ∆m ×∆n so that the dynamical system with Equations (13) converges

to unstable fixed points has measure zero.

Proof. To prove Theorem 2.8, we will make use of Center-Stable manifold theorem

(Theorem 1.3). First we need to project the domain to a lower dimensional space. We

consider the (diffeomorphism) function g that is a projection of the points (x,y) ∈

Rm+n to Rm+n−2 by excluding a specific (the ”first”) variable for each player (we know

that the probabilities must sum up to one for each player). Let N = m + n, then

we denote this projection of ∆ ··= ∆m × ∆n by g(∆), i.e., (x,y) →g (x′,y′) where

x′ = (x2, . . . , xn) and y′ = (y2, . . . , yn). Further, recall the fixed point dependent

projection function zr defined in Section 2.5.2, where we remove xi(r) and yj(r).

38



Let f be the update of dynamical system (13). For an unstable fixed point r we

consider the function ψr(v) = zr ◦f ◦z−1
r (v) which is diffeomorphism (due to theorem

2.3 in a neighborhood of g(∆)), with v ∈ RN−2. Let Br be the (open) ball derived

from Theorem 1.3 and we consider the union of these balls (transformed in RN−2)

A = ∪rAr,

where Ar = g(z−1
r (Br)) (z−1

r ”returns” the set Br back to RN). Set Ar is an open

subset of RN−2 (by continuity of zr and g being diffeomorphism). Due to the Lindelőf’s

Lemma A.1, we can find a countable subcover for A, i.e., there exists fixed points

r1, r2, . . . such that A = ∪∞m=1Arm .

For a t ∈ N let ψt,r(v) the point after t iteration of dynamics (13), starting with

v, under projection zr, i.e., ψt,r(v) = zr ◦ f t ◦ z−1
r (v). If point v ∈ g(∆) (which

corresponds to g−1(v) in our original ∆) has as unstable fixed point as a limit, there

must exist a t0 and m so that ψt,rm ◦ zrm ◦ g−1(v) ∈ Brm for all t ≥ t0 (we have

point-wise convergence from Theorem 2.3) and therefore again from Theorem 1.3 and

the fact that g(∆) is invariant we get that ψt0,rm ◦ zrm ◦ g−1(v) ∈ W sc
loc(rm), hence

v ∈ g ◦ z−1
rm ◦ψ−1

t0,rm(W sc
loc(rm)∩ zrm(∆)). Hence the set of points in g(∆) whose ω-limit

has an unstable equilibrium is a subset of

C = ∪∞m=1 ∪∞t=1 g ◦ z−1
rm ◦ ψ−1

t,rm(W sc
loc(rm) ∩ zrm(∆)). (18)

Since rm is linearly unstable, it holds that dim(Eu) ≥ 1, and therefore dimension

of W sc
loc(rm) is at most N − 3. Thus, the set W sc

loc(rm)∩ zrm(∆) has Lebesgue measure

zero in RN−2. Finally since g◦z−1
rm ◦ψ−1

t,rm : RN−2 → RN−2 is continuously differentiable

(in a neighborhood of g(∆), by Theorem 2.3), ψt,rm is C1 and locally Lipschitz (see

p.71 in [110]). Therefore using Lemma A.2, it preserves the null-sets, and thereby we

get that C is a countable union of measure zero sets, i.e., is measure zero as well, and

Theorem 2.8 follows.

Theorem 2.8 together with Lemmas 2.4 and 2.6 gives the following main result.
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Theorem 2.9 (Main Theorem - Convergence to pure). For all but measure

zero initial conditions in ∆m × ∆n, the dynamical system (13) when applied to a

coordination game (B,B) with Bij ∈ [1 − s, 1 + s], ∀(i, j) for s < 1, converges to

weakly stable Nash equilibria. Furthermore, assuming that entries in each row and

column of B are distinct, it converges to pure Nash equilibria.

2.6 Figure of stable/unstable manifolds in simple example

Figure 3 corresponds to a two agent coordination game with payoff structure

B =

 1 0

0 3

. Since this game has two agents with two strategies each, in order

to capture the state space of game it suffices to describe one number for each agent,

namely the probability with which he will play his first strategy. This game has three

Nash equilibria, two pure ones (0, 0), (1, 1) and a mixed one
(

3
4
, 3

4

)
. We depict them

using small circles in the figure. The mixed equilibrium has a stable manifold of zero

measure that we depict with a black line. In contrast, each pure Nash equilibrium

has region of attraction of positive measure. The stable manifold of the mixed NE

separates the regions of attraction of the two pure equilibria. The (0, 0) equilibrium

has larger region of attraction, represented by darker region in the figure. It is the risk

dominant equilibrium of the game. In Chapter 6 we provide techniques to compute

such objects (stable manifolds, volumes of region of attraction) analytically.

Figure 3: Regions of attraction for B = [1 0; 0 3], where ◦ correspond to NE points.
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2.7 Discussion

Building on the observation of [23] that the process of natural selection under weak

selection regime can be modeled as discrete Multiplicative weight update dynamics

on coordination games, we showed that it converges to pure NE almost always in the

case of two-player games. As a consequence natural selection alone seem to lead to

extinction of genetic diversity in the long term limit, a widely believed conjecture

of haploid genetics [12]. Thus, the long term preservation of genetic diversity must

be safeguarded by evolutionary mechanisms which are orthogonal to natural selection

such as mutations and speciation (see Chapter 4). This calls for modeling and study of

these latter phenomenon in game theoretic terms under discrete replicator dynamics.

Additionally below we observe that in some special cases, (i) the rate of convergence of

discrete replicator dynamics is doubly exponentially fast in some special cases, and (ii)

the expected fitness of the resulting population, starting with a random distribution,

under such dynamics is constant factor away from the optimum fitness. It will be

interesting to get similar results for the general case of two-player coordination games.

Rate of Convergence. Let’s consider a special case where B is a square diagonal

matrix. In that case, starting from any point (x(0),y(0)) observe that after one time

step, we get that x(1) = y(1) (i.e., f(x(0)) = f(y(0))). Therefore without loss of

generality let us assume that x(0) = y(0). Then both the players get the same payoff

from each of their pure strategies in the first play as B = B>. And thus it follows

that fn(x(0)) = fn(y(0)) for all n ≥ 1. Let Ui(t) be the payoff that both gets from

their i-th strategy at time t (both will get the same payoff). Suppose for i 6= j we

have Ui(0) = cUj(0), then

Ui(t)

Uj(t)
=

(
Biixi(t− 1)

Bjjxj(t− 1)

)2

=

(
Ui(t− 1)

Uj(t− 1)

)2

=

(
Ui(0)

Uj(0)

)2t

= c2t .

Thus the ratio between payoffs from each pure strategy increases doubly exponentially,

and the next lemma follows.
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Lemma 2.10 (Rate of convergence). If z = minj
Ui∗ (0)
Uj(0)

where i∗ ∈ arg maxk Uk(0),

we get that after O(log log 1
zε

) we are ε-close to a Nash equilibrium with support

arg maxk Uk(0) (in terms of the total variation distance).

2.8 Conclusion and remarks

The results of this chapter appear in [84]. We show that standard mathematical

models of haploid evolution imply the extinction of genetic diversity in the long term

limit. This reflects a widely believed conjecture in population genetics [12]. We

prove this via recent established connections between game theory, learning theory

and genetics [24, 23]. Specifically, in game theoretic terms we show that in the

case of coordination games, under minimal genericity assumptions, discrete MWUA

converges to pure Nash equilibria for all but a zero measure of initial conditions. This

result holds despite the fact that mixed Nash equilibria can be exponentially (or even

uncountably) many, completely dominating in number the set of pure Nash equilibria.

Thus, in haploid organisms the long term preservation of genetic diversity needs to

be safeguarded by other evolutionary mechanisms such as mutations and speciation

(see Chapter 4 for mutations and dynamic environments).

The intersection between computer science, genetics and game theory has already

provided some unexpected results and interesting novel connections. As these connec-

tions become clearer, new questions emerge alongside the possibility of transferring

knowledge between these areas. In Section 2.7 we raised some novel questions that

have to do with speed of dynamics as well as the possibility of understanding the evo-

lution of biological systems given random initial conditions. Such an approach can

be thought of as a middle ground between price of anarchy (worst case scenario) and

price of stability (best case scenario) in game theory. We believe that this approach

can also be useful from the standard game theoretic lens (see Chapter 6).
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CHAPTER III

COMPLEXITY OF GENETIC DIVERSITY IN DIPLOIDS

3.1 Introduction

The beauty and complexity of natural ecosystems have always been a source of

fascination and inspiration for the human mind. The exquisite biodiversity of Gala-

pagos’ ecosystem, in fact, inspired Darwin to propose his theory of natural selection

as an explanatory mechanism for the origin and evolution of species. This revolution-

ary idea can be encapsulated in the catch phrase “survival of the fittest.”1 Natural

selection promotes the survival of those genetic traits that provide to their carriers

an evolutionary advantage.

Arguably, the most influential result in the area of mathematical biology is Fisher’s

fundamental theorem of natural selection (1930) [51]. It states that the rate of increase

in fitness of any organism at any time is equal to its genetic variance in fitness at that

time. In the classical model of population genetics (Fisher-Wright-Haldane, discrete

or continuous version) of single locus (one gene) multi-allele diploid models it implies

that the average fitness of the species populations is always strictly increasing unless

we are at an equilibrium. In fact, convergence to equilibrium is point-wise2 even

if there exist continuum of equilibria (see [82] and references therein). This strong

result was used in the previous chapter to show Theorem 2.9 (essentially by reducing

the haploid dynamics to the classic replicator dynamics). Theorem 2.9 states that

in haploids systems all mixed (polymorphic) equilibria are unstable and evolution

converges to monomorphic states. However, in the case of diploid systems the answer

1The phrase “survival of the fittest” was coined by Herbert Spencer.
2From dynamical systems perspective, this establishes that the average fitness acts as a Lyapunov

function for the system and that every trajectory converges to an equilibrium.
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to whether diversity survives or not depends crucially on the geometry of the fitness

landscape.

Besides the purely dynamical systems interpretation, an alternative, more pal-

pable, game theoretic interpretation of these (diploid) genetic systems is possible.

Specifically, these systems can be interpreted as symmetric coordination/partnership

two-agent games where both agents, starting with the same mixed initial strategy

and applying (discrete) replicator dynamics. The analogies are as follows (this is very

close to the interpretation we see in the previous chapter due to Chastain et al. [23]):

The two players are two gene locations on a chromosome pair, and the alleles are

their strategies. When both players choose a strategy, say i and j, an individual

(i, j) is defined whose fitness, say Aij, is the payoff to both players, hence we have

a coordination game. Furthermore, allele pairs are unordered so we have Aij = Aji,

i.e., A is symmetric and so is the game. The frequencies of the alleles in the initial

population, namely x := (x1, ..., xn) ∈ ∆n
3 of n different alleles, corresponds to the

initial common mixed strategy of both players. In each generation, every individual

from the population mates with another individual picked at random from the pop-

ulation, and the updates of the mixed strategies/allele frequencies are captured by

replicator dynamics, i.e.,

x′i = xi

∑
j Aijxj

x>Ax
, (19)

where x′i is the proportion of allele i in the next generation (for details see Section

3.4). In game theoretic language, the fundamental theorem of natural selection implies

that the social welfare x>Ax (average fitness in biology terms) of the game acts as

potential for the game dynamics. This implies convergence to fixed points of the

dynamics (see Theorem 2.1). Fixed points are superset of Nash equilibria where each

strategy played with positive probability fetches the same average payoff.

3Recall that ∆n denotes the simplex of dimension n.
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We say that population is genetically diverse if at least two alleles have non-

zero proportion in the population, i.e., allele frequencies form a mixed (polymorphic)

strategy. The game theoretic results do not provide insight on the survival of genetic

diversity. One way to formalize this question is whether there exists a mixed fixed point

that the dynamics converges to with positive probability, given a uniformly random

starting point in ∆n. The answer to this question for the minimal case of n = 2

alleles (alleles b/B, individuals bb/bB/BB) is textbook knowledge and can be traced

back to the classic work of Kalmus (1945) [64]. The intuitive answer here is that

diversity can survive when the heterozygote individuals (see A.1 for terms used in

biology), bB, have a fitness advantage. Intuitively, this can be explained by the fact

that even if evolution tries to dominate the genetic landscape by bB individuals,

the random genetic mixing during reproduction will always produce some bb, BB

individuals, so the equilibrium that this process is bound to reach will be mixed. On

the other hand, it is trivial to create instances where homozygote individuals are the

dominant species regardless of the initial condition.

As we increase the size/complexity of the fitness landscape, not only is not clear

that a tight characterization of the diversity-inducing fitness landscape exists (a ques-

tion about global stability of nonlinear dynamical systems), but also, it is even less

clear whether one can decide efficiently whether such conditions are satisfied by a

given fitness landscape (a computational complexity consideration). How can one

address this challenge and moreover, how can one account for the apparent genetic

diversity of the ecosystems around us?

Our contribution. In a nutshell, we establish that the decision version of the prob-

lem is computationally hard (see Theorems 3.27, 3.33), by sandwiching limit points

of the dynamics between various stability notions (Theorem 3.1 or 3.11). This core

result is shown to be robust across a number of directions. Deciding the existence of
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stable (mixed) polymorphic equilibria remains hard under a host of different defini-

tions of stability examined in the dynamical systems literature. The hardness results

persist even if we restrict the set of allowable landscape instances to reflect typical

instance characteristics (see Theorem 3.31). Despite the hardness of the decision

problems, randomly chosen fitness landscapes are shown to support polymorphism

with significant probability (at least 1/3, see Theorem 3.17). The game theoretic inter-

pretation of our results allow for proving hardness results for understanding standard

game theoretic dynamics in symmetric coordination games. We believe that this is

an important result of independent interest as it points out at a different source of

complexity in understanding social dynamics.

3.2 Related work

Analyzing limit sets of dynamical systems is a critical step towards understanding

the behavior of processes that are inherently dynamic, like evolution. There has been

an upsurge in studying the complexity of computing these sets. Quite few works study

such questions for dynamical systems governed by arbitrary continuous functions or

ordinary differential equations [66, 65, 131]. Limit cycles are inherently connected

to dynamical systems and recent works by Papadimitriou and Vishnoi [107] showed

that computing a point on an approximate limit cycle is PSPACE-complete. On the

positive side, in Chapter 5 we will show that a class of evolutionary Markov chains

mix rapidly, where techniques from dynamical systems are used.

The complexity of checking if a game has an evolutionary stable strategy (ESS)

has been studied first by Nisan and then by Etessami and Lochbihler [97, 46] and

has been nailed down to be ΣP
2 -complete by Conitzer [31]. These decision problems

are completely orthogonal to understanding the persistence of genetic diversity. Fi-

nally, another recent related result [116] gives connections between computational

complexity and ecology/evolution.
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3.3 Technical overview

To study survival of diversity in diploidy, we need to characterize limiting popu-

lation under evolutionary pressure. We focus on the simplest case of single locus (one

gene) species. For this case, evolution under natural selection has been shown to fol-

low replicator dynamics in symmetric two-player coordination games ([82], Equations

(14)), where the genes on two chromosomes are players and alleles are their strategies

as described in the introduction. Losert and Akin established point-wise convergence

for this dynamics through a potential function argument [82] (for more information

see Theorem 2.1); here average fitness x>Ax is the potential. The limiting popula-

tion corresponds to fixed points, and so to make predictions about diversity (if the

limiting population has support size at least 2) we need to characterize and compute

these limiting fixed points.

Let L denote the set of fixed points with region of attraction of positive (Lebesgue)

measure. Hence, given a random starting point replicator dynamics converges to such

a fixed point with positive probability. It seems that an exact characterization of L

is unlikely because we do not know necessary and sufficient conditions so that a fixed

point has a region of attraction of positive measure. Instead we try to capture it as

closely as possible through different stability notions. First we consider two standard

notions defined by Lyapunov, the stable and asymptotically stable fixed point (see

Introduction). If we start close to a stable fixed point then we stay close forever,

while in case of asymptotically stable fixed point furthermore the dynamics converges

to it (see Section 3.4.2). Thus set of asymptotically stable ⊆ L follows, i.e., an

asymptotically stable fixed point has region of attraction of positive measure (e.g., a

small ball around the fixed point).

Certain properties of these stability notions using the absolute eigenvalues (EVal)

of the Jacobian of the update rule (function) of the dynamics are well known: if

the Jacobian at a fixed point has an EVal > 1 then the fixed point is un-stable (not
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stable), and if all EVal < 1 then it is asymptotically stable. The case when all EVal

≤ 1 with equality holding for some, is the ambiguous one. In that case we can say

nothing about the stability because the Jacobian does not suffice. We call these fixed

points linearly stable (Definition 4). At a fixed point, say x, if some EVal > 1 then the

direction of corresponding eigenvector is repelling, and therefore any starting vector

with a component of this vector can never converge to x. Thus points converging

to x can not have positive measure. Using this as an intuition we show that L ⊆

set of linearly stable fixed points. In other words the set of initial points so that

the dynamics converges to linearly un-stable fixed points has zero measure (Theorem

3.6). This theorem is heavily utilized to understand (non-)existence of diversity.

Efficient computation requires efficient verification. However, note that whether

a given fixed point is (asymptotically) stable or not does not seem easy to verify. To

achieve this, one of the contributions of this chapter is the definition of two more

notions: Nash stable and strict Nash stable. 4 It is easy to see that NE of the

corresponding coordination game described in introduction are fixed points of the

replicator dynamics (Equations (19),(20)) but not vice-versa. Keeping this in mind

we define Nash stable fixed point, which is a NE and the sub-matrix corresponding

to its support satisfies certain negative semi-definiteness. The latter condition is

derived from the fact that stability is related to local optima of x>Ax and also from

Sylvester’s law of inertia [99] (see Section 3.5 and proofs). For strict Nash stable both

conditions are strict, namely strict NE and negative definite. Combining all of these

notions we show the following:

4These two notions are not the same as evolutionary stable strategies/states.
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Theorem 3.1 (Relations between stability notions).

Strict Nash stable ⊆ Asymptotically stable ⊆ L ⊆ linearly stable = Nash stable

⊇

stable ⊆ linearly stable = Nash stable

We note that the sets asymptotically stable, stable, L and linearly stable of Theorem

3.1 do not coincide in general. The example below makes the statement clear.

Example. Let xt+1 be the next step for the following update rules:

f(xt) =
1

2
xt, g(xt) = xt −

1

2
x2
t , h(xt) = xt +

x3
t

2
, d(xt) = xt.

Then for dynamics governed by f , 0 is asymptotically stable, stable and linearly

stable, and hence is also in L. While for g it is linearly stable and is in L, but is

not stable or asymptotically stable. For d it is linearly stable and stable, but not

asymptotically stable and is not in L. Finally, for h it is only linearly stable, and

does not belong to any other class.5

Our primary goal was to see if diversity is going to survive. We formalize this by

checking whether set L contains a mixed point, i.e., where more than one alleles have

non-zero proportion, implying that diversity survives with some positive probability,

where the randomness is w.r.t the random initial x ∈ ∆m. In Section 3.7 we show that

for all five notions of stability, checking existence of mixed fixed point is NP-hard.

This gives NP-hardness for checking survival of diversity as well.

Theorem 3.2 (Informal - Hard to predict diversity). Given a symmetric matrix

A, it is NP-hard to check if replicator dynamics with payoff A has mixed (asymptot-

ically) stable, linear-stable, or (strict) Nash stable fixed points. A common reduction

for all together with Theorem 3.1 will imply that it is NP-hard to check whether di-

versity survives for a given fitness matrix.

5We also note that generically these sets coincide for replicator dynamics. It can be shown [83]
that given a fitness matrix, its entries can be perturbed to ensure that fixed points are hyperbolic.
Formally, if we consider the dynamics as an operator (called Fisher operator) then the set of hyper-
bolic operators is dense in the space of Fisher operators.
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h
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Figure 4: Matrix A of the reduction, see (24).

Our reductions are from k-clique - given an undirected graph check if it has a clique

of size k; a well known NP-hard problem. Given an instance G of k-clique, we will

construct a symmetric matrix A as shown in Figure 4, and consider coordination

game (A,A). We show that if G has a clique of size k then (A,A) has a mixed strict

Nash stable equilibrium, and if (A,A) has a mixed Nash stable equilibrium then G

has a clique of size k. This together with the fact that all other notions of stability

including our target set L are sandwiched between strict Nash stable and Nash stable

equilibria implies checking existence of mixed fixed point for any notions of the (strict)

Nash stable, (asymptotically) stable, linearly stable, and L is NP-hard.

The main idea in the construction of matrix A (Figure 4) is to use modified version

of adjacency matrix E of the graph as one of the blocks in the payoff matrix such

that, (i) clique of size k or more implies a stable Nash equilibrium in that block, and

(ii) all stable mixed equilibria are only in that block. Here E ′ is modification of E

where off-diagonal zeros are replaced with −h; h is a large (polynomial-size) number.

The fitness matrix created for hardness results is very specific, while one could

argue that real-life fitness matrices may be more random. So is it easy to check

survival of diversity for a typical matrix? Or is it easy to check if a given allele

survives? We answer negatively for both of these.
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There has been a lot of work on NP-hardness for decision versions of Nash equilib-

rium in general games [59, 32, 124, 56], where finding one equilibrium is also PPAD-

hard [25]. Whereas to the best of our knowledge these are the first NP-hardness results

for coordination games, where finding one Nash equilibrium is easy, and therefore may

be of independent interest. Finally in Section 3.6 we show that even though checking

is hard, on average things are not that bad.

Theorem 3.3 (Informal - Survival with constant probability). If the entries

of a fitness matrix are i.i.d. on an atomless distribution then with significantly high

probability, at least 1/3, diversity will surely survive.

Sure survival happens if every fixed point in L is mixed. We show that this fact is

ensured if every diagonal entry (i, i) of the fitness matrix is dominated by some entry

in its row or column. Next we lower bound the probability of latter by a constant

for a random symmetric matrix (from atomless distribution) of any size. The tricky

part is to avoid correlations arising due to symmetry and we achieve this using an

inclusion-exclusion argument.

3.4 Preliminaries

In this section we formally describe the diploid dynamics, which is exactly discrete

replicator dynamics as described in Section 2.4.2, Equations (14).

3.4.1 Infinite population dynamics for diploids

Consider a diploid single locus species, in other words species with chromosome

pair and single gene. Every gene has a set of representative alleles, like gene for eye

color has different alleles for brown, black and blue eyes. Let n be the number of alleles

for the single gene of our species, and let these be numbered 1, . . . , n. An individual

is represented by an unordered pair of alleles (i, j), and we denote its fitness by Aij.

The fitness represents its ability to reproduce during a mating. In every generation
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two individuals are picked uniformly at random from the population, say (i, j) and

(i′, j′), and they mate. The allele pair of the offspring can be any of the four possible

combinations, namely (i, i′), (i, j′), (i′, j), (j, j′), with equal probability.6 Let Xi be a

random variable that denotes the proportion of the population with allele i. After

one generation, the expected number of offsprings with allele i is proportional to

Xi · Xi · (AX)i + 2 · 1
2
(1 − Xi)Xi · (AX)i = Xi(AX)i (X2

i stands for the probability

that first individual has both his alleles i, i.e., is represented by (i, i) - and thus the

offspring will inherit allele i - and 21
2
(1 − Xi)Xi stands for the probability that the

first individual has allele i exactly once in his representation and the offspring will

inherit). Hence, if X denote the frequencies of the alleles in the population in the

next generation (random variables)

E[X ′i|X] =
Xi(AX)i
X>AX

.

We focus on the deterministic version of the equations above, which captures

the infinite population model. Thus if x ∈ ∆n represents the proportions of alleles

in the current population, under the evolutionary process of natural-selection (the

reproduction happens as described) this proportion changes as per the following multi-

variate function f : ∆n → ∆n under the infinite population model [82]; discrete

replicator dynamics (Chapter 2, Equations (14)).

x′ = f(x) where x′i = fi(x) = xi
(Ax)i
x>Ax

, ∀i ∈ [n] (20)

where x′ are the proportions of the next generation. f is a continuous function

with convex, compact domain (= range), and therefore always has a fixed point [63].

Further, limit points of f have to be fixed points.

6Punnett Square. See http://www.nature.com/scitable/topicpage/inheritance-of-traits-by-
offspring-follows-predictable-6524925 for a nice article.
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3.4.2 Stability and eigenvalues

By Definition 3 it follows that if x is asymptotically stable with respect to dynam-

ics f (20), then the set of initial conditions in ∆ so that the dynamics converge to x

has positive measure. Using the fact that under f the potential function π(x) = x>Ax

strictly decreases unless x is a fixed point, the next theorem was derived in [83].

Theorem 3.4 (Stable fixed points ⇔ local minima [83], § 9.4.7). A fixed point

r of dynamics (20) is stable if and only if it is a local maximum of π, and is asymp-

totically stable if and only if it is a strict local maximum.

As the domain of π is closed and bounded, there exists a global maximum of π in

∆n, which by Theorem 3.4 is a stable fixed point, and therefore its existence follows.

However, existence of asymptotically stable fixed point is not guaranteed, for example

if A = [1]m×n then no x ∈ ∆n is attracting under f .

To analyze limiting points of f with respect to the notion of stability in terms of

perturbation resistant, we need to use the eigenvalues of the Jacobian of f at fixed

points. Let Jr denote the Jacobian at r ∈ ∆n. The following theorem in dynam-

ics/control theory relates (asymptotically) stable fixed points with the eigenvalue of

its Jacobian. Theorem 1.2 implies that eigenvalues of the Jacobian at a stable fixed

point have absolute value at most 1, however the converse may not hold. Below we

provide the equations of the Jacobian.

Equations of Jacobian. Since f is defined on n variables while its domain is ∆n

which is of n− 1 dimension, we consider a projected Jacobian by replacing a strategy

t with xt > 0 by 1−∑i 6=t xi in f .

Jx
ii =

(Ax)i
x>Ax

+ xi
(Aii − Ait)(x>Ax)− 2(Ax)i((Ax)i − (Ax)t)

(x>Ax)2
,

Jx
ij = xi

(Aij − Ait)(x>Ax)− 2(Ax)i((Ax)j − (Ax)t)

(x>Ax)2
.

53



If x is a fixed point of f , then using Remark 3.5 below the above simplifies to,

Jx
ii = 1 + xi

(Aii − Ait)
x>Ax

if xi > 0 and Jx
ii =

(Ax)i
x>Ax

if xi = 0,

Jx
ij = xi

Aij − Ait
x>Ax

if xi, xj > 0 and Jx
ij = 0 if xi = 0.

Fact 3.5. Profile x is a fixed point of f iff ∀i ∈ [n], xi > 0⇒ (Ax)i = x>Ax.

Using properties of Jx and [82], we prove next:

Theorem 3.6 (Replicator converges to stable fixed points). The set of initial

conditions in ∆n so that the dynamics (20) converge to linearly unstable fixed points

has measure zero.

Proof. This is an application of Center-stable Manifold Theorem 1.3 and the proof

is similar to that of Theorem 2.9. To use Center-stable Manifold Theorem we need

to project the map of the dynamics (20) to a lower dimensional space. We consider

the (diffeomorphism) function g that is a projection of the points x ∈ Rn to Rn−1 by

excluding a specific (the ”first”) variable. We denote this projection of ∆n by g(∆n),

i.e., x→g (x′) where x′ = (x2, . . . , xn). Further, we define the fixed point dependent

projection function zr where we remove one variable xt so that rt > 0 (like function

g but the removed strategy must be chosen with positive probability at r).

Let f be the map of dynamical system (20). For a linearly unstable fixed point r

we consider the function ψr(v) = zr◦f ◦z−1
r (v) which is C1 local diffeomorphism (due

to the point-wise convergence of f , i.e., Theorem 2.1, we know that the rule of the

dynamical system is a diffeomorphism), with v ∈ Rn−1. Let Br be the ball derived

from Theorem 1.3 and consider the union of these balls (transformed in Rn−1)

A = ∪rAr,

where Ar = g(z−1
r (Br)) (z−1

r ”returns” the set Br back to Rn). Set Ar is an open

subset of Rn−1 (by continuity of zr). Due to the Lindelőf’s Lemma A.1, we can
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find a countable subcover for A, i.e., there exists fixed points r1, r2, . . . such that

A = ∪∞m=1Arm .

For a t ∈ N let ψt,r(v) the point after t iteration of dynamics (20), starting with

v, under projection zr, i.e., ψt,r(v) = zr ◦ f t ◦ z−1
r (v). If point v ∈ g(∆n) (which

corresponds to g−1(v) in our original ∆n) has a linearly unstable fixed point as a

limit, there must exist a t0 and m so that ψt,rm ◦ zrm ◦ g−1(v) ∈ Brm for all t ≥ t0 (we

have point-wise convergence from Theorem 2.1) and therefore again from Theorem

1.3 and the fact that g(∆n) is invariant we get that ψt0,rm ◦ zrm ◦ g−1(v) ∈ W sc
loc(rm),

hence v ∈ g◦z−1
rm ◦ψ−1

t0,rm(W sc
loc(rm)∩zrm(∆n)). Hence the set of points in g(∆n) whose

ω-limit has a linearly unstable equilibrium is a subset of

C = ∪∞m=1 ∪∞t=1 g ◦ z−1
rm ◦ ψ−1

t,rm(W sc
loc(rm) ∩ zrm(∆n)). (21)

Since rm is linearly unstable, it holds that dim(Eu) ≥ 1, and therefore dimension

of W sc
loc(rm) is at most n− 2. Thus, the set W sc

loc(rm)∩ zrm(∆n) has Lebesgue measure

zero in Rn−1. Finally since g ◦ z−1
rm ◦ψ−1

t,rm : Rn−1 → Rn−1 is continuously differentiable

(in a neighborhood of g(∆n), by Theorem 2.1), ψt,rm is C1 and locally Lipschitz (see

[110] p.71). Therefore using Lemma A.2 below it preserves the null-sets, and thereby

we get that C is a countable union of measure zero sets, i.e., is measure zero as well,

and Theorem 3.6 follows.

In Theorem 3.6 we manage to discard only those fixed points whose Jacobian has

eigenvalue with absolute value > 1, while characterizing limiting points of f ; the

latter is finally used to argue about the survival of diversity.

3.5 Convergence, stability, and characterization

As established in Section 3.4.1, evolution in single locus diploid species is governed

by dynamics f of (20). Understanding survival of diversity requires to analyze the
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following set,

L = {x ∈ ∆n | positive measure of starting points converge to x under f}. (22)

By Definition 3 it follows that asymptotically stable ⊆ L. In addition, the charac-

terization of linearly stable fixed point from Theorem 3.6 implies L ⊆ linearly stable.

In this section we try to characterize L using various notions of stability, which have

game theoretic and combinatorial interpretation. These notions sandwich set-wise

the classic notions of stability given in the preliminaries, and thereby give us a partial

characterization of L. This characterization turns out to be crucial for our hardness

results as well as results on survival in random instances.

Given a symmetric matrix A, a two-player game (A,A) forms a symmetric coor-

dination game. We identify special symmetric NE of this game to characterize stable

fixed points of f . Given a profile x ∈ ∆n, define a transformed matrix T (A,x) of

dimension (k − 1)× (k − 1), where k = |SP (x)|, as follows.

Let SP (x) = {i1, . . . , ik}, B = T (A,x). ∀a, b < k,Bab = Aiaib + Aikik − Aiaik − Aikib .

(23)

Since A is symmetric it is easy to check that B is also symmetric, and therefore has

real eigenvalues. Recall the Definition 9 of strict symmetric NE.

Definition 11 (Notion of (strict) Nash stable). A strategy x is called (strict)

Nash stable if it is a (strict) symmetric NE of the game (A,A), and T (A,x) is negative

(definite) semi-definite.

Lemma 3.7. For any given x ∈ ∆n, T (A,x) is negative (definite) semi-definite iff

(y>Ay < 0) y>Ay ≤ 0, ∀y ∈ Rn such that
∑

i yi = 0 and xi = 0⇒ yi = 0.

Proof. It suffices to assume that x is fully mixed. Let z be any vector with
∑

i zi = 0

and define the vector w = (z1 − zn, ..., zn−1 − zn) with support n − 1. It is clear

that z>Az ≤ 0 iff w>T (A,x)w ≤ 0. So if z>Az ≤ 0 for all z with
∑

i zi = 0 then
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T (A,x) is negative semidefinite. If there exists a z with
∑

i zi = 0 s.t z>Az > 0 then

w>T (A,x)w > 0, so T (A,x) is not negative semidefinite.

Since stable fixed points are local optima, we map them to Nash stable strategies.

Lemma 3.8 (Stable fixed point implies Nash stable). Every stable fixed point

r of f is a Nash stable of game (A,A).

Proof. There is a similar proof in [83] for a modified claim. Here we connect the two.

First of all, observe that if (r, r) is not Nash equilibrium for (A,A) game then there

exists a j such that rj = 0 and (Ar)j > r>Ar. But
(Ar)j
r>Ar

> 1 is an eigenvalue of Jr.

Additionally, since r is stable, using Theorem 3.4 we have that r is a local max-

imum of π(x) = x>Ax, say in a neighborhood ‖x − r‖ < δ. Let y be a vector with

support subset of the support of r such that
∑

i yi = 0. Firstly we rescale it w.l.o.g

so that ‖y′‖ < δ and by setting z = y′ + r we have that

z>Az = y′>Ay′ + r>Ar + 2y′>Ar.

But y′>Ar = 0 since (Ar)i = (Ar)j for all i, j s.t ri, rj > 0,
∑

i y
′
i = 0 , y′ has

support subset of the support of r. Therefore y′>Ay′ + r>Ar = z>Az ≤ r>Ar, thus

y′>Ay′ ≤ 0. Hence proved using Lemma 3.7.

Since stable fixed points always exist, so do Nash stable strategies (Lemma 3.8).

Next we map strict Nash stable strategies to asymptotically stable fixed points, as

the negative definiteness and strict symmetric Nash of the former implies strict local

optima, and the next lemma follows.

Lemma 3.9 (Strict Nash stable implies asymptotically stable [83] § 9.2.5).

Every strict Nash stable is asymptotically stable.

Proof. The proof can be found in [83]. The sufficient conditions for a fixed point to

be asymptotically stable in the proof are exactly the assumptions for a fixed point to

be strict Nash stable.
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The above two lemmas show that strict Nash stable ⊆ asymptotically stable (by

definition) ⊆ stable (by definition) ⊆ Nash stable. Further, by Theorem 1.2 and the

definition of linearly stable fixed points we know that stable ⊆ linearly stable. What

remains is the relation between Nash stable and linearly stable. The next lemma

answers this.

Lemma 3.10 (Nash stable equivalent with linearly stable). Strategy r is Nash

stable iff it is a linearly stable fixed point.

Proof. Let t be the removed strategy (variable xt) to create Jr (with rt > 0). For

every i such that ri = 0 we have that Jr
ii = (Ar)i

r>Ar
and Jr

ij = 0 for all j 6= i. Hence the

corresponding eigenvalues of Jr of the rows i that do not belong in the support of r

(i-th row has all zeros except the diagonal entry Jr
ii = (Ar)i

r>Ar
) are (Ar)i

r>Ar
> 0 which are

less than or equal to 1 iff (r, r) is a NE of the game (A,A).

Let Jr be the submatrix of Jr by removing all columns/rows j /∈ SP (r). Let A′ be

the submatrix of A by removing all removing all columns/rows j /∈ SP (r). It suffices

to prove that T (A, r) is negative semi-definite iff Jr has eigenvalues with absolute

value at most 1.

Let k = |SP (r)| and the k × k matrix L with Lij = ri
Aij
r>Ar

and i, j ∈ SP (r).

Observe that L is stochastic and also symmetrizes to L′ij =
√
rirj

Aij
r>Ar

, i.e., L,L′

have the same eigenvalues. Therefore L has an eigenvalue 1 and the rest eigenvalues

are real between (−1, 1) and also A′ has eigenvalues with the same signs as L′.

Finally, we show that det(L − λIk) = (1 − λ) × det(J′r − λIk−1) with J′r = Jr −

Jr − Ik−1, namely L has the same eigenvalues as J′r plus eigenvalue 1. It is true for

a square matrix that by row/column to another row/column, the determinant stays

invariant. We consider L−λIk and we do the following: We subtract the t-th column

from every other column and on the resulting matrix, we add every row to the t-th

row. The resulting matrix R has the property that det(R) = (1−λ)×det(J′r−λIk−1)

and also det(R) = det(L− λIk).
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From above we get that if Jr has eigenvalues with absolute value at most 1, then

Jr − Ik−1 has eigenvalues in [−2, 0] (we know that are real from the fact that L is

symmetrizes to L′), hence L′ has eigenvalue 1 and the rest eigenvalues are in [−2, 0]

(since L is stochastic, the rest eigenvalues lie in (−1, 0]). Therefore A′ has positive

inertia 1 (see Sylvester’s law of inertia) and the one direction For the converse, T (A, r)

being negative semi-definite implies A′ has positive inertia 1, thus L′ and so L have

one eigenvalue positive (which is 1) and the rest non-positive (lie in (−1, 0] since L is

stochastic). Thus Jr−Ik−1 has eigenvalues in (−1, 0] and therefore Jr has eigenvalues

in (0, 1] (i.e., with absolute value at most 1).

Using Theorems 3.4 and 3.6, and Lemmas 3.8, 3.9 and 3.10 we get the following

characterization among all the notions of stability that we have discussed so far. We

also remind you that asymptotically stable ⊆ L ⊆ linearly stable.

Theorem 3.11 (Relations between stability notions). Given a symmetric ma-

trix A, we have

Strict Nash stable ⊆ Asymptotically stable ⊆ L ⊆ linearly stable = Nash stable

⊇

stable ⊆ linearly stable = Nash stable

As stated before, generically (random fitness matrix) we have hyperbolic fixed

points and all the previous notions coincide. Given a fitness (positive) matrix A, let

x be a limit point of dynamics f governed by (20) If it is not pure, i.e., |SP (x)| > 1

then at least two alleles survive among the population, and we say the population is

diverse in the limit.

3.6 Survival of diversity

Definition 12 (Survival of diversity). We say that diversity survives in the limit

if there exists x ∈ L such that x is not pure (is mixed), and diversity survives surely

if no x ∈ L is pure.
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We provide sufficient conditions for two extreme cases of fitness matrix for the

survival of diversity, where diversity always survives and where diversity disappears

regardless of the starting population. Using this characterization we analyze the

chances of survival of diversity when fitness matrix and starting populations are picked

uniformly at random from atomless distributions.

Since L ⊆ Nash stable = linearly stable (Theorem 3.11), there has to be at least

one mixed Nash (or linearly) stable strategy for diversity to survive (see Definition

12). Next we give a definition that captures the homozygote/heterozygote advantage

and a lemma which uses it to identify instances that lack mixed Nash stable strategies.

Definition 13 (Dominating/dominated diagonal entries). Diagonal entry Aii

is called dominated if and only if ∃j, such that Aij > Aii. And it is called dominating

if and only if Aii > Aij for all j 6= i.

Next lemma characterizes instances that lack mixed Nash stable.

Lemma 3.12 (Dominating diagonal implies no mixed stable fixed points).

If all diagonal entries of A are dominating then there are no mixed linearly stable

fixed points.

Proof. Let r be a fixed point and w.l.o.g strategy 1 is in its support and assume

that Jr is the projected Jacobian at r by removing strategy 1 (let k × k be its size).

Jr has diagonal entries 1 + ri
Aii−Ai1
r>Ar

. Hence tr(Jr) = k +
∑

i ri
(Aii−Ai1)

r>Ar
> k, as

Aii > Aij,∀i 6= j. Therefore there exists an eigenvalue with absolute value greater

than 1 if k > 0.

The next theorem follows using Theorem 3.6 and Lemma 3.12 above. Informally, it

states that if every diagonal entry of A is dominating then almost surely the dynamics

converge to pure fixed points.
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Theorem 3.13 (Homozygous advantage inhibitor of diversity). If every di-

agonal entry of A is dominating then the set of initial conditions in ∆n so that the

dynamics (20) converges to mixed fixed points has measure zero, i.e., diversity dies

almost surely.

Next we show sure survival of diversity when diagonals are dominated.

Lemma 3.14. Let r be a fixed point of f with rt = 1. If Att is dominated, then r is

linearly unstable.

Proof. The equations of the projected Jacobian Jr at r are:

Jr
i,i = (Ar)i

r>Ar
+ ri

Aii−Ait
(r>Ar)

= Ait
Att

and Jr
i,j = ri

Aij−Ait
r>Ar

= 0. The eigenvalues of Jr are

Ait
Att

for all i 6= t. By assumption, there exists a t′ such that At′t > Att and hence Jr

will have
At′t
Att

> 1 as an eigenvalue.

If all pure fixed points that are linearly unstable, then all linearly stable fixed points

are mixed, and thus the next theorem follows using Theorem 3.11 and Lemma 3.14.

Theorem 3.15 (Heterozygote advantage implies diversity). If every diagonal

of A is dominated then no x ∈ L is pure, i.e., diversity survives almost surely.

The following lemma shows that when the entries of a fitness matrix are picked uni-

formly independently from an atomless distribution, there is a positive probability

(bounded away from zero for all n) so that every diagonal in A is dominated. This es-

sentially means that generically, diversity survives with positive probability, bounded

away from zero, where the randomness is taken with respect to both the payoff matrix

and initial conditions.

Lemma 3.16 (Heterozygote advantage with constant probability). Let en-

tries of A be chosen i.i.d from an atomless distribution. The probability that all

diagonals of A are dominated is at least 1
3
− o(1).
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Proof. Let Ei be the event that Aii is dominating. We get that:

P [Ei] =
1

n
.

Also for n ≥ 6 we have that

P [Ei ∩ Ej ∩ Ek] ≤
1

(n− 3)3

for i 6= j 6= k 6= i. To prove this let Di correspond to the events Aii > Ait for all

t 6= i, j, k (in same way the definition of Dj, Dk). Clearly Di, Dj, Dk are independent

and thus P [Di ∩Dj ∩Dk] = 1
(n−3)3

. Since Ei∩Ej ∩Ek ⊂ Di∩Dj ∩Dk the inequality

follows.

Finally by counting argument (count all the favor permutations) we get that

P [Ei ∩ Ej] ≥
2[
∑n−2

k=0(2n− 3− k)! (n−2)!
(n−2−k)!

]

(2n− 1)!
=

2

n(n− 1)

n−2∑
k=0

k+1∏
i=0

n− i
2n− i− 1

for i 6= j. For l = o(n), for example l = log n and using the fact that n−i
2n−i−1

is

decreasing with respect to i we get that

n−2∑
k=0

k+1∏
i=0

n− i
2n− i− 1

≥
l∑

k=0

k+1∏
i=0

n− i
2n− i− 1

≥
l∑

k=0

(
n− k − 1

2n− k − 2

)k+2

≥
l∑

k=0

(
n− l − 1

2n− l − 2

)k+2

=

(
n− l − 1

2n− l − 2

)2
(

1− ( n−l−1
2n−l−2

)l+1

1− n−l−1
2n−l−2

)
=

1

2
− o(1).

Therefore (inclusion-exclusion) we have that

P [∪Ei] ≤
∑
i

P [Ei]−
∑
i<j

P [Ei ∩ Ej] +
∑
i<j<k

P [Ei ∩ Ej ∩ Ek] ,

thus

P [∩Ec
i ] ≥

1

2
− o(1)− n(n− 1)(n− 2)

6(n− 3)3
=

1

3
− o(1),

which is bounded away from zero.
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The next theorem follows using Theorem 3.15 and Lemma 3.16.

Theorem 3.17 (Diversity survives with constant probability). Assume that

the fitness matrix has entries picked independently from an atomless distribution then

with significantly high probability, at least 1
3
− o(1), diversity will survive surely.

Remark 5 (Typical instance). Observe that letting Xi be the indicator random

variable that Aii is dominating and X =
∑

iXi we get that E[X] =
∑

i E[Xi] =∑
i P [Ei] = n × 1

n
= 1 so in expectation we will have one dominating element. Also

from the above proof of Lemma 3.16 we get that E[X2] =
∑

i E[Xi]+2
∑

i<j E[XiXj] =

1+n(n−1)P [Ei ∩ Ej] ≈ 2−o(1) (namely V[X] ≈ 1−o(1)) so by Chebyshev’s inequality

P [|X − 1| > k] is O( 1
k2

).

3.7 NP-hardness results

Positive chance of survival of phenotypic (allele) diversity in the limit under the

evolutionary pressure of selection (Definition 12), implies existence of a mixed linearly

stable fixed point (Theorem 3.6). This notion encompasses all the other notions of sta-

bility (Theorem 3.11), and may contain points that are not attracting. Whereas, strict

Nash stable and asymptotically stable are attracting. Here we show that checking if

there exists a mixed stable profile, for any of the five notions of stability (Definitions

2, 3, 4 and 11), may not be easy. In particular, we show that the problem of checking

if there exists a mixed profile that satisfies any of the stability conditions is NP-hard.

In order to obtain hardness for checking survival of diversity as a result, in other

words checking if set L has a mixed strategy, we design a unifying reduction.

Our reduction also gives NP-hardness for checking if a given pure strategy is played

with non-zero probability (subset) at these. In other words, it is NP-hard to check

if a particular allele is going to survive in the limit under the evolution. Finally we

extend all the results to the typical class of matrices, where exactly one diagonal entry

is dominating (see Definition 13 and Remark 5 in Section 3.6). All the reductions are
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from k-Clique, a well known NP-complete problem [34].

Definition 14 (k-Clique). Given an undirected graph G = (V,E), with V vertices

and E edges, and integer 0 < k < |V | − 1 = n− 1, decide if G has a clique of size k.

Properties of G. Given a simple graph G = (V,E) if we create a new graph Ḡ

by adding a vertex u and connecting it to all the vertices v ∈ V , then it is easy to

see that graph G has a clique of size k if and only if Ḡ has a clique of size k + 1.

Therefore, w.l.o.g we can assume that there exists a vertex in G which is connected

to all the other vertices. Further, if n = |V |, then for us such a vertex is the n-th

vertex. By abuse of notation we will use E an adjacency matrix of Ḡ too, Eij = 1 if

edge (i, j) present in Ḡ else it is zero.

3.7.1 Hardness for checking stability

In this section we show NP-hardness (completeness for some) results for decision

versions on (strict) Nash stable strategies and (asymptotically) stable fixed points.

Given graph G = (V,E) and integer k < n, we construct the following symmetric

2n×2n matrix A, where E ′ is modification of E where off-diagonal zeros are replaced

with −h where h > 2n2 + 5.

∀i ≤ j, Aij = Aji =



E′ij if i, j ≤ n

k − 1 if |i− j| = n

h if i, j > n and i = j, where h > 2n2 + 5

−ε otherwise, where 0 < ε ≤ 1
10n3 .

(24)

A is a symmetric but is not non-negative. Next lemma maps k-clique to mixed

strategy that is also strict Nash stable fixed point. Note that such a fixed point

satisfies all other stability notions as well, and hence implies existence of mixed limit

point in L.
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Lemma 3.18 (Existence of clique implies strict Nash stable). If there exists

a clique of size at least k in graph G, then the game (A,A) has a mixed strategy p

that is strict Nash stable.

Proof. Let vertex set C ⊂ V forms a clique of size k in graph G. Construct a

maximal clique containing C, by adding vertices that are connected to all the vertices

in the current clique. Let the corresponding vertex set be S ⊂ V (C ⊂ S), and let

m = |S| ≥ k. W.l.o.g assume that S = {v1, . . . , vm}. Now we construct a strategy

profile p ∈ ∆2n and show that it is a strict Nash stable of game (A,A), with

pi =


1
m

1 ≤ i ≤ m

0 m+ 1 ≤ i ≤ 2n

Claim 3.19. p is a strict SNE of game (A,A).

Proof. To prove the claim we need to show that (Ap)i > (Ap)j, ∀i ∈ [m],∀j /∈

[m], and (Ap)i = (Ap)j, ∀i, j ∈ [m]. Since S forms a clique in graph G, and by

construction of A, the payoff from i-th pure strategy against p is

(Ap)i =


∑

r≤m
1
m

= m−1
m
, ∀i ∈ [m]∑

r≤m,Eir=1
1
m

-
∑

r≤m,Eir=0 h <
m−1
m
, ∀m < i ≤ n (∵ ∃r ≤ m,Eir = 0)

k−1
m
− ε(1− 1

m
) < k−1

m
≤ m−1

m
∀n < i ≤ 2n (∵ m ≥ k and k < n− 1).

Thus the claim follows.

Next consider the corresponding transformed matrix B = T (A, [m]) as defined in

(23). Since Aij = 1 ∀i, j ∈ [m], i 6= j and Aii = 0, ∀i ∈ [m], we have

∀i, j < m, Bij = Aij + Amm − Aim − Amj = −1 if i 6= j,

= −2 if i = j.

Claim 3.20. B is negative definite.
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Proof. It is easy to check that B has all strictly negative eigenvalues. w1 = 1m−1 is

an eigenvector with eigenvalue −m, and ∀1 < i < m, vector wi, where wi1 = 1 and

wii = −1, is an eigenvector with eigenvalue −1. Further, w1, . . . ,wm−1 are linearly

independent.

Thus by Definition 11, p is a strict Nash stable for game (A,A) .

Since strict Nash stable is contained in all other sets, the above lemma implies

existence of mixed strategy for all of them if there is a clique in G. Next we want

to show the converse for all notions of stability. That is if mixed strategy exists for

any notion of the five notions of stability then there is a clique of size at least k in

the graph G. Since each of the five stability implies Nash stability, it suffices to map

mixed Nash stable strategy to clique of size k. For this, and reductions that follow,

we use the following property due to negative semi-definiteness of Nash stability.

Lemma 3.21. Given a fixed point x, if T (A,x) is negative semi-definite, then ∀i ∈

SP (x), Aii ≤ 2Aij, ∀j 6= i ∈ SP (x). Moreover if x is a mixed Nash stable then it has

in its support at most one strategy t with Att is dominating.

Proof. A negative semi-definite matrix has the property that all the diagonal elements

are non-positive. Observe that from definition of T (A, r), we can choose any strategy

to be removed that is in SP (r), hence we choose i and we look at entry Bjj =

Aii + Ajj − 2Aij with j ∈ SP (r), j 6= i which must be non-positive since T (A, r)

is negative semi-definite. Hence Aii ≤ Aii + Ajj ≤ 2Aij. Finally, if Aii, Ajj are

both dominating then Aii + Ajj > Aij + Aji = 2Aij which is contradiction since

Aii + Ajj − 2Aij ≤ 0.

Nash stable also implies symmetric Nash equilibrium. Next lemma maps (special)

symmetric NE to k-clique.

Lemma 3.22. Let p be a symmetric NE of game (A,A). If SP (p) ⊂ [n] and

|SP (p)| > 1, then there exists a clique of size k in graph G.
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Proof. Let’s define SSP(p) = {i | pi > 1
n2}. We first show |SSP(p)| ≥ k.

Claim 3.23. |SSP(p)| ≥ k.

Proof. Note that
∑

i∈SP (p)\SSP(p) pi ≤ n 1
n2 ≤ 1

n
. Therefore,

∑
i∈SSP(p) pi ≥ 1 − 1

n
.

Suppose |SSP(p)| < k by contradiction. Then ∃r ∈ SSP(p) such that pr ≥ 1− 1
n

k−1
=

n−1
n(k−1)

. Now consider the payoff from strategy n+ r, which is

(Ap)n+r = (k − 1)pr − ε(1− pr) ≥ 1− 1

n
− ε.

On the other hand we have

(Ap)r ≤ 1− pr ≤ 1− n− 1

n(k − 1)
.

Therefore,

(Ap)n+r − (Ap)r ≥ 1− 1

n
− ε− 1 +

n− 1

n(k − 1)
≥ n− k
n(k − 1)

− 1

10n3
> 0.

A contradiction to p being symmetric NE.

Let’s define S = {vi | i ∈ SSP(p)}. In order to prove the lemma, it suffices to

show the vertex set S forms a clique in the graph G since |S| = |SSP(p)| ≥ k.

Claim 3.24. The vertex set S forms a clique in the graph G.

Proof. It suffices to show ∀i, j ∈ SSP(p) where i 6= j we have Aij = 1. Suppose not

then ∃i′, j′ ∈ SSP(p) s.t. i′ 6= j′ and Ai′j′ 6= 1. We get Ai′j′ = −h by definition of

A. Therefore, (Ap)j′ ≤ −hpi′ + 1 ≤ −1 because pi′ ≥ 1
n2 and h ≥ 2n2. On the other

hand, we have ∀i 6∈ [n], (Ap)i ≥ −ε > −1 by definition of A so we get a contradiction

to p being symmetric NE.

The proof is completed.

We obtain the next lemma essentially using Lemmas 3.21 and 3.22.
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Lemma 3.25. If game (A,A) has a mixed Nash stable strategy, then graph G has a

clique of size k.

Proof. Let p be a Nash stable strategy of game (A,A), then by definition p is a SNE

and matrix B = T (A,p) is negative semi-definite. The latter implies SP (p) ⊂ [n]

using Lemma 3.21, since for i /∈ [n] Aii = h > 2k > 2Aij,∀j 6= i. Applying Lemma

3.22 with this fact together with the p being an SNE and |SP (p)| > 1 implies G has

a clique of size k.

We mention the following, which is necessary for the main theorem of this section.

Lemma 3.26. Let A be a symmetric matrix, and B = A + c for a c ∈ R, then the

set of (strict) Nash stable strategies of B are identical to that of A.

Proof. For equivalence of (strict) Nash stable points, the set of (strict) symmetric NE

are same for games (A,A) and (B,B), and matrix T (A,x) = T (B,x),∀x ∈ ∆n.

The next theorem follows using Theorem 3.11, Lemmas 3.18 and 3.25, and the

property observed in Lemma 3.26. Since there is no polynomial-time checkable condi-

tion for (asymptotically) stable fixed points7 its containment in NP is not clear, while

for (strict) Nash stable strategies containment in NP follows from the Definition 11.

Theorem 3.27 (Main hardness result). Given a symmetric matrix A, checking

if (i) game (A,A) has a mixed (strict) Nash stable (or linearly stable) strategy is

NP-complete. (ii) dynamics f (20) has a mixed (asymptotically) stable fixed point is

NP-hard. Even if A is a positive matrix.

Note that since adding a constant to A does not change its strict Nash stable and

Nash stable strategies (see Lemma 3.26), and since these two sandwiches all other

stability notions, the second part of the above theorem follows.

7These are same as (strict) local optima of function π(x) = x>Ax, and checking if a given p is
a local optima can be inconclusive if hessian at p is (negative) semi-definite.
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As we note in Remark 5, matrix with i.i.d entries from any atomless distribution

has in expectation exactly one row with dominating diagonal (see Definition 13). One

could ask does the problem become easier for this typical case. We answer negatively

by extending all the NP-hardness results to this case as well, where matrix A has

exactly one row whose diagonal entry dominates all other entries of the row. See

Section 3.7.2 for details, and thus the next theorem follows.

Theorem 3.28. Given a symmetric matrix A, checking if (i) game (A,A) has a

mixed (strict) Nash stable (or linearly stable) strategy is NP-complete. (ii) dynamics

(20) applied on A has a mixed (asymptotically) stable fixed point is NP-hard. Even if

A is strictly positive, or has exactly one row with dominating diagonal.

3.7.2 Hardness when single dominating diagonal

A symmetric matrix, when picked uniformly at random, has in expectation exactly

one row with dominating diagonal (see Remark 5). One could ask does the problem

become easier for this typical case. We answer negatively by extending all the NP-

hardness results of Theorem 3.27 to this case as well, where matrix A has exactly

one row whose diagonal entry dominates all other entries of the row, i.e., ∃i : Aii >

Aij, ∀j 6= i.

Consider the following modification of matrix A from (24), where we add an extra

row and column. Matrix M is of dimension (2n+ 1)× (2n+ 1), described pictorially

in Figure 5. Recall that h > 2n2 + 5 and k is the given integer.

Mij = Aij if i, j ≤ 2n

M(2n+1)i = Mi(2n+1) = 0 if i ≤ n

M(2n+1)i = Mi(2n+1) = h+ ε if n < i ≤ 2n, where 0 < ε < 1

M(2n+1)(2n+1) = 3h

(25)

Clearly M has exactly one row/column with dominating diagonal, namely (2n + 1).

The strategy constructed in Lemma 3.18 is still strict Nash stable in game (M,M).
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Figure 5: Matrix M as defined in (25)

This is because their support is a subset of [n], implying the extra strategy giving

zero payoff which is strictly less than the expected payoff. Thus, we get the following:

Lemma 3.29. If graph G has a clique of size k, then game (M,M) has a mixed

strategy that is strict Nash stable where A is from (24).

Next we show the converse. Nash stable strategies are super set of other three notion

of stability (Theorem 3.11), so it suffices to map Nash stable to a k-clique. Further,

if p is Nash stable then T (M,p) is negative semi-definite (by definition). Using this

property together with the lemmas from previous sections, we show the next lemma.

Lemma 3.30. Graph G has a clique of size k, if there is a mixed Nash stable strategy

in (M,M).

Proof. Let q be the Nash stable strategy, then it is a symmetric NE of game (M,M),

T (M,q) is negative semi-definite, and |SP (q)| > 1. Using Lemma 3.21 we have

SP (q) ⊆ [n], as for i = 2n + 1, Mii = 3h > 2Mij, ∀j 6= i implying 2n + 1 /∈ SP (q),

and ∀n < i ≤ 2n, Mii = h > 2k > 2Aij, ∀j ∈ SP (q). Thus for 2n-dimensional

vector p, where pi = qi, i ≤ 2n, we have T (A,p) = T (M,q) and p is a symmetric

NE of game (A,A). Thus, stability property of q on matrix M carries forward to

corresponding stability of p on matrix A. Rest follows using Lemma 3.25.
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The next theorem follows using Theorem 3.11, Lemmas 3.26, 3.29, and 3.30. Con-

tainment in NP follows using the Definition 11.

Theorem 3.31. Given a symmetric matrix M such that exactly one row/column in

M has a dominating diagonal,

• it is NP-complete to check if game (M,M) has a mixed Nash stable (or linearly

stable) strategy.

• it is NP-complete to check if game (M,M) has a mixed strict Nash stable.

• it is NP-hard to check if dynamics (20) applied on M has a mixed stable fixed

point.

• it is NP-hard to check if dynamics (20) applied on M has a mixed asymptotically

stable fixed point.

even if M is a assumed to be positive.

Strict positivity of the matrix in the above theorem follows using the fact that Nash

stable and strict Nash stable strategies do not change when a constant is added to

the matrix (Lemma 3.26).

3.7.3 Hardness for subset

Another natural question to ask is whether a particular allele is going to survive

with positive probability in the limit, for a given fitness matrix. We show that this

may not be easy either, by proving hardness for checking if there exists a stable

strategy p such that i ∈ SP (p) for a given i. Given a subset S of pure strategies, it

is hard to check if there exists a stable profile p such that S is a subset of SP (p).

Theorem 3.32. Given a d× d symmetric matrix M and a subset S ⊂ [d],

• it is NP-complete to check if game (M,M) has a Nash stable (or linearly stable)

strategy p s.t. S ⊂ SP (p).
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• it is NP-complete to check if game (M,M) has a strict Nash stable strategy p

s.t. S ⊂ SP (p).

• it is NP-hard to check if dynamics (20) applied on M has a stable fixed point p

s.t. S ⊂ SP (p).

• it is NP-hard to check if dynamics (20) applied on M has a asymptotically stable

fixed point p s.t. S ⊂ SP (p).

even if |S| = 1, or if M is a assumed to be positive or with exactly one row with

dominating diagonal.

Proof. The reduction is again from k-clique. Our constructions of (24) and (25) works

as is, and the target set is S = {n}.

Recall that vertex vn ∈ V is connected to every other vertex in G, and therefore

is part of every maximal clique. Thus the construction of strategy p in Lemmas 3.18

and 3.29 will have pn > 0, and therefore if k-clique exist then S ⊂ SP (p).

For the converse consider a Nash stable strategy p with {n} ⊂ SP (p). By def-

inition it is a symmetric NE, and therefore SP (p) 6= {n} as in all cases row n has

dominated diagonal, i.e., Ann = 0 < k − δ = An,2n. Thus, p is a mixed profile, and

then by applying Lemmas 3.25 and 3.30, for the respective cases we get that graph

G has a k-clique. Thus proof follows using Theorem 3.11 and Lemma 3.26.

3.7.4 Diversity and hardness

Finally we state the hardness result in terms of survival of phenotypic diversity

in the limiting population of diploid organism with single locus. For this case, as we

discussed before, the evolutionary process has been studied extensively [92, 82, 83],

and that it is governed by dynamics f of (20) has been established. Here A is

a symmetric fitness matrix; Aij is the fitness of an organism with alleles i and j

in the locus of two chromosomes. Thus, for a given A the question of deciding
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“If phenotypic diversity will survive with positive probability?” translates to “If

dynamics f converges to a mixed fixed point with positive probability?”. We wish to

show NP-hardness for this question.

Theorem 3.6 establishes that all, except for zero-measure, of starting distributions

f converges to linearly stable fixed points. From this we can conclude that “Yes”

answer to the above question implies existence of a mixed linearly stable fixed point.

However the converse may not hold. In other words, “No” answer does not imply

non-existence of mixed linearly stable fixed points. Although, in that case we can

conclude non-existence of mixed strict Nash stable strategy (Theorem 3.11). Thus,

none of the above reductions seem to directly give NP-hardness for our question.

At this point, the fact that same reduction (of Section 3.7.1) gives NP-hardness

for all four notions of stability, and in particular for strict Nash stable as well as

linearly stable (Nash stable) fixed points come to our rescue. In particular, for the

matrix A of (24) non-existence of mixed limit point in L (points where f converges

with positive probability) implies non-existence of strict Nash stable strategy, which

in turn imply non-existence of mixed linearly stable fixed point (Theorem 3.11). If

not, then graph G will have k-clique (Lemma 3.25 and Theorem 3.11), which in turn

implies existence of a mixed strict Nash stable strategy (Lemma 3.18). Therefore, we

can conclude that mixed linearly stable fixed point exist if and only if f converges to

a mixed fixed point with positive probability and thus the next theorem follows.

Theorem 3.33. Given a fitness matrix A for a diploid organism with single locus, it

is NP-hard to decide if, under (20), diversity will survive (by converging to a specific

mixed equilibrium with positive probability) when starting allele frequencies are picked

i.i.d from uniform distribution. Also, deciding if a given allele will survive is NP-hard.

Remark 6. As noted in Section 1.4.1, coordination games are very special and they

always have a pure Nash equilibrium which is easy to find; NE computation in general

game is PPAD-complete [36]. Thus, it is natural to wonder if decision versions on
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coordination games are also easy to answer.

In the process of obtaining the above hardness results, we stumbled upon NP-

hardness for checking if a symmetric coordination game has a NE (not necessarily

symmetric) where each player randomizes among at least k strategies. Again the

reduction is from k-clique. Thus, it seems highly probable that other decision version

on (symmetric) coordination games are also NP-complete.

3.8 Conclusion and remarks

The results of this chapter appear in [86]. We establish complexity theoretic

hardness results implying that even in the textbook case of single locus (gene) diploid

models, predicting whether diversity survives or not given its fitness landscape is

algorithmically intractable. Our hardness results are structurally robust along sev-

eral dimensions, e.g., choice of parameter distribution, different definitions of stabil-

ity/persistence, restriction to typical subclasses of fitness landscapes. Technically,

our results exploit connections between game theory, nonlinear dynamical systems,

and complexity theory and establish hardness results for predicting the evolution of

a deterministic variant of the well known multiplicative weights update algorithm in

symmetric coordination games; finding one Nash equilibrium is easy in these games.

Finally, we complement our results by establishing that under randomly chosen fitness

landscapes diversity survives with significant probability.

A future direction of this work would be to analyze the diploid dynamics for

multiple genes (loci). As the number of genes increases, the dynamics becomes more

complicated and is hard to perform stability analysis and characterize (partially) the

unstable fixed points. Another question could be to find out on average and in worst

case, how many steps discrete replicator needs to reach an ε-neighborhood of a fixed

point (we address the last question in Chapter 4).
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CHAPTER IV

MUTATION AND SURVIVAL IN DYNAMIC

ENVIRONMENTS

4.1 Introduction

A new, potent approach to studying evolution was initiated by Valiant [134],

namely viewing it through the lens of computation. This viewpoint has already

started yielding concrete insights by translating qualitative hypotheses in biological

systems to provable computational properties of Markov chains and other dynamical

systems (see [135, 136, 79, 23, 87] and Chapters 2, 3, 5 of this thesis). We build on

this direction whilst focusing on the challenge of evolving environments. As discussed

in Chapter 2, building on the work of Nagylaki [92], Chastain et al. [23] showed that

natural selection under sexual reproduction in haploid species (see Section A.1 for

terms used in biology) can be interpreted as the Multiplicative Weight Update Al-

gorithm (MWUA) which we call discrete replicator dynamics, in coordination games

played among genes. Theorem 2.9 (main) of Chapter 2 argues that under mild con-

ditions on the fitness matrix, replicator dynamics converges with probability one to

pure fixed points under random initial conditions1 (the biological interpretation is

that diversity disappears in the limit). Two important ingredients in this result are

the lack of mutations and the fact that the fitness matrix remains fixed.

In this chapter we address two important questions in the case of sexual reproduc-

tion: the role of mutation, especially in the presence of changes to the environment,

i.e., fitness matrix. In the case of asexual reproduction, the change of environment

was studied by Wolf et al. [139]. They modeled a changing environment via a Markov

1Any prior measure absolutely continuous with respect to Lebesgue satisfies the statement.
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chain and described a model in which in the absence of mutation, the population goes

extinct, but in the presence of mutation, the population survives with positive prob-

ability. The question arises whether this is enough to safeguard against extinction in

a changing environment, or if mutation is still needed.

Following Chapter 2, we consider a haploid organism with two genes. Each gene

can be viewed as a player in a game and the alleles of each gene represent strategies

of that player. Once an allele is decided for each gene, an individual is defined, and

its fitness is the payoff to each of the players, i.e., both players have the same payoff

matrix, and therefore it is a coordination/partnership game. We model the change

of environments as in [139], via a Markov chain. Each state of the Markov chain

represents an environment and has its own fitness matrix.

Our contribution. We show under the model described above, where mutations are

captured through a standard model appeared in [61], the following theorems:

Informal Theorem 1 (Mutation and survival). For a class of Markov chains

(satisfying mild conditions), a haploid species under sexual evolution2 without mu-

tation dies out with probability one (see Theorem 4.11). In contrast, under sexual

evolution with mutation the probability of long term survival is strictly positive (see

Theorem 4.15).

For each gene, if we think of its allele frequencies in a given population as defin-

ing a mixed strategy, then after reproduction, the frequencies change as per discrete

replicator dynamics, as in Chapter 2. Furthermore, in the presence of mutation

[61], every allele mutates to another allele of the corresponding gene in a small frac-

tion of offsprings. As it turns out, in every generation, the population size (of the

species) changes by a multiplicative factor of the current expected payoff (mean fit-

ness). Hence, in order to prove Theorems 4.11, 4.15, we need to analyze replicator

2We refer to ‘evolution by natural selection under sexual reproduction’ by sexual evolution for
brevity.
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dynamics (and its variant which captures mutations) in a time-evolving coordination

game whose matrix is changing as per a Markov chain. The idea behind Theorem 4.11

is as follows: It is known that MWUA converges, in the limit, to a pure equilibrium

in coordination games, as discussed in Chapter 2. This implies that in a static envi-

ronment, in the limit, the population will be rendered monomorphic. Showing such a

convergence in a stochastically changing environment is not straightforward. We first

show that such an equilibrium can be reached fast enough in a static environment.

We then appeal to the Borel-Cantelli theorem to argue that with probability one, the

Markov chain will visit infinitely often and remain sufficiently long in one environment

at some point and hence the population will eventually become monomorphic. An

assumption in our theorem is that for each individual, there are bad environments,

i.e., one in which it will go extinct. Eventually the monomorphic population will

reach such an unfavorable environment and will die out. Although mutations seem to

hurt mean population fitness in the short run in static environments, they are critical

for survival in dynamic environments, as shown in Theorem 4.15; it is proved as fol-

lows. The random exploration done by mutations and aided by the selection process,

which rapidly boosts the frequency of alleles with good mean fitness, helps the pop-

ulation to survive. Essentially we couple the random variable capturing population

size with a biased random walk, with a slight bias towards increase. The result then

follows using a well-known lemma on biased random walks.

Polynomial time convergence in static environment. For such a reasoning

to be applicable we need a fast convergence result, which does not hold in the worst

case, since by choosing initial conditions sufficiently close to the stable manifold of

an unstable equilibrium, we are bound to spend super-polynomial time near such

unstable states. To circumvent this we take a typical approach of introducing a

small noise into the dynamics [108, 70, 58], and provide the first, to our knowledge,

polynomial convergence bound for noisy MWUA in coordination games; this result is
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of independent interest. We note that MWUA captures frequency changes of alleles

in case of infinite population, and the small noise can also be thought of as sampling

error due to finiteness of the population. In the following theorem, dependence on all

identified system parameters is necessary (see discussion in Section 4.8).

Informal Theorem 2 (Speed of convergence). In static environments under

small random noise (||.||∞ = δ), sexual evolution (without mutation) converges with

probability 1 − ε to a monomorphic fixed point in time O
(
n log n

ε

γ4δ6

)
, where n is the

number of alleles, and γ the minimum fitness difference between two genotypes (see

Theorem 4.9).

Robustness to mutations. Finally we show that the convergence of discrete repli-

cator dynamics (without mutation) in static environments (see Chapter 2) can be

extended to the case where mutations are also present. The former result critically

hinges on the fact that mean fitness strictly increases under MWUA in coordination

games, and thereby acts as a potential function. This is no more the case. However,

using an inequality due to Baum and Eagon [14] we manage to obtain a new potential

function which is the product of mean fitness and a term capturing diversity of the

allele distribution. The latter term is essentially the product of allele frequencies.

Informal Theorem 3 (Convergence with mutations). In static environments,

sexual evolution with mutation converges, for any level of mutation. Specifically, if

we are not at equilibrium, at the next time generation at least one of mean population

fitness or product of allele frequencies will increase.

Besides adding computational insights to biologically inspired themes, which to

some extent may never be fully settled, we believe that our work is of interest even

from a purely computational perspective. The nonlinear dynamical systems arising

from these models are gradient-like systems of non-convex optimization problems.

Their importance and the need to develop a theoretical understanding beyond worst
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case analysis has been pinpointed as a key challenge for numerous computational

disciplines, e.g., from [7]:

“Many procedures in statistics, machine learning and nature at large –

Bayesian inference, deep learning, protein folding – successfully solve non-

convex problems . . . Can we develop a theory to resolve this mismatch be-

tween reality and the predictions of worst-case analysis?”

Our theorems and techniques share this flavor. Theorem 1 expresses time-average

efficiency guarantees for gradient-like heuristics in the case of time-evolving optimiza-

tion problems. Theorem 2 argues about speedup effects by adding noise to escape

out of saddle points, whereas Theorem 3 is a step towards arguing about robustness

to implementation details. We make this methodological similarities more precise by

pointing them out in more detail in Section 4.2.
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Figure 6: An example of a Markov chain model of fitness landscape evolution.

4.2 Related work

In the last few years we have witnessed a rapid cascade of theoretical results in

the intersection of computer science and evolution (see discussion and references in

Sections 2.1, 2.2 and Chapter 3). It is also possible to introduce connections between

satisfiability and evolution [79]. The error threshold is the rate of errors in genetic
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mixing above which genetic information disappears [44]. Vishnoi [136] shows existence

of such sharp thresholds. Moreover, in Chapter 5 we shed light on the speed of asexual

evolution (see also [137]). Finally, in [39] Dixit et al. present finite population models

for asexual haploid evolution that closely track the standard infinite population model

of Eigen [43] (see Section 5.7.2). Wolf, Vazirani, and Arkin [139] analyze models of

mutation and survival of diversity also for asexual populations but the dynamical

systems in this case are linear and the involved methodologies are rather different.

Introducing noise in non-linear dynamics has been shown to be able to simplify

the analysis of nonlinear dynamical systems by “destroying” Turing-completeness

of classes of dynamical systems and thus making the system’s long-term behavior

computationally predictable [20]. Those techniques focus on establishing invariant

measures for the systems of interest and computing their statistical characteristics.

In our case, our unperturbed dynamical systems have exponentially many saddle

points and numerous stable fixed points and species survival is critically dependent

on the amount of time that trajectories spend in the vicinity of these points thus

much stronger topological characterizations are necessary. Adding noise to game

theoretic dynamics [70, 2, 26] to speed up convergence to approximate equilibria in

potential games is a commonly used approach in algorithmic game theory, however,

the respective proof techniques and notions of approximation are typically sensitive

to the underlying dynamic, the nature of noise added as well as the details of the

class of games.

In the last year there has been a stream of work on understanding how gradient

(and more generally gradient-like) systems escape out of the saddle fixed points fast

[58, 74]. This is critically important for a number of computer science applications,

including speeding up the training of deep learning networks. The approach pursued

by these papers is similar to our work, including past papers in the line of TCS (the-

oretical computer science) and biology/game theory literature [70] and Chapter 2 of
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this thesis. For example, in Chapter 2 it has been established that in non-convex

optimization settings gradient-like systems (e.g., variants of Multiplicative Weights

Updates Algorithm) converge for all but a zero measure of initial conditions to local

minima of the fitness landscape (instead of saddle points even in the presence of ex-

ponentially many saddle points). Moreover, as shown in [70] noisy dynamics diverge

fast from the set of saddle points whose Jacobian has eigenvalues with large positive

real parts. Similar techniques and arguments can be applied to argue generic con-

vergence to local minima of numerous other dynamics (including noisy/deterministic

versions of gradient dynamics). Finally, in Chapter 7 we argue that gradient dynamics

converge to local minima with probability one in non-convex optimization problems

even in the presence of continuums of saddle points, answering an open question in

[74]. We similarly hope that techniques developed here about fast and robust conver-

gence can also be extended to other classes of gradient(-like) dynamics in non-convex

optimization settings.

Finite population evolutionary models over time evolving fitness landscapes are

typically studied via simulations (e.g., [77] and references therein). These models

have also inspired evolutionary models of computation, e.g., genetic algorithms, whose

study under dynamic fitness environments is a well established area with many appli-

cations (e.g., [141] and references therein) but with little theoretical understanding

and even theoretical papers on the subject typically relying on combinations of ana-

lytical and experimental results [19].

4.3 Preliminaries

4.3.1 Discrete replicator dynamics with mutation - A combinatorial in-
terpretation

For a haploid species3 (one with single set of chromosomes, unlike diploids such

as humans who have chromosome pairs) with two genes (coordinates), let S1 and S2

3See Section A.1 in the appendix for a short discussion of all relevant biological terms.
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be the set of possible alleles (types) for the first and second gene respectively. Then,

an individual of such a species can be represented by an ordered pair (i, j) ∈ S1×S2.

Let Wij be the fitness of such an individual capturing its ability to reproduce during

a mating. Thus, fitness landscape of such a species can be represented by matrix W

of dimension n× n, where we assume that n = |S1| = |S2|.

Sexual Model without mutation. In every generation, each individual (i, j) mates

with another individual (i′, j′) picked uniformly at random from the population (can

pick itself). The offspring can have any of the four possible combinations, namely

(i, j), (i, j′), (i′, j), (i′, j′), with equal probability. Let Xi be a random variable that

denotes the proportion of the population with allele i in the first coordinate, and

similarly Yj be the frequency of the population with allele j in the second coordinate.

After one generation, the expected number of offsprings with allele i in first coordinate

is proportional to Xi · Xi · (WY)i + 21
2
(1 − Xi)Xi · (WY)i = Xi(WY)i (X2

i stands

for the probability both individuals have allele i in the first coordinate - which the

offspring will inherit - and 21
2
(1 −Xi)Xi stands for the probability that exactly one

of the individuals has allele i in the first coordinate and the offspring will inherit).

Similarly the expected number of offsprings with allele j for the second coordinate is

Yj(W
>X)j. Hence, if X′,Y′ denote the frequencies of the alleles in the population in

the next generation (random variables)

E[X ′i|X,Y] =
Xi(WY)i
X>WY

and E[Y ′j |X,Y] =
Yj(W

>X)j
X>WY

.

We are interested in analyzing a deterministic version of the equations above, which

essentially captures an infinite population model. Thus if frequencies at time t are

denoted by (x(t),y(t)), they obey the following dynamics governed by the function

g : ∆→ ∆, where ∆ = ∆n ×∆n:

Let (x(t+ 1),y(t+ 1)) = g(x(t),y(t)), where
∀i ∈ S1, xi(t+ 1) = xi(t)

(Wy(t))i
x>(t)Wy(t)

∀j ∈ S2, yj(t+ 1) = yj(t)
(W>x(t))j
x>(t)Wy(t)

.

(26)
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It is easy to see that g is well-defined when W is a positive matrix. This is the

dynamics for haploids as it appeared in Chapter 2, Section 2.4.1. Chastain et al. [23]

gave a game theoretic interpretation of deterministic Equations (26). It can be seen

as a repeated two-player coordination game (each gene is a player), the possible alleles

for a gene are its pure strategies and both players play according to dynamics (26). A

modification of these dynamics has also appeared in models of grammar acquisition

[101]. The difference between Equations (26) and those in (13) in Chapter 2 (on

game (W,W>)) is that matrix W is square here. Furthermore, we have shown in

Chapter 2 that dynamics with Equations (26) converges point-wise to a pure fixed

point, i.e., where exactly one coordinate is non-zero in both x and y, for all but

measure zero of initial conditions in ∆, when W has distinct entries.

Sexual Model with mutation. Next we extend the dynamics of (26) to incorporate

mutation. The mutation model which appears in Hofbauer’s book [61], is a two-step

process. The first step is governed by (26), and after that in each individual, and for

each of its gene, corresponding allele, say k, mutates to another allele of the same

gene, say k′, with probability τ > 0 for all k′ 6= k. After a simple calculation (see

Section 4.3.2 below for calculations) the resulting dynamics turns out to be as follows,

where f is a ∆→ ∆ function:

Let (x′,y′) = f(x,y), then
x′i = (1− nτ)xi

(Wy)i
x>Wy

+ τ, ∀i ∈ S1

y′j = (1− nτ)yj
(x>W )j
x>Wy

+ τ, ∀j ∈ S2.
(27)

4.3.2 Calculations for mutation

Let (x̂, ŷ) = g(x,y). If in every generation, allele i ∈ S1 mutates to allele k ∈ S1

with probability µik, where
∑

k µik = 1, ∀i, then the final proportion (after repro-

duction, mutation) of allele i ∈ S1 in the population will be

x′i =
∑
k∈S1

µkix̂k.

83



Similarly, if j ∈ S2 mutates to k ∈ S2 with probability δjk, then proportion of allele

j ∈ S2 will be

y′j =
∑
k∈S2

δkiŷk.

If mutation happens after every selection (mating), then we get the following dy-

namics with update rule f ′ : ∆ → ∆ governing the evolution (update rule contains

selection+mutation).

Let (x′,y′) = f ′(x,y), then
x′i =

∑
k∈S1

µkixk
(Wy)k
x>Wy

, ∀i ∈ S1,

y′j =
∑

k∈S2
δkjyk

(x>W )k
x>Wy

, ∀j ≤ S2.
(28)

Suppose ∀k, ∀i 6= k and ∀j 6= k, we have µik = δjk = τ , where τ ≤ 1
n
. Since∑

k µik =
∑

k δjk = 1, we have µii = δjj = 1− (n− 1)τ = 1 + τ − nτ . Hence

x′i =
∑
k∈S1

µkixk
(Wy)k
x>Wy

= (1 + τ − nτ)xi
(Wy)i
x>Wy

+ τ
∑
k 6=i

xk
(Wy)k
x>Wy

= (1− nτ)xi
(Wy)i
x>Wy

+ τ
∑
k

xk
(Wy)k
x>Wy

= (1− nτ)xi
(Wy)i
x>Wy

+ τ.

The same is true for vector y′. The dynamics of (28) where µik = δik = τ for all k 6= i

simplifies to the Equations (27) as appear in the preliminaries.

4.3.3 Our model

In this section we will analyze a noisy version of (26), (27). Essentially we add

small random noise to non-zero coordinates of (x(t),y(t)). 4

Definition 15. Given z ∈ ∆ and a small 0 < δ (δ is on(τ)), define ∆(z, δ) to be a

set of vectors {z + δ ∈ ∆ | supp(δ) = supp(z); δi ∈ {−δ,+δ}, ∀i}.5

4This is different from diffusion approximation, noise helps to avoid saddle points.
5In case the size of the support of z is odd, there will be a zero entry in δ, so |supp(δ)| =

|supp(z)| − 1.
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Note that if z is pure (has support size one), then δ is all zero vector6. Define

noisy versions of both g from (26) and f from (27) as follows: Given (x(t),y(t)) pick

δx ∈ ∆(x(t), δ) and δy ∈ ∆(y(t), δ) uniformly at random. Set with probability half

δx to zero, and with the other half set δy to zero. Then redefine dynamics g of (26)

as follows:

(x(t+ 1),y(t+ 1)) = gδ(x(t),y(t)) = g(x(t),y(t)) + (δx, δy). (29)

And redefine dynamics f of (28) capturing sexual evolution with mutation as follows.

(x(t+ 1),y(t+ 1)) = fδ(x(t),y(t)) = f(x(t),y(t)) + (δx, δy). (30)

Furthermore, we will have that if any xi, yj goes below δ, we set it to zero. This

is crucial for our theorems because otherwise the dynamics with Equations (26) and

(27) (or even (29) and (30)) can converge to a fixed point at t→∞, but never reach

a point in a finite amount of time. This is true in the main result of Chapter 2, the

dynamics converge almost surely to pure fixed points as t → ∞ but do not reach

fixation in a finite time. So xi, yj reaches fixation (set it to zero) if xi, yj < δ. We

need to re-normalize after this step.

∀i ∈ S1, if xi(t) < δ then set xi(t) = 0. Re-normalize x(t).

∀j ∈ S1, if yj(t) < δ then set yj(t) = 0. Re-normalize y(t).
(31)

Definition 16 (Negligible vector). We call a vector v negligible if there exists an

i s.t vi < δ.

Tracking population size. Suppose the size of the initial population is N0, and

let population at time t be N t. In every time period N t gets multiplied by average

fitness of the current population, namely x(t)>W (t)y(t), where (x(t),y(t)) denote

the frequencies of alleles at generation t and W (t) the matrix fitness/environment at

6There are no sampling errors in monomorphic population
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time (see discussion below about changing of environments).

Let average fitness Φt = x(t)>W (t)y(t) then E[N t+1|x(t),y(t), N t] = N tΦt+1. (32)

We will consider N t+1 = N tΦt+1 (see also [118]). Based on the value of N t, we give

the definition of survival and extinction.

Definition 17 (Survival - extinction). We say the population goes extinct if for

initial population size N0, there exists a time t so that N t < 1. On the other hand,

we say that population survives if for all times t ∈ N we have that N t ≥ 1.

Model of environment change. Following the work of Wolf et al. [139], we consider

a Markov chain based model of changing environment. Let E be the set of different

possible environments, and W e be the fitness matrix in environment e ∈ E . E denotes

the set of (e, e′) pairs if there is a non-zero probability pe,e′ ∈ (0, 1) to go from

environment e to e′. See Figure 6 for an example. For a parameter p < 1 we assume

that
∑

e′:(e,e′)∈E pe,e′ ≤ p, ∀e ∈ E . That is, after every generation of the dynamics

(29) or (30), the environment changes to one of its neighboring environment with

probability at most p < 1, and remains unchanged with probability at least (1 − p).

The graph formed by edges in E is assumed to be connected, thus the resulting

(ergodic) Markov chain eventually will stabilize to a stationary distribution πe.

Even though fitness matrices W e can be arbitrary, it is generally assumed that

W e has distinct positive entries (as in [24], and also Chapter 2). Furthermore, no

individual can survive all the environments on average. Mathematically, if πe is the

stationary distribution of this Markov chain then, ∀i, j, ∏
e∈E (W e

ij)
πe < 1.

Furthermore, we assume that every environment has alleles of good type as well

as bad type. An allele i of good type has uniform fitness (i.e.,
∑
jWij

n
) of at least

(1 + β) for some β > 0, and alleles of bad type are dominated by a good type allele
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point-wise7. Finally, the number of bad alleles are o(n) (sublinear in n). Let the set

of bad alleles for genes i = 1, 2 in environment e be denoted by Be
i .

Putting all of the above together, the Markov chain for environment change is

defined by set E of environments and its adjacency graph, fitness matrices W e, ∀e ∈ E ,

probability 1 − p with which dynamics remains in current environment, sets Be
i ⊂

Si, i = 1, 2 of bad alleles in environment e, and β > 0 to lower-bound average fitness

of good type alleles. See also Section 4.8.2 for discussion on the assumptions where

we claim that most of them are necessary for our theorems. In the next sections

we will analyze the dynamics with Equations (29), (30) in terms of convergence and

population size for fixed and dynamic environments.

Table 1: List of parameters

Symbol Interpretation

W e fitness matrix at environment e

W (t),W e(t) fitness matrix at time t
γe minimum difference between entries in fitness matrix W e

x,y frequencies of (alleles) strategies
δ noise/perturbation
Φ potential/average fitness x>Wy

β If allele i is of good type in environment e then it satisfies
∑
jW

e
ij

n
≥ 1 + β

τ probability that an individual with allele k mutates to k′ (of the same gene)

4.4 Overview of proofs

The dynamical systems that we analyze, namely (29) and (30), under the evolving

environment model of Section 4.3.3 are (stochastically perturbed) nonlinear replicator-

like dynamical systems whose parameters evolve according to a (possibly slow mixing)

Markov chain. We reduce the analysis of this complex setting to a series of smaller,

modular arguments that combine as set-pieces to produce our main theorems.

Convergence rate for evolution without mutation in static environment.

7Think of bad type alleles akin to a terminal genetic illness. Such assumptions are typical in the
biological literature (e.g., [77]).
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Our starting point is Chapter 2 where it was shown that in the case of noise-free sexual

dynamics governed by (26) the average population fitness increases in each step and

the system converges to equilibria, and moreover that for almost all initial conditions

the resulting fixed point corresponds to a monomorphic population (pure/not mixed

equilibrium). Conceptually, the first step in our analysis tries to capitalize on this

stronger characterization by showing that convergence to such states happens fast.

This is critical because while there are only linearly many pure equilibria, there are

(generically) exponentially many isolated, mixed ones [24], which are impossible to

meaningfully characterize. By establishing the predictive power of pure states, we

radically reduce our uncertainty about system behavior and produce a building block

for future arguments.

Without noise we cannot hope to prove fast convergence to pure states since by

choosing initial conditions sufficiently close to the stable manifold of an unstable

equilibrium, we are bound to spend super-polynomial time near such unstable states.

In finite population models, however, the system state (proportions of different alleles)

is always subject to small stochastic shocks (akin to sampling errors). These small

shocks suffice to argue fast convergence by combining an inductive argument and a

potential/Lyapunov function argument.

To bound the convergence time to a pure fixed point starting at an arbitrary

mixed strategy (maybe with full support), it suffices to bound the time it takes to

reduce the size of the support by one, because once a strategy xi becomes zero it

remains zero under (29), i.e., an extinct allele can never come back in absence of

mutations (and then use induction). For the inductive step, we need two non trivial

arguments. First we need a lower bound on the rate of increase of the mean population

fitness when the dynamics is not at approximate fixed points8, shown in Lemma 4.1.

This requires a quantitative strengthening of potential/(nonlinear dynamical system)

8We call these states α-close points.
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arguments of Chapter 2. Secondly, we show that the noise suffices to escape fast

(with high probability) from the influence of fixed points that are not monomorphic

(these are like saddle points). This requires a combination of stochastic techniques

including origin returning random walks, Azuma type inequalities for submartingales,

and arguing about the increase in expected mean fitness x(t)>W (t)y(t) in a few steps

(Lemmas 4.4-4.8), where x and y capture allele frequencies at time step t. As a

result we show polynomial time convergence of (29) to pure equilibrium under static

environment in Theorem 4.9. This result may be of independent interest since fast

convergence of nonlinear dynamics to equilibrium is not typical [88].

Survival, extinction under dynamic environments. As described in Section

4.3.3, we consider a Markov chain based model of environmental changes, where after

every selection step, the fitness matrix changes with probability at most p. Suppose

the starting population size is N0 > 0 and let N t denote the size at time t then

in every step N t gets multiplied by the mean fitness x(t)>W (t)y(t) of the current

population (see (32)). We say that population goes extinct if for some t, N t < 1, and

it survives if N t ≥ 1, for all t.

We assume that there do not exist “all-weather” phenotypes. We encode this by

having the monomorphic population of any genotype decrease when matched to an

environment chosen according to the stationary distribution of the Markov chain.9

In other words, an allele may be both “good” and “bad” as environment changes,

sometimes leading to growth, and other times to decrease in population.

Case a) sexual evolution without mutation. If the population becomes monomor-

phic then this single phenotype can not survive in all environments, and will even-

tually wither as its population will be in exponential decline once the Markov chain

9If, for any genotype, the population increased in expectation over the randomly chosen envi-
ronment, then once monomorphic population consisting of only such a genotype is reached, the
population would blow up exponentially (and forever) as soon as the Markov chain reached its
mixing time.
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mixes. The question is whether monomorphism is achieved under changing environ-

ment; the above analysis is not applicable directly as the fitness matrix is not fixed

any more. Our first theorem (Theorem 4.9) upper bounds the amount of time T

needed to “wait” in a single environment so as the probability of convergence to a

monomorphic state is at least some constant (e.g., 1
2
). Breaking up the time history

in consecutive chunks of size T and applying Borel-Cantelli theorem implies that the

population will become monomorphic with probability one (Theorem 4.11). This is

the strongest possible result without explicit knowledge of the specifics of the Markov

chain (e.g., mixing time).

Case b) sexual evolution with mutation. As described in Section 4.3.1, we

consider a well-established model of mutation [61], where after every selection step,

each allele mutates with probability τ . The resulting dynamics is governed by (27),

and we analyze its noisy counterpart (30). This ensures that in each period the

proportion of every allele is at least τ . We show that this helps the population to

survive.

Unlike the no mutation case of Chapter 2, the average fitness x(t)>Wy(t) is no

more increasing in every step, even in absence of noise. Instead we derive another

potential function that is a combination of average fitness and entropy. Due to mu-

tations forcing exploration, natural selection weeds out the bad alleles fast (Lemma

4.12). Thus there may be initial decrease in fitness, however the decrease is upper

bounded. Furthermore, we show that the fitness is bound to increase significantly

within a short time horizon due to increase in population of good alleles (Lemma

4.13). Since population size gets multiplied by average fitness in each iteration, this

defines a biased random walk on logarithm of the population size. Using upper and

lower bounds on decrease and increase respectively, we show that the probability of

extinction stochastically dominates a simpler-to-analyze random variable pertaining

to biased random walks on the real line (Lemma 4.14). Thus, the probability of long
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term survival is strictly positive (Theorem 4.15). This completes the outline of the

proof of informal Theorem 1.

Deterministic convergence despite mutation in static environments: Finally, as an

independent result for the case of noise free dynamics (infinite population) with mu-

tation governed by (27), we show convergence to fixed points in the limit, by defining

a novel potential function which is the product of mean fitness x>Wy and a term

capturing diversity of the allele distribution (Theorem 4.16). The latter term is es-

sentially the product of allele frequencies (
∏

i xi
∏

i yi). Such convergence results are

not typical in dynamical systems literature [88], and therefore this potential function

may be useful to understand limit points of this and similar dynamics (the continuous

time analogue can be found here [61]). One way to interpret this result is a homo-

topy method for computing equilibria in coordination games, where the algorithm

always converges to fixed points, and as mutation goes to zero, the stable fixed points

correspond to the pure Nash equilibria [24].

4.5 Rate of convergence: dynamics without mutation in
fixed environments

In this section we show a polynomial bound on the convergence time of dynamics

(29), governing sexual evolution under natural selection with noise, in a static envi-

ronment. In addition, we show that the fixed points reached by the dynamics are

pure. Consider a fixed environment e and we use W to denote its fitness matrix W e.

It is known that average fitness x>Wy increases under the non-noisy counterpart

(26). In the next lemma we obtain a lower bound on this increase.

Lemma 4.1. Let (x̂, ŷ) = g(x,y) where (x,y) ∈ ∆ and g is from equation (26).

Then,

x̂>W ŷ − x>Wy ≥ C

(∑
i

xi
(
(Wy)i − x>Wy

)2
+
∑
i

yi
(
(W>x)i − x>Wy

)2

)
,

for C = 3
8·maxi,jWij

.
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Proof. From the definition of g (equation 26) we get,

2
(
x̂>W ŷ

) (
x>Wy

)2
= 2

∑
ij

Wijx̂iŷj
(
x>Wy

)2

=2
∑
ij

Wijxiyj
(Wy)i
x>Wy

(W>x)j
x>Wy

(
x>Wy

)2
= 2

∑
i,j

Wijxiyj(Wy)i(W
>x)j

=
∑
i,j,k

WijWikxiyjyk(W
>x)j +

∑
i,j,k

WijW
>
jkxixkyj(Wy)i

=
∑
i,j,k

WijWikxiyjyk
1

2
((W>x)j + (W>x)k) +

∑
i,j,k

WijWkjxixkyj
1

2
((Wy)i + (Wy)k)

≥
∑
i,j,k

WijWikxiyjyk

√
(W>x)j(W>x)k +

∑
i,j,k

WijWkjxixkyj
√

(Wy)i(Wy)k

=
∑
i

xi

(∑
j

yjWij

√
(W>x)j

)2

+
∑
j

yj

(∑
i

xiWij

√
(Wy)i

)2

≥
(∑

i,j

xiyjWij

√
(W>x)j

)2

+

(∑
j,i

yjxiWij

√
(Wy)i

)2

by convexity of f(z) = z2

=

(∑
j

yj(W
>x)

3/2
j

)2

+

(∑
i

xi(Wy)
3/2
i

)2

. (0)

Let ξ be a random variable that takes value (Wy)i with probability xi. Then

E[ξ] = x>Wy, V[ξ] =
∑

i xi((Wy)i−x>Wy)2 and ξ takes values in the interval [0, µ]

with µ = maxijWij. Consider the function f(z) = z3/2 on the interval [0, µ] and

observe that f ′′(z) ≥ 3
4

1√
µ

on [0, µ] since µ ≥ p>Wq ≥ 0 for all (p,q) ∈ ∆. Observe

also that f(E[ξ]) = (x>Wy)3/2 and E[f(ξ)] =
∑

i xi(Wy)
3/2
i .

Claim 4.2. E[f(ξ)] ≥ f(E[ξ]) + A
2
V[ξ], where A = 3

4
√
µ

.

Proof. By Taylor expansion we get that (we expand with respect to the expectation

of ξ, namely E[ξ])

f(z) ≥ f(E[ξ]) + f ′(E[ξ])(z − E[ξ]) +
A

2
(z − E[ξ])2
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and hence we have that:

f(z) ≥ f(E[ξ]) + f ′(E[ξ])(z − E[ξ]) +
A

2
(z − E[ξ])2

taking expectation︷︸︸︷⇒
E[f(ξ)] ≥ E[f(E[ξ])] + f ′(E[ξ])(E[ξ]− E[ξ]) +

A

2
V[ξ]

= f(E[ξ]) +
A

2
V[ξ].

Using the above claim it follows that:∑
i

xi(Wy)
3/2
i ≥ (x>Wy)3/2 +

3

8
√
µ

∑
i

xi((Wy)i − x>Wy)2.

Squaring both sides and omitting one square from the r.h.s we get(∑
i

xi(Wy)
3/2
i

)2

≥ (x>Wy)3 +
3

4
√
µ

(x>Wy)3/2
∑
i

xi((Wy)i − x>Wy)2. (33)

We do the same by setting ξ to be (W>x)i with probability yi and using similar

argument we get(∑
i

yi(W
>x)

3/2
i

)2

≥ (x>Wy)3 +
3

4
√
µ

(x>Wy)3/2
∑
i

yi((W
>x)i − x>Wy)2. (34)

Therefore it follows that

2(x̂>W ŷ)(x>Wy)2 ≥
(∑

j

yj(W
>x)

3/2
j

)2

+

(∑
i

xi(Wy)
3/2
i

)2

by inequality (0)

33+34︷︸︸︷
≥ 2(x>Wy)3 +

3

4
√
µ

(x>Wy)3/2×

×
(∑

i

xi
(
(Wy)i − x>Wy

)2
+
∑
i

yi
(
(W>x)i − x>Wy

)2

)
.

Finally we divide both sides by 2(x>Wy)2 and we get that

(x̂>W ŷ) ≥ (x>Wy) +
3

8
√
µ(x>Wy)

×

×
(∑

i

xi
(
(Wy)i − x>Wy

)2
+
∑
i

yi
(
(W>x)i − x>Wy

)2

)

≥ (x>Wy) +
3

8µ

(∑
i

xi
(
(Wy)i − x>Wy

)2
+
∑
i

yi
(
(W>x)i − x>Wy

)2

)
,
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with 3

8
√
µΦ(x,y)

≥ 3
8µ

since µ ≥ x>Wy. This inequality and the proof techniques can

be seen as a generalization of an inequality and proof techniques in [83].

For the rest of the section, C denotes 3
8·Wmax

where Wmax = maxijWij and Wmin =

minijWij. Note that the lower bound obtained in Lemma 4.1 is strictly positive unless

(x,y) is a fixed point of (26). This gives an alternate proof of the fact that, under

dynamics (26), average fitness is a potential function, i.e., increases in every step.

On the other hand, the lower bound can be arbitrarily small at some points, and

therefore it does not suffice to bound the convergence time. Next, we define points

where this lower-bound is relatively small.

Definition 18 (α-close). We call a point (x,y) α-close for an α > 0, if for all

x′,y′ ∈ ∆ such that supp(x′) ⊆ supp(x) and supp(y′) ⊆ supp(y) we have |x>Wy −

x′>Wy| ≤ α and |x>Wy − x>Wy′| ≤ α.

α-close points, are a specific class of “approximate” stationary points, where the

progress in average fitness is not significant (see Figure 8, the big circles contain

these points). From now on, think α as a small parameter that will be determined in

the end of this section. If a given point (x,y) is not α-close and not negligible (see

Definition 16) then using Lemma 4.1 it follows that the increase in potential is at

least Cδα2. Formally:

Corollary 4.3 (Not α-close, negligible implies good progress in dynamics).

If (x,y) ∈ ∆ is neither α-close nor negligible, and (x̂, ŷ) = g(x,y), then

x̂>W ŷ ≥ x>Wy + Cδα2.

Proof. Since the vector (x,y) is neither α-close nor negligible, it follows that there

exists an index i such that |(Wy)i − x>Wy| > α and xi ≥ δ and hence xi((Wy)i −

x>Wy)2 > δα2, or |(W>x)i − x>Wy| > α and yi ≥ δ and hence yi((W
>x)i −

x>Wy)2 > δα2. Therefore in Lemma 4.1, the r.h.s is at least Cδα2 and thus we get

that x̂>W ŷ − x>Wy ≥ Cδα2.
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In the analysis above we considered non-noisy dynamics governed by (26). Our

goal is to analyze finite population dynamics, which introduces noise and the result-

ing dynamics is (29). This changes how the fitness increases/decreases. The next

lemma shows that in expectation the average fitness remains unchanged after the

introduction of noise.

Lemma 4.4 (Noise is zero in expectation). Let δ = (δx, δy) be the noise vector.

It holds that Eδ[(x + δx)>W (y + δy)] = x>Wy.

Proof. Vectors (δx, δy), (−δx, δy), (δx,−δy), (−δx,−δy) appear with the same proba-

bility, and observe that

(x + δx)>W (y + δy) + (x− δx)>W (y + δy)

+ (x + δx)>W (y − δy) + (x− δx)>W (y − δy)

= 4x>Wy,

and the claim follows.

Next, we show how random noise can help the dynamic escape from a polytope

of α-close points. We first analyze how adding noise may help increase fitness with

high enough probability. A simple application of Catalan numbers shows that:

Lemma 4.5. The probability of a (unbiased) random walk on the integers that consist

of 2m steps of unit length, beginning at the origin and ending at the origin, that never

becomes negative is 1
m+1

.

We define γ = min(i,j)6=(i′,j′) |Wij−Wi′j′ |. The following lemma is essentially a corollary

of Lemma 4.5.

Lemma 4.6. Let δy be a random noise with support size m. For all i in the support

of x we have that (Wδy)i ≥ γδm
2

with probability at least 1
1+m/2

(same is true for δx

and y).
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Proof. Assume w.l.o.g that we have Wi1 ≥ Wi2 ≥ ... (otherwise we permute them so

that are in decreasing order). Consider the case where the signs are revealed one at a

time, in the order of indices of the sorted row. The probability that + signs dominate

− signs through the process is 1
m/2+1

(ballot theorem/Catalan numbers) (see 4.5). It

is clear that when the + signs dominate the − signs then

(Wδy)i =
m∑
j

Wijδj ≥
m/2∑
j=1

(Wi(2j−1) −Wi(2j))δ ≥ γδ
m

2
.

We will also need the following theorem due to Azuma [41] on submartingales.

Theorem 4.7 (Azuma inequality [41]). . Suppose {Xk, k = 0, 1, 2, ..., N} is a

submartingale and also |Xk−Xk−1| < c almost surely then for all positive integers N

and all t > 0 we have that

P [XN −X0 ≤ −t] ≤ e−
t2

2Nc2 .

Towards our main goal of showing polynomial time convergence of the noisy dy-

namics (29) (shown in Theorem 4.9), we need to show that the fitness increases within

a few iterations of the dynamics with high probability. It suffices to show that the

average fitness under some transformation is a submartingale, and then the result

will follow using Azuma’s inequality.

Lemma 4.8 (Potential is a submartingale). Let Φt be the random variable which

corresponds to the average fitness at time t. Assume that for the time interval t =

0, ..., 2T the trajectory (x(t),y(t)) has the same support. Let m = max{|supp(x(t))|,

|supp(y(t))|}, and the non-zero entries of (x(t),y(t)) be at least δ. If 1
(m+2)

(γδm
2
−

2α)2 ≥ δα2 then we have that

E[Φ2t+2|Φ2t, ...,Φ0] ≥ Φ2t + Cδα2.

In other words, the sequence Zt ≡ Φ2t − t · Cδα2 for t = 1, ..., T is a submartingale

and also |Zt+1 − Zt| ≤ Wmax −Wmin.
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Proof. First of all, since the average fitness is increasing in every generation (before

adding noise) and by Lemma 4.4 we get that for all t ∈ {0, ..., 2T}

E[Φt+1|Φt] ≥ Φt,

namely the average fitness is a submartingale (00).

Let (xt,yt) ··= (x(t),y(t)) be the frequency vector at time t which has average

fitness Φt ≡ Φ(xt,yt) = xt
>
Wyt (abusing notation we use Φ(x,y) for function x>Wy

and Φt for the value of average fitness at time t), also we denote (x̂t, ŷt) = g(xt,yt)

and recall that (xt+1,yt+1) = (x̂t + δtx, ŷ
t + δty). Assume that in the next generation

(x̂2t, ŷ2t) = g(x2t,y2t) the average fitness before the noise, namely x̂2t TW ŷ2t will be

at least Φ2t + Cδα2. Hence by Lemma 4.4 we get that

E[Φ2t+1|Φ2t] = x̂2t TW ŷ2t ≥ Φ2t + Cδα2 (01). Therefore we have that

E[Φ2t+2|Φ2t] = Eδ2t+1,δ2t [(x̂
2t+1 + δ2t+1

x )>W (ŷ2t+1 + δ2t+1
y )|Φ2t]

= Eδ2t [
(
x̂2t+1

)>
W ŷ2t+1|Φ2t]

≥ Eδ2t [
(
x2t+1

)>
Wy2t+1|Φ2t]

= E[Φ2t+1|Φ2t]

≥ Φ2t + Cδα2,

where second inequality is Expression (01) and the first inequality comes from in-

equality 4.1 (since the r.h.s of inequality 4.1 is non-negative). The first, third equality

comes from model definition and second equality comes from Lemma 4.4.

Assume now that in the next generation (x̂2t, ŷ2t) = g(x2t,y2t) the average fitness

before the noise, namely x̂2t TW ŷ2t will be less than Φ2t+Cδα2. This means that the

vector (x2t,y2t) is α-close by Corollary 4.3, so after adding the noise by the definition

of α-close we get that x̂2t TW ŷ2t + α ≥ Φ2t+1 ≥ x̂2t TW ŷ2t − α (02). From Lemma

4.6 we will have with probability at least 1
2

1
m/2+1

that (Wy2t+1)i ≥ (W ŷ2t)i +
γδm

2
for

all i in the support of vector xt (we multiplied the probability by 1
2

since you perturb
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y with probability half) (03). The same argument works if we perturb x, so w.l.o.g

we work with perturbed vector y which has support of size at least 2. Essentially by

inequality 4.1 we get the following inequalities:

E[Φ2t+2|Φ2t] = Eδ2t+1,δ2t [(x̂
2t+1 + δ2t+1

x )>W (ŷ2t+1 + δ2t+1
y )|Φ2t]

= Eδ2t [
(
x̂2t+1

)>
W ŷ2t+1|Φ2t]

4.1︷︸︸︷
≥ Eδ2t [

(
x2t+1

)>
Wy2t+1|Φ2t]+

+ C · Eδ2t
[∑

i

x2t+1
i ·

(
(Wy2t+1)i −

(
x2t+1

)>
Wy2t+1

)2
∣∣∣∣Φ2t

]

≥ Φ2t +
C

m+ 2

(
γδm

2
− 2α

)2

≥ Φ2t + Cδα2,

where last inequality comes from the assumption and second inequality comes from

claim (00), (02), (03). Hence by induction we get that

E[Φ2t+2 − (t+ 1) · Cδα2|Φ2t] ≥ Φ2t − t · Cδα2.

It is easy to see that Wmax ≥ Φt ≥ Wmin for all t.

Using all the above analysis and Azuma’s inequality (Theorem 4.7), we establish

our first main result on convergence time of the noisy dynamics governed by (29) for

sexual evolution under natural selection and without mutation.

Theorem 4.9 (Main 2 - Speed of convergence). For all conditions (x(0),y(0)) ∈

∆, the dynamics governed by (29) in an environment represented by fitness matrix

W reaches a pure fixed point with probability 1− ε after O
(

(Wmax)4n ln( 2n
ε

)

δ6γ4

)
iterations.

Proof. It suffices to show that support size of the x or y reduces by one in a bounded

number of iterations with at least 1− ε
2n

probability.

Using Lemma 4.8 we have that the random variable Φ2t−t·Cδα2 is a submartingale

and since Wmin ≤ Φt ≤ Wmax we use Azuma’s inequality 4.7 and we get that

P
[
Φ2t − t · Cδα2 ≤ Φ0 − λ

]
≤ e

− λ2

2tW2
max ,
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hence for λ =
√

2tW 2
max ln(2n

ε
) we get that the average fitness after 2t steps will be

at least Φ0 −
√

2tW 2
max ln(2n

ε
) + t · Cδα2 with probability at least 1− ε

2n
. By setting

t ≥ 8W 2
max

C2δ2α4 ln
(

2n
ε

)
we have that the average fitness at time 2t will be greater than

Wmax with probability 1− ε
2n

, but since the potential is at most Wmax for all vectors

in the simplex, it follows that at some point the frequency vector becomes negligible,

i.e., a coordinate of x or y becomes less than δ. Hence, the probability that the

support size decreased during the process is at least 1− ε
2n

.

By union bound (the initial support size is at most 2n) we conclude that dynamics

(29) reaches a pure fixed point with probability 1 − ε after t iterations with t =

2n 8W 2
max

C2δ2α4 ln
(

2n
ε

)
. Finally, for assumption 1

(m+2)
(γδm

2
− 2α)2 ≥ δα2 used in Lemma 4.8

to hold for 2 ≤ m ≤ n, we set α to be such that α ≤ γδ
4

where we have 4(m−1)2

(m+2)
≥

1 > δ. Using such an α it follows that dynamics (29) reaches a pure fixed point with

probability 1− ε after 218

9
× nW 4

max

δ6γ4
ln
(

2n
ε

)
iterations.

4.6 Changing environment: survival or extinction?

In this section we analyze how evolutionary pressures under changing environ-

ment may lead to survival/extinction depending on the underlying mutation level.

Motivated from Wolf et al. work [139], we use Markov chain based model to capture

the changing environment, where every state captures a particular environment (see

Section 4.3.3 for details).

4.6.1 Extinction without mutation

We show that the population goes extinct with probability one, if the evolution

is governed by (29), i.e., natural selection without mutations under sexual repro-

duction. The proof of this result critically relies on polynomial-time convergence to

monomorphic population shown in Theorem 4.9 in case of fixed environment.

As discussed in Section 4.3.3, we have assume that the Markov chain is such that
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no individual can be fit to survive in all environments. Formally,

∀i, j,
∏
e∈E

(W e
ij)

πe < 1. (35)

Thus, if we can show convergence to monomorphic population under evolving envi-

ronments as well, then the extinction is guaranteed using (35) and the fact that popu-

lation size N t gets multiplied by current average fitness (see (32)). However, showing

convergence in stochastically changing environment is tricky because environment

can change in any step with some probability and then the argument described in the

previous section breaks down. To circumvent this we will make use of Borel-Cantelli

theorem where we say that an event happens if environment remains unchanged for

a large but fixed number of steps.

Theorem 4.10 (Second Borel-Cantelli [50]). Let E1, E2, ... be a sequence of events.

If the events En are independent and the sum of the probabilities of the En diverges

to infinity, then the probability that infinitely many of them occur is 1.

Using the above theorem with appropriate event definition, we prove the first part

of Theorem 1 stated in introduction.

Theorem 4.11 (Main 1a - Extinction without mutation). Regardless of the

initial distributions (x(0),y(0)) ∈ ∆, the population goes extinct with probability one

under dynamics governed by (29), capturing sexual evolution without mutation under

natural selection.

Proof. Let T e be the number of iterations the dynamics (29) need to reach a pure

fixed point with probability 1
2
. Theorem 4.9 implies T e = O

(
nW e4

max

δ6γe4
ln 4n

)
. Let T =

maxe T
e. We consider the time intervals 1, ..., T , T + 1, ..., 2T ,... which are multiples

of T . The probability that Markov chain will remain at a specific environment e in

the time interval kT + 1, ..., (k + 1)T is ρk = (1 − p)T . We define the sequence of

events E1, E2, ..., where Ei corresponds to the fact that the chain remains in the same
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environment from time (i− 1)T + 1, ..., iT . It is clear that Ei’s are independent and

also
∑∞

i=1 P [Ei] =
∑∞

i=1 ρi = ∞. From Borel-Cantelli Theorem 4.10 it follows that

Ei’s happen infinitely often with probability 1. When Ei happens there is a time

interval of length T that the chain remains in the same environment, and therefore

with probability 1
2
, the dynamics will reach a pure fixed point. After Ei happen for

k times, the probability to reach a pure fixed point is at least 1 − 1
2k

. Hence with

probability one (letting k →∞), the dynamics (29) will reach a pure fixed point.

To finish the proof, let Tpure be a random variable that captures the time when a

pure fixed point, say (i, j), is reached. The population will have size at most N0V Tpure

where V = maxeW
e
max. Under the assumption on the entries (see inequality (35))

it follows that at any time T ′, sufficiently large, we get that the population at time

T ′ + Tpure will be roughly at most

N0V Tpure
∏
e

(W e
ij)

T ′πe = N0V Tpure

(∏
e

(W e
ij)

πe

)T ′

.

By choosing T ′ ≥ ln(N0V Tpure )

− ln((W e
ij)

πe)
(and also satisfying that it is much greater than the

mixing time) it follows that NT ′+Tpure < 1 and hence the population dies. So, the

population goes extinct with probability one in the dynamics without mutation.

4.6.2 Survival with mutation

In this section we consider evolutionary dynamics governed by (30) capturing sex-

ual evolution with mutation under natural selection. Contrary to the case where there

are no mutations we show that population survives with positive probability. Fur-

thermore, this result turns out to be robust in the sense that it holds even when every

environment has some (few) very bad type alleles. Also, the result is independent of

the starting distribution of the population.

The main intuition behind proving this result is that, as for the mutation model in

[61], every allele is carried by at least τ fraction of the population in every generation.

Therefore even if a“good” allele becomes “bad” as the environment changes, as far
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as the new environment has a few fit alleles, there will be some individuals carrying

those who will then procreate fast, spreading their alleles further and leading to overall

survival. However, unlike in the no mutation case (see Chapter 2), average fitness is

no more a potential function even for non-noisy dynamics, i.e., it may decrease, and

therefore showing such an improvement is tricky.

First we show that if some small amount of time is spent in an environment then

the frequencies of the bad alleles become small and their effect is negligible. Recall

the assumption on good/bad type alleles (Section 4.3.3). Formally, let Be
i be the set

of bad type alleles for i = 1, 2 in environment e,

∀i ∈ S1 \Be
1,

∑
jW

e
ij

n
≥ 1 + β, and ∀i ∈ S1 \Be

1,∀k ∈ Be
1,W

e
ij ≥ W e

kj, ∀j

∀j ∈ S2 \Be
2,

∑
iW

e
ij

n
≥ 1 + β, and ∀j ∈ S2 \Be

2, ∀k ∈ Be
2,W

e
ij ≥ W e

ik, ∀i
(36)

Lemma 4.12 (Frequencies of bad alleles become small). Suppose that the en-

vironment e is static for time at least t ≥ ln(2n)
nτ

. For any (x(0),y(0)) ∈ ∆, we have

that
∑

i∈Be1
xi(t) +

∑
j∈Be2

yi(t) ≤ 2(|Be1 |+|Be2 |)
n

= 2|Be|
n

with Be = Be
1 ∪Be

2.

Proof. Consider one step of the dynamics that starts at (x,y) and has frequency

vector (x̃, ỹ) in the next step before adding the noise. Let i∗ be the bad allele that

has the greatest fitness at it, namely (W ey)i∗ ≥ (W ey)i for all i ∈ Be
1. It holds that∑

i∈Be1

x̃i = (1− nτ)
∑
i∈Be1

xi
(W ey)i
x>W ey

+ τ |Be
1|

= (1− nτ)

∑
i∈Be1

xi(W
ey)i∑

i∈G1\Be1
xi(W ey)i +

∑
i∈Be1

xi(W ey)i
+ τ |Be

1|

≤ (1− nτ)

∑
i∈Be1

xi(W
ey)i∗∑

i∈G1\Be1
xi(W ey)i +

∑
i∈Be1

xi(W ey)i∗
+ τ |Be

1| (∗)

≤ (1− nτ)

∑
i∈Be1

xi(W
ey)i∗∑

i∈G1\Be1
xi(W ey)i∗ +

∑
i∈Be1

xi(W ey)i∗
+ τ |Be

1|

= (1− nτ)
(W ey)i∗

∑
i∈Be1

xi

(W ey)i∗
∑

i xi
+ τ |Be

1|

= (1− nτ)
∑
i∈Be1

xi + τ |Be
1|,
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where inequality (*) is true because if a
b
< 1 then a

b
< a+c

b+c
for all a, b, c positive. Hence

after we add noise δ with ||δ||∞ = δ, the resulting vector (x′,y′) (which is the next

generation frequency vector) will satisfy
∑

i∈Be1
x′i ≤ (1−nτ)

∑
i∈Be1

xi+τ |Be
1|+δ|Be

1|.

By setting St =
∑

i∈Be1
xi(t) it follows that St+1 ≤ (1−nτ)St+(τ+δ)|Be

1| and also S0 ≤

1. Therefore St ≤ (τ + δ)|Be
1|1−(1−nτ)t

nτ
+ (1−nτ)t. By choosing t = − ln(2n)

ln(1−nτ)
≈ ln(2n)

nτ

it follows that
∑

i∈Be1
xi(t) ≤ (1+o(1))|Be1 |+1/2

n
≤ 2|Be1 |

n
where we used the assumption

that δ = on(τ). The same argument holds for Be
2.

Using the fact that number of individuals with bad type alleles decreases very fast,

established in Lemma 4.12, we can prove that within an environment while there may

be decrease in average fitness initially, this decrease is lower bounded. Moreover, it

will later increase fast enough so that the initial decrease is compensated.

Lemma 4.13 (Phase transition on the size of population). Suppose that the

environment e is static for time t and also τ ≤ β
16n

, |Be| � nβ then there ex-

ists a threshold time Tthr such that for any given initial distributions of the alleles

(x(0),y(0)) ∈ ∆, if t < Tthr then the population size will experience a loss factor of at

most 1
d
, otherwise it will experience a gain factor of at least d for some d > 1, where

Tthr = 6 ln(2n)
nτβWmin

and Wmin = mineW
e
min.

Proof. By Lemma 4.12, after ln(2n)
nτ

generations it follows that

∑
i∈Be1

xi(t) +
∑
j∈Be2

yi(t) ≤
2|Be|
n

. (37)

We consider the average fitness function x>W ey which is not increasing (as has

already been mentioned). Let τ = τ · (1, ..., 1)>, (x̃, ỹ) = f(x,y) and (x̂, ŷ) = g(x,y)

with fitness matrix W e and also denote by (x′,y′) the resulting vector after noise δ

is added. It is easy to observe that

x̃>W eỹ = (1− nτ)2x̂>W eŷ + (1− nτ)x̂>W eτ + (1− nτ)τ>W eŷ + τ>W eτ
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and also that

x′>W ey′ ≥ x̃>W eỹ−2nδW e
max ≥ x̃>W eỹ

(
1−O

(
2nδ

Wmax

Wmin

))
= (1−onτ (1))x̃>Wỹ,

where Wmax = maxeW
e
max. Under the assumption (36) we have the following lower

bounds:

• x̂>W eτ ≥ (1 + β)nτ
(

1− 2|Be1 |
n

)
and τ̂>W eŷ ≥ (1 + β)nτ

(
1− 2|Be2 |

n

)
.

• τ>W eτ ≥ (nτ)2(1 + β)
(

1− |Be|
n

)
≥ (1 + β)

(
1− 2|Be|

n

)2

n2τ 2.

First assume that x>W ey ≤ 1 + β
2
. We get the following system of inequalities:

x′>W ey′

x>W ey
≥ (1− onτ (1))

x̃>W eỹ

x>W ey

≥ (1− onτ (1))

(
(1− nτ)2 x̂>W eŷ

x>W ey
+ 2(1− nτ)nτ

(
1− 2|Be|

n

)
(1 + β)

x>W ey
+

+
(1 + β)

x>W ey

(
1− 2|Be|

n

)2

n2τ 2

)

≥ (1− onτ (1))

(
(1− nτ)2 + 2(1− nτ)nτ

(
1− 2|Be|

n

)(
1 +

β

2 + β

)
+

+

(
1 +

β

2 + β

)(
1− 2|Be|

n

)2

n2τ 2

)

≥ (1− onτ (1))

(
1 + nτ

(
2β

2 + β
− 6|Be|

n
− 2β

2 + β
nτ

))
≥ 1 + nτ

(
β

2 + β

)
.

Second inequality comes from the fact that x̂>W eŷ ≥ x>W ey (the average fitness is

increasing for the no mutation setting) and also since x>W ey ≤ 1+ β
2
. The third and

the fourth inequality use the fact that |Be| � nβ and τ ≤ β
16n

. Therefore, the fitness

increases in the next generation for the mutation setting as long as the current fitness

x>W ey ≤ 1 + β
2

with a factor of 1 + nτ β
2+β

(i). Hence the time we need to reach the

value of 1 for the average fitness is
2 ln 1

h

nτ β
2+β

which is dominated by t1 = ln(2n)
nτ

. Therefore

the total loss factor is at most 1
d

= ht1 , namely d =
(

1
h

)t1 . Let t2 be the time for the
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average fitness to reach 1+ β
4

(as long as it has already reached 1), thus t2 = 2
nτ

which

is dominated by t1. By similar argument, let’s now assume that x>W ey ≥ 1+ β
2

then

x′>W ey′

x>W ey
≥ (1− onτ (1))

(
x̃>W eỹ

x>W ey

)
≥ (1− onτ (1))

(
(1− nτ)2 x̂>W eŷ

x>W ey
+ 2(1− nτ)nτ

(
1− 2|Be|

n

)
(1 + β)

x>W ey
+

+
(1 + β)

x>W ey

(
1− 2|Be|

n

)2

n2τ 2

)

≥ 1− 2nτ.

Hence x′>W ey′ ≥ (1 − 2nτ)(1 + β
2
), namely x′>W ey′ ≥ 1 + β

4
(ii) for τ < β

16n
.

Therefore as long as the fitness surpasses 1+ β
4
, it never goes below 1+ β

4
(conditioned

on the fact you remain at the same environment). This is true from Claims (i) and

(ii). When the fitness is at most 1 + β
2
, it increases in the next generation and

when it is greater than 1 + β
2
, it remains at least 1 + β

4
in the next generation.

To finish the proof we compute the times. The time t3 to have a total gain factor

of at least d, will be such that (1 + β
4
)t3 = 1

ht1
. Hence t3 = t1

2 ln 1
h

β
. By setting

Tthr = 6 ln(2n)
nτβWmin

>
6 ln 1

h
ln(2n)

nτβ
> 3t3 > t1 + t2 + t3 the proof finishes.

To show the second part of Theorem 1 (main result), we will couple the random

variable corresponding to the number of individuals at every iteration with a biased

random walk on the real line. This can be done since in Lemma 4.13 we estab-

lished that the decrease and increase in average fitness is upper and lower bounded,

respectively. We will apply the following lemma about the biased random walks.

Lemma 4.14 (Biased random walk). Assume we perform a random walk on the

real line, starting from point k ∈ N and going right (+1) with probability q > 1
2

and

left (-1) with probability 1 − q. The probability that we will eventually reach 0 is(
1−q
q

)k
.

Using Lemma 4.13 together with the biased random walk Lemma 4.14, we show

our next result on survival of population under mutation in the following theorem.
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Theorem 4.15 (Main 1b - Mutation implies survival). If p < 1
2Tthr

where

Tthr = 6 ln(2n)
nτβWmin

then the probability of survival is at least 1−
(

pTthr
1−pTthr

)c lnN0

, for some

c =
(
nτWmin

ln(2n)

)
, independent of N0.

Proof. The probability that the chain remains at a specific environment for least Tthr

iterations is (1− p)Tthr > 1− pTthr (from the moment it enters the environment until

it departs) and hence the probability that the chain stays at an environment for time

less that Tthr is at most pTthr. Let N t = N0
∏t

j=1 x(j)>W e(j)y(j) (see (32) where here

e(j) corresponds to the environment at time j) the number of individuals at time t

and Zi be the position of the biased random walk at time i as defined in Lemma

4.14 with q = 1− pTthr and assume that Z0 = blogdN
0c (d is from lemma 4.13). Let

t1, t2, ... be the sequence of times where there is a change of environment (with t0 = 0)

and consider the trivial coupling where when the chain changes environment then a

move is made on the real line. If the chain remained in the environment for time

less than Tthr then the walk goes left, otherwise it goes right. It is clear by Lemma

4.13 that random variable logdN
ti dominates Zi. Hence, the probability that the

population survives is at least the probability that Zi never reaches zero (Zi > 0 for

all i ∈ N). By Lemma 4.14 this is at most ( pTthr
1−pTthr

)blogdN
0c and thus the probability of

survival is at least 1−
(

pTthr
1−pTthr

)c lnN0

where c =
(
nτWmin

ln(2n)

)
depends on n, τ and fitness

matrices W e in particular, the minimum Wmin = mineW
e
min, and also from Lemma

4.13 we have that ln d ≈ ln 2n
Wminnτ

.

4.7 Convergence of discrete replicator dynamics with mu-
tation in fixed environments

In this section we extend the convergence result, i.e., Theorem 2.9 of Chapter

2 for dynamics (26) in static environment to dynamics governed by (28) where mu-

tations are also present. The former result critically hinges on the fact that mean

fitness strictly increases unless the system is at a fixed point, and thereby acts as a
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potential function. Despite the fact that this is no longer the case when mutations

are introduced, we manage to show that the system still converges and follows an

intuitively clear behavior. Namely, in every step of the dynamics, either the average

fitness x>Wy or the product of the proportions of all different alleles
∏

i xi
∏

i yi (or

both) will increase. This latter quantity is a measure of how mixed/diverse the pop-

ulation is. To argue this we apply Inequality (1.1) due to Baum and Eagon and we

establish a potential function P for the dynamics governed by (28), capturing sexual

evolution with mutation. This will imply convergence for the dynamics. Note that

feasible values of τ are in [0, 1
n
], since τ represents the fraction of allele i mutating to

allele i′ of the same gene, implying nτ ≤ 1.

Theorem 4.16 (Main 3 - Convergence with mutations). Given a static environ-

ment W , dynamics governed by (28) with mutation parameter τ ≤ 1
n

has a potential

function P (x,y) = (x>Wy)1−nτ ∏
i x

τ
i

∏
i y

τ
i that strictly increases, unless an equilib-

rium (fixed point) is reached. Thus, the system converges to equilibria in the limit.

Equilibria are exactly the set of points (p∗,q∗) that satisfy for all i, i′ ∈ S1, j, j′ ∈ S2:

(Wq∗)i
1− τ

p∗i

=
(Wq∗)i′

1− τ
p∗
i′

=
p∗TWq∗

1− nτ =
(W>p∗)j

1− τ
q∗j

=
(W>p∗)j′

1− τ
q∗
j′

.

Proof. We first prove the results for rational τ ; let τ = κ/λ. We use the Theorem 1.1.

Let

L(x,y) = (x>Wy)λ−mκ
∏
i

xκi
∏
i

yκi .

Then

xi
∂L

∂xi
= 2κL+

2xi(Wy)i(λ−mκ)L

x>Wy
.

It follows that

xi
∂L
∂xi∑

i xi
∂L
∂xi

=
2κL+ 2xi(Wy)i(λ−mκ)L

x>Wy

2mκL+ 2(λ−mκ)L

=
2κL

2λL
+

2L(λ−mκ)xi(Wy)i
2λLx>Wy

= (1− nτ)xi
(Wy)i
x>Wy

+ τ,
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where the first equality comes from the fact that
∑n

i=1 xi(Wy)i = x>Wy. The same

is true for yi
∂L
∂yi

. Since L is a homogeneous polynomial of degree 2λ, from Theorem 1.1

we get that L is strictly increasing along the trajectories, namely

L(f(x,y)) > L(x,y),

unless (x,y) is a fixed point (f is the update rule of the dynamics, see also (27)).

So P (x,y) = L1/κ(x,y) is a potential function for the dynamics. To prove the result

for irrational τ , we just have to see that the proof of [14] holds for all homogeneous

polynomials with degree d, even irrational.

To finish the proof, let Ω ⊂ ∆ be the set of limit points of an orbit z(t) =

(x(t),y(t)) (frequencies at time t for t ∈ N). P (z(t)) is increasing with respect to

time t by above and so, because P is bounded on ∆, P (z(t)) converges as t→∞ to

P ∗ = supt{P (z(t))}. By continuity of P , we get that P (v) = limt→∞ P (z(t)) = P ∗

for all v ∈ Ω. So P is constant on Ω. Also v(t) = limk→∞ z(tk+ t) as k →∞ for some

sequence of times {ti} and so v(t) lies in Ω, i.e., Ω is invariant. Thus, if v ≡ v(0) ∈ Ω,

the orbit v(t) lies in Ω and so P (v(t)) = P ∗ on the orbit. But P is strictly increasing

except on equilibrium orbits and so Ω consists entirely of fixed points.

As a consequence of the above theorem we get the following:

Corollary 4.17. Along every nontrivial trajectory of dynamics governed by (28) at

least one of average fitness x>Wy or product of allele frequencies
∏

i xi
∏

i yi strictly

increases at each step.

4.8 Discussion on the assumptions and examples

In this section, we discuss why our assumptions are necessary and their significance.

4.8.1 On the parameters

The effective range of δ is o
(

1
n

)
, where ||δ||∞ = δ, whereas for γ is O

(
1
n2

)
. For

example, if we consider the entries of fitness matrices W e to be uniform from interval
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(1 − σ, 1 + σ) for some positive σ > 0 then γ is of order Θ( 1
n2 ). If the entries of the

matrix are constants (in weak selection scenario they lie in the interval (1−σ, 1 +σ))

then the convergence time of dynamics (29) is polynomial with respect to n (size of

fitness matrices W e is n×n). We note that the main result of Chapter 2 for dynamics

(26) has been derived under the assumption that the entries of the fitness matrix are

all distinct. It is proven that this assumption is necessary by giving examples where

the dynamic doesn’t converge to pure fixed points if the fitness matrix has some

entries that are equal (the trivial example is when W has all entries equal, then every

frequency vector in ∆ is a fixed point). This is an indication that γ is needed to

analyze the running time and is not artificial. The noise vector δ has coordinates

±δ, so it is uniformly chosen from hypercube, but there is no dependence on the

current frequency vector (δ is independent of current (x,y)). Finally, β should be

thought of as a small constant (like in weak selection) independent of n, and τ to be

O( 1
n
). Observe that 1 − nτ ≥ 0 must hold so that the dynamics with mutation are

meaningful and from Lemma 4.13, it must hold that τ ≤ β
16n

.

4.8.2 On the environments

We analyze a finite population model where N t is the population size at time t.

It is natural to define survival if N t ≥ 1 for all t ∈ N (number of people is at least 1

at all times) and extinction if N t < 1, for some t (if the number of people is less than

one at some point then the population goes extinct). As described in preliminaries,

N t = N t−1 · Φt where Φt = x(t)>W e(t)y(t) is the average fitness at time t and W e(t)

is the fitness matrix of environment e(t).

Fix a fitness matrix W (i.e., fix an environment). If Wij > 1 + ε for all (i, j) then

x>Wy ≥ 1 for all (x,y) ∈ ∆ and thus the number of individuals is increasing along

the generations by a factor of 1 + ε (the population survives). On the other hand,

if Wij < 1 − ε for all (i, j) then x>Wy < 1 − ε for all (x,y) ∈ ∆, so it is clear that
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the number of individuals is decreasing with a factor of 1 − ε (thus population goes

extinct). So either extreme makes the problem irrelevant.

Finally, it is natural to assume that complete diversity should favor survival, i.e., if

the population is uniform along the alleles/types then the population size must not

decrease in the next generation. Therefore, we assume that the average fitness under

uniform frequencies is ≥ 1 +β (for all but few number of bad alleles that can be seen

as deleterious). The alleles that are good should dominate entry-wise the bad alleles.

Example Figure 7 shows that this assumption is necessary. In Figure 7, τ = 0.03

and W e =

 0.99 0.37

0.56 2.09

 . If we start from any vector (x,y) in the shaded area,

the dynamics converges to the stable fixed point B. The average fitness x>Wy at

B is less than the maximum at the corner which is W e
1,1 = 0.99 < 1. So if the size

of population is Q when entering e, after t generations on the environment e, the

population size will be at most Q ·0.99t (which decreases exponentially). In that case

Theorem 4.15 does not hold, even if 0.99+0.37+0.56+2.09
4

= 1.0025 > 1 and β = 0.0025

(qualitatively we would have the same picture for any τ ∈ [0, 0.03] and W e).

The assumption defined in (35) is necessary as well for the following reason: As-

sume there is a combination of alleles (i, j) so that
∏

e(W
e
ij)

πe ≥ 1 (**). In that case

we can have one of the environments so that xi = 1, yj = 1 is a stable fixed point

and hence there are initial frequencies such that the dynamics (29) converge to it.

After that, it is easy to argue that this monomorphic population survives on average

because of (**), so the probability of survival in that case is non-zero.

4.8.3 Explanation of figure 6

Figure 6 in Section 4.1 shows the adjacency graph of a Markov chain. There are

3 environments with fitness matrices, say W e1 ,W e2 ,W e3 , and the entries of every

matrix are distinct. Take pii = 1− p and pij = p
2

so that the stationary distribution

is (1/3, 1/3, 1/3). Observe that W e1
1,1 ·W e2

1,1 ·W e3
1,1 = 1.12 · 1.02 · 0.87 < 0.994 < 1. The
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same is true for entries (1,2),(2,1),(2,2). So the assumption defined in (35) is satisfied.

Moreover, observe that if we choose β = 0.005, and hence τ = 0.005
32

, it follows

that the assumptions defined in (36) are satisfied (also the bad alleles are dominated

entry-wise by the good alleles). Hence, in case of no mutation, from Theorem 4.11

the population dies out with probability 1, for all initial population sizes N0 and all

initial frequency vectors in ∆. In case of mutation, and for sufficiently large initial

population size N0, for all initial frequency vectors in ∆, the probability of survival

is positive (Theorem 4.15).

4.9 Figures

To draw the phase portrait of a discrete time system f : ∆→ ∆, we draw vector

f(x)− x at point x.

Figure 7: Example where population goes extinct in environment e for some initial

frequency vectors (x,y) that are close to stable point B (inside the shaded area).

Mutation probability is τ = 0.03 and the fitness matrix of environment e is W e
1,1 =

0.99,W e
2,2 = 2.09,W e

1,2 = 0.37,W e
2,1 = 0.56.
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Figure 8: Example of dynamics without mutation in specific environment W e
1,1 =

0.99,W e
2,2 = 2.09,W e

1,2 = 0.37,W e
2,1 = 0.56. The circles qualitatively show all the

points that slow down the increase in the average fitness x>W ey, i.e., α-close points

or negligible.

4.10 Conclusion and remarks

The results of this chapter appear in [85]. In this chapter we show various aspects

of discrete replicator-like/MWUA dynamics and show three results: Two for dynamics

with fixed parameters, and one where the parameters evolve over time as per a Markov

chain. Theorem 4.9 establishes that a noisy version of discrete replicator dynamics

converges polynomially fast to pure fixed points in coordination games. Due to the

connections established by Chastain et al. [23], this implies that evolution under

sexual reproduction in haploids converges fast to a monomorphic population if the

environment is static (fitness/payoff matrix is fixed). Introducing mutations to this

model, as in [61], augments the replicator dynamics, and our second result shows

convergence for this augmented replicator in coordination games. The proof is via a

novel potential function, which is a combination of mean payoff and entropy, which

may be of independent interest.
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Finally, for the replicator dynamics with noise, capturing finite populations, we

show that assuming some mild conditions, the population size will eventually be-

come zero with probability one (extinction) under (standard) replicator, while under

augmented replicator (with mutations) it will never wither out (survival) with a non-

trivial probability.

A host of novel questions arise from this model and there is space for future work:

• For the fast convergence result (first result above), we assumed that the random

noise δ lies in a subset of hypercube of length δ, i.e., every entry δi is ±1 times

magnitude δ and
∑

i δi = 0. Can the result be generalized for a different class

of random noise, where the noise also depends on the distribution of the alleles

at every step and or population size?

• The second result talks about convergence to fixed points, which happens at

the limit (time t → ∞). Therefore, an interesting question would be to settle

the speed of convergence. Additionally, for the no mutations case, Theorem

2.9 shows that all the stable fixed points are pure. It would be interesting to

perform stability analysis for the replicator with mutations as well.

• Mutation can be modeled in an alternate way, where an individual can mutate

to a completely new allele that is not part of some fixed (in advance) set of

alleles. This is equivalent to adding a strategy to the coordination game. It will

be interesting to define and analyze dynamics where mutation is modeled in

such a way. Finally, what happens if environment changes are not completely

independent but are instead affected by population size?
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CHAPTER V

EVOLUTIONARY MARKOV CHAINS

5.1 Introduction

We start this chapter by a motivating example. Given a total number of N red

and blue balls we have the following process:

• (Reproduction step): From the N balls, each red ball is replaced by ar ∈ Z+

new red balls and each blue ball is replaced by aB ∈ Z+ new blue balls.

• (Selection step): N of these offsprings are randomly selected with replacement.

• (Mutation step): Each of N balls from the previous step flips color with prob-

ability µ and keeps the same color with probability 1− µ.

The stochastic process above is a Markov chain with state space all the (x, y) ∈ N2

with x+ y = N , i.e., it has N + 1 states. As long as µ > 0, it is easy to see that the

Markov chain is ergodic and it converges to a unique stationary distribution. The

main question is how fast it converges, and as discussed in the section 1.3 this is

captured by the mixing time. The mixing time of a Markov chain, tmix, is defined to

be the smallest time t such that for all x ∈ Ω, the distribution of the Markov chain

starting at x after t-time steps is within an `1-distance of 1/4 of the steady state.1

In this chapter we will give some generic theorems about bounding the mixing

time of Markov chains that have the same flavor as the above process, which we

call evolutionary Markov chains. These processes arise in the context of evolution

and have also been used to model a wide variety of social, economical and cultural

1Recall that if one is willing to pay an additional factor of log 1/ε, one can bring down the error
from 1/4 to ε for any ε > 0; see [75].
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phenomena, see [100]. Typically, in such Markov chains, each state consists of a

population of size N where each individual is of one of m types. Thus, the state space

Ω has size
(
N+m−1
m−1

)
, and it is huge even for constant m.2 At a very high level, in each

iteration, the different types in the current generation reproduce according to some

fitness function f , the reproduction could be asexual or sexual and have mutations

that transform one type into another. This gives rise to an intermediate population

that is subjected to the force of selection; a sample of size N is selected giving us the

new generation. The specific way in which the reproduction, mutation and selection

steps happen determine the transition matrix of the corresponding Markov chain.

Most questions in evolution reduce to understanding the statistical properties

of the steady state of an evolutionary Markov chain and how it changes with its

parameters. However, in general, there seems to be no way to compute the desired

statistical properties other than to sample from (close to) the steady state distribution

by running the Markov chain for sufficiently long [39]. The examples we examine in

Section 5.7 have the property that the underlying Markov chains are ergodic but

not reversible, and so we do not have a another way to compute or approximate

the stationary distribution, apart from running the chain. Apart from dictating the

computational feasibility of sampling procedures, the mixing time also gives us the

number of generations required to reach the steady state; an important consideration

for validating evolutionary models [133, 39].

5.1.1 Evolutionary Markov chains

It is convenient to think of each state of an evolutionary Markov chain as a vector

which captures the fraction of each type in the current population. Thus, each state is

2For example, even when m = 40 and the population is of size 10, 000, the number of states is
more than 2300, i.e., more than the number of atoms in the universe!
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a 1/N-integral point (each coordinate is a multiple of 1/N) in the m-dimensional prob-

ability simplex ∆m,
3 and we can think of the state space Ω ⊆ ∆m. We are also given

a (fitness) function f : ∆m 7→ ∆m. If X(t) is the current state of the chain, inspired

by the Wright-Fisher model, the state at t+ 1 is obtained by sampling N times inde-

pendently from the distribution f(X(t)). In other words, X(t+1) ∼ 1
N

Mult(N, f(X(t)))

(multiplied by renormalization factor 1/N so that X(t+1) ∈ ∆m), where Mult(n,p)

denotes the multinomial distribution with parameters (n,p ··= (p1, ..., pm)). We will

say that this evolutionary Markov chain is a stochastic evolution guided by f . It is

not hard to see that it holds

f(X(t)) ··= E
[
X(t+1)|X(t)

]
, (38)

where the expectation is over one step of the chain. This quantity is called the expected

motion of the chain at X(t). Notice that xk+1 = f(xk) is a discrete dynamical system in

the simplex. What can the expected motion of a Markov chain tell us about the mixing

time of a Markov chain? Of course, for general Markov chains we do not expect a

very interesting answer, but since we get N samples i.i.d to compute the next state,

additional structure is imposed to the equation (38) (e.g., we have concentration

around the expectation due to Chernoff bounds, see Theorem 5.5).

Our contribution. Our key contribution is to connect the mixing time of an evo-

lutionary Markov chain with the geometry of the corresponding dynamical system it

induces (its expected motion). More formally, we prove the following mixing time

bounds which depend on the structure of the limit sets of the expected motion:

• One unique fixed point which is stable4 – the mixing time is O(logN),

see Theorem 5.7

3Recall that the probability simplex ∆m is {p ∈ Rm : pi ≥ 0 ∀i, ∑i pi = 1}.
4Abusing the definition, when we say stable in this chapter, we mean that the spectral radius of

the Jacobian at the fixed point is less than one. Moreover by unstable, we mean that the Jacobian
has spectral radius greater than one.
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(a) One stable fixed point ⇒ fast
mixing

(b) 3 stable fixed points ⇒ slow
mixing

Figure 9: One/multiple stable fixed points.

• One stable fixed point and multiple unstable fixed points – the mixing time is

O(logN), see Theorem 5.8.

• Multiple stable fixed points – the mixing time is eΩ(N), see Theorem 5.9.

• Periodic orbits – the mixing time is eΩ(N), see Theorem 5.10.

Roughly, this is achieved by using the geometry of the dynamical system around the

fixed points (for the first two theorems we construct a contractive coupling).

Moreover we provide two applications in Section 5.7. Theorem 5.7 enables us to

establish rapid mixing for evolutionary Markov chains which capture the evolution of

species (RSM or Eigen’s dynamics [43]) where reproduction is asexual (see Theorem

5.11). Finally, combining Theorems 5.7, 5.9 we are able to show a phase transition

result in a model which captures how children acquire grammar [101, 71] and which

can be interpreted as a process in which the species reproduce is sexual (see Theorem

5.12). While we describe these models later, we note that, as one changes the pa-

rameters of the model, the limit sets of the expected motion can exhibit the kind of

complex behavior mentioned above and a finer understanding of how they influence

the mixing time is desired.
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5.2 Related Work

There have been glimpses in the probability literature that connections between

Markov chains and dynamical systems might be useful, see [109, 15, 140, 81, 55, 80]

and references therein. We study the connection between dynamical systems and

the mixing time of Markov chains formally in this chapter. Technically, our results

strengthen the connection between Markov chains/stochastic processes and dynamical

systems. We focus on a class of Markov chains called evolutionary and inspired by

the Wright-Fisher model in population genetics.

The motivating example (as an infinite population dynamics) which also appears

in Section 5.7.1 and belongs to the class of Markov chains we focus on, was proposed

in the pioneering work of Eigen and co-authors [43, 45]. Importantly, this particular

dynamical system has found use in modeling rapidly evolving viral populations (such

as HIV), which in turn has guided drug and vaccine design strategies. As a result,

these dynamics are well-studied; see [39, 135, 137] for an in depth discussion.

However, even in the simplest of stochastic evolutionary models there has been

a lack of rigorous mixing time bounds for the full range of evolutionary parameters;

see [42, 49, 47] for results under restricted assumptions. Our Theorems give rigorous

bounds for mixing times under minimal assumptions.

5.3 Preliminaries and formal statement of results

5.3.1 Important Definitions and Tools

In preparation for formally stating our results, we first discuss some definitions

and technical tools that will be used later on. We then formally state our main

theorems in Section 5.3.2 and our applications in Section 5.7. We start this section

by defining formally the class of evolutionary Markov chains we focus on for the rest

of this chapter.

Definition 19 (Stochastic evolution Markov chains). Given an f : ∆m → ∆m
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which is twice differentiable in the relative interior of ∆m with bounded second deriva-

tive and a population parameter N , we define a Markov chain called the stochastic

evolution guided by f as follows. The state at time t is a probability vector X(t) ∈ ∆m.

The state X(t+1) is then obtained in the following manner. Define Y(t) = f(X(t)). Ob-

tain N independent samples from the probability distribution Y(t), and denote by Z(t)

the resulting counting vector over [m]. Then

X(t+1) ··=
1

N
Z(t) and therefore E[X(t+1)|X(t)] = f(X(t)).

We call f the expected motion of the stochastic evolution.

Operators and norms. The following theorem, stated here only in the special case

of the 1→ 1 norm, relates the spectral radius with other matrix norms.

Theorem 5.1 (Gelfand’s formula, specialized to the 1 → 1 norm). For any

square matrix M , we have

sp (M) = lim
l→∞

∥∥M l
∥∥1/l

1
.

Theorem 5.2 (Taylor’s theorems, truncated). Let f : Rm → Rm be a twice

differentiable function, and let J(z) denote the Jacobian of f at z. Let x,y ∈ Rm be

two points, and suppose there exists a positive constant B such that at every point on

the line segment joining x to y, the Hessians of each of the m co-ordinates fi of f

have operator norm at most 2B. Then, there exists a v ∈ Rm such that

f(x) = f(y) + J(y)(x− y) + v,

and |vi| ≤ B ‖x− y‖2
2 for each i ∈ [m].

Theorem 5.3 (Taylor’s theorem, first order remainder). Let f : Rm → R be

differentiable and x,y ∈ Rm. Then there exists some ξ in the line segment from x to

y such that f(y) = f(x) +∇f(ξ)(y − x).
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Remark 7 (On the zero eigenvalue of Jacobian of f : ∆m → ∆m). Since

f : ∆m → ∆m and hence
∑

i fi(x) = 1 for all x ∈ ∆m, if we define hi(x) = fi(x)∑
i fi(x)

so that h(x) = f(x) for all x ∈ ∆m, we get that
∑

i
∂hi(x)
∂xj

= 0 for all j ∈ [m]. This

means without loss of generality we can assume that the Jacobian J(x) of f has 1>

(the all-ones vector) as a left eigenvector with eigenvalue 0.

The definition below quantifies the instability of a fixed point as is standard in the

literature. Essentially, an α unstable fixed point is repelling in any direction.

Definition 20 (α-unstable fixed point). Let z be a fixed point of a dynamical

system f. The point z is called α-unstable if |λmin(J(z))| > α > 1 where λmin corre-

sponds to the minimum eigenvalue of the Jacobian of f at the fixed point z, excluding

the eigenvalue 0 that corresponds to the left eigenvector 1>.

Also we need to define what a stable periodic orbit is, since we use it in Theorem

5.10. Let C = {x1, . . . ,xk} be a periodic orbit of size k. We call C a stable periodic

orbit (we also use the terminology stable limit cycle) if sp
(
Jfk(x1)

)
< ρ < 1, where

Jfk(x1) denotes the Jacobian of function fk at x1.

Couplings and mixing times. We revisit from Introduction some facts about

couplings and mixing times, adjusted to the problem of this chapter. Let p,q ∈ ∆m be

two probability distributions on m objects. A coupling C of p and q is a distribution

on ordered pairs in [m] × [m], such that its marginal distribution on the first co-

ordinate is equal to p and that on the second coordinate is equal to q. A simple, if

trivial, example of a coupling is the joint distribution obtained by sampling the two

coordinates independently, one from p and the other from q.

Couplings allow a very useful dual characterization of the total variation distance,

as stated in the following well known lemma (see also 1.4).

Lemma 5.4 (Coupling lemma [4]). Let p,q ∈ ∆m be two probability distributions
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on m objects. Then,

‖p− q‖TV =
1

2
‖p− q‖1 = min

C
P(A,B)∼C [A 6= B] ,

where the minimum is taken over all valid couplings C of p and q.

Moreover, the coupling in the lemma can be explicitly described. We use this

coupling extensively in our arguments, hence we record some of its properties here.

Definition 21 (Optimal coupling). Let p,q ∈ ∆m be two probability distributions

on m objects. For each i ∈ [m], let si ··= min(pi, qi), and s ··=
∑m

i=1 si. Sample

U, V,W independently at random as follows:

P [U = i] =
si
s

, P [V = i] =
pi − si
1− s , and P [W = i] =

qi − si
1− s , for all i ∈ [m].

We then sample (independent of U, V,W ) a Bernoulli random variable H with mean

s. The sample (A,B) given by the coupling is (U,U) if H = 1 and (V,W ) otherwise.

It is easy to verify that A ∼ p, B ∼ q and P [A = B] = s = 1 − ‖p− q‖TV.

Another easily verified but important property is that for any i ∈ [m]

P [A = i, B 6= i] =


0 if pi < qi,

pi − qi if pi ≥ qi.

A standard technique for obtaining upper bounds on mixing times is to use the

Coupling Lemma above. Suppose S
(t)
1 and S

(t)
2 are two evolutions of an ergodic chain

M such that their evolutions are coupled according to some coupling C. Let T be the

stopping time such that S
(T )
1 = S

(T )
2 . Then, if it can be shown that P [T > t] ≤ 1/e

for every pair of starting states (S
(0)
1 , S

(0)
2 ), then it follows that tmix ··= tmix(1/e) ≤ t.

Concentration. We discuss some concentration results that are used extensively

in our later arguments. We begin with standard Chernoff-Hoeffding type bounds.
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Theorem 5.5 (Chernoff-Hoeffding bounds [41]). Let Z1, Z2, . . . , ZN be i.i.d Bernoulli

random variables with mean µ. We then have

1. When 0 < δ ≤ 1,

P

[∣∣∣∣∣ 1

N

N∑
i=1

Zi − µ
∣∣∣∣∣ > µδ

]
≤ 2 exp

(
−Nµδ2/3

)
.

2. When δ ≥ 1,

P

[∣∣∣∣∣ 1

N

N∑
i=1

Zi − µ
∣∣∣∣∣ > µδ

]
≤ exp (−Nµδ/3) .

3. For ε > 0,

P

[∣∣∣∣∣ 1

N

N∑
i=1

Zi − µ
∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2Nε2

)
.

An important tool in our later development is the following lemma, which bounds

additional “discrepancies” that can arise when one samples from two distribution p

and q using an optimal coupling. The important feature for us is the fact that the

additional discrepancy (denoted as e in the lemma) is bounded as a fraction of the

“initial discrepancy” ‖p− q‖1. However, such relative bounds on the discrepancy are

less likely to hold when the initial discrepancy itself is very small, and hence, there is a

trade-off between the lower bound that needs to be imposed on the initial discrepancy

‖p− q‖1, and the desired probability with which the claimed relative bound on the

additional discrepancy e is to hold. The lemma makes this delicate trade-off precise.

Lemma 5.6. Let p and q be probability distributions on a universe of size m, so that

p,q ∈ ∆m. Consider an optimal coupling of the two distributions, and let x and y be

random frequency vectors with m co-ordinates (normalized to sum to 1) obtained by

taking N independent samples from the coupled distributions, so that E [x] = p and

E [y] = q. Define the random error vector e as

e ··= (x− y)− (p− q).
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Suppose c > 1 and t (possibly dependent upon N) are such that ‖p− q‖1 ≥ ctm
N

. We

then have

‖e‖1 ≤
(

2√
c

)
‖p− q‖1

with probability at least 1− 2m exp (−t/3).

Proof. The properties of the optimal coupling of the distributions p and q imply that

since the N coupled samples are taken independently,

1. |xi − yi| = 1
N

∑N
j=1 Rj, where Rj are i.i.d. Bernoulli random variables with

mean |pi − qi|, and

2. xi − yi has the same sign as pi − qi.

The second fact implies that |ei| = ||xi − yi| − |(pi − qi)||. By applying the concen-

tration bounds from 5.5 to the first fact, we then get (for any arbitrary i ∈ [m])

P

[
|ei| >

√
t

N |pi − qi|
· |pi − qi|

]
≤ 2 exp (−t/3) , if

t

N |pi − qi|
≤ 1, and

P
[
|ei| >

t

N |pi − qi|
· |pi − qi|

]
≤ exp (−t/3) , if

t

N |pi − qi|
> 1.

One of the two bounds applies to every i ∈ [m] (except those i for which |pi− qi| = 0,

but in those cases, we have |ei| = 0, so the bounds below will apply nonetheless).

Thus, taking a union bound over all the indices, we see that with probability at least

1− 2m exp (−t/3), we have

‖e‖1 =
m∑
i=1

|ei| ≤
√

t

N

m∑
i=1

√
|pi − qi|+

tm

N

≤
√
tm

N

√
‖p− q‖1 +

tm

M
(39)

≤
(

1√
c

+
1

c

)
‖p− q‖1 . (40)

Here, (39) uses Cauchy-Schwarz inequality to bound the first term while (40) uses

the hypothesis in the lemma that ctm
N
≤ ‖p− q‖1. The claim follows since c > 1.
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For concreteness, in the rest of this chapter, we use tmix to refer to tmix(1/e)

(though any other constant smaller than 1/2 could be chosen as well in place of 1/e

without changing any of the claims).

5.3.2 Main theorems

We are now ready to state our main theorem. We begin by formally defining the

conditions on the evolution function required by Theorem 5.7.

Definition 22 (Smooth contractive evolution). A function f : ∆m → ∆m is said

to be a (L,B, ρ) smooth contractive evolution if it has the following properties:

Smoothness f is twice differentiable in the interior of ∆m. Further, the Jacobian J

of f satisfies ‖J(x)‖1 ≤ L for every x in the interior of ∆m, and the operator

norms of the Hessians of its co-ordinates are uniformly bounded above by 2B at

all points in the interior of ∆m.

Unique fixed point f has a unique fixed point τ in ∆m which lies in the interior

of ∆m.

Contraction near the fixed point At the fixed point τ , the Jacobian J(τ) of f

satisfies

sp (J(τ)) < ρ < 1.

Convergence to fixed point For every ε > 0, there exists an ` such that for any

x ∈ ∆m, ∥∥f `(x)− τ
∥∥

1
< ε.

Remark 8. Note that the last condition implies that ‖f t(x)− τ‖1 = O(ρt) in the

light of the previous condition and the smoothness condition (see Lemma 5.18). Also,

it is easy to see that the last two conditions imply the uniqueness of the fixed point,

i.e., the second condition. However, the last condition on global convergence does not
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by itself imply the third condition on contraction near the fixed point. Consider, e.g.,

g : [−1, 1] → [−1, 1] defined as g(x) = x − x3. The unique fixed point of g in its

domain is 0, and we have g′(0) = 1, so that the third condition is not satisfied. On

the other hand, the last condition is satisfied, since for x ∈ [−1, 1] satisfying |x| ≥ ε,

we have |g(x)| ≤ |x| (1 − ε2). In order to construct a function f : [0, 1] → [0, 1] with

the same properties, we note that the range of g is [−x0, x0] where x0 = 2/(3
√

3),

and consider f : [0, 1] → [0, 1] defined as f(x) = x0 + g(x − x0). Then, the unique

fixed point of f in [0, 1] is x0, f ′(x0) = g′(0) = 1, the range of f is contained in

[0, 2x0] ⊆ [0, 1], and f satisfies the fourth condition in the definition but does not

satisfy the third condition.

Given an f which is a smooth contractive evolution, and a population parameter

N , our first result is the following:

Theorem 5.7 (Unique stable). Let f be a (L,B, ρ) smooth contractive evolution.

Then, the mixing time of the stochastic evolution guided by f is O(logN).

Moreover, in the second theorem we allow f to have multiple unstable fixed points,

but still a unique stable.

Theorem 5.8 (One stable/multiple unstable). Let f : ∆m → ∆m be twice dif-

ferentiable in the interior of ∆m with bounded second derivative. Assume that f(x)

has a finite number of fixed points z0, . . . , zl in the interior, where z0 is a stable fixed

point, i.e., sp (J(z0)) < ρ < 1 and z1, . . . , zl are α-unstable fixed points (α > 1).

Furthermore, assume that limt→∞ f
t(x) exists for all x ∈ ∆m. Then, the stochastic

evolution guided by f has mixing time O(logN).

In the third result, we allow f to have multiple stable fixed points (in addition to

any number of unstable fixed points). For this setting, we prove that the stochastic

evolution guided by f has mixing time eΩ(N). The phase transition result on model

discussed in Section 5.7.3 relies crucially on Theorem 5.9.
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Theorem 5.9 (Multiple stable). Let f : ∆m → ∆m be continuously differentiable

in the interior of ∆m. Assume that f(x) has at least two stable fixed points in the

interior z1, . . . , zl, i.e., sp (J(zi)) < ρi < 1 for i = 1, 2, . . . , l. Then, the stochastic

evolution guided by f has mixing time eΩ(N).

Finally, we allow f to have a stable limit cycle. We prove that in this setting the

stochastic evolution guided by f has mixing time eΩ(N). This result seems important

for evolutionary dynamics as periodic orbits often appear [112, 107].

Theorem 5.10 (Stable limit cycle). Let f : ∆m → ∆m be continuously differen-

tiable in the interior of ∆m. Assume that f(x) has a stable limit cycle with points

w1, . . . ,ws of size s ≥ 2 in the sense that sp (
∏s

i=1 J(ws−i+1)) < ρ < 1. Then the

stochastic evolution guided by f has mixing time eΩ(N).

We also provide two applications of the theorems above for two specific dynamics,

discussed extensively in Section 5.7.

Theorem 5.11 (Rapid mixing for RSM model). The mixing time of the RSM

model is O(logN) for all matrices Q,A and values of m.

Theorem 5.12 (Phase transition for grammar acquisition). There is a criti-

cal value τc of the mutation parameter τ such that the mixing time of the grammar

acquisition dynamics is: (i) exp(Ω(N)) for 0 < τ < τc and (ii) O(logN) for τ > τc

where N is the size of the population.

5.4 Technical overview

5.4.1 Overview of Theorem 5.7

We analyze the mixing time of our stochastic process by studying the time required

for evolutions started at two arbitrary starting states X(0) and Y(0) to collide. More

precisely, let C be any Markovian coupling of two stochastic evolutions X and Y,

both guided by a smooth contractive evolution f , which are started at X(0) and Y(0).
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Let T be the first (random) time such that X(T ) = Y(T ). It is well known that if

it can be shown that P [T > t] ≤ 1/4 for every pair of starting states X(0) and Y(0)

then tmix(1/4) ≤ t. We show that such a bound on P [T > t] holds if we couple the

chains using the optimal coupling of two multinomial distributions (see Section 5.3

for a definition of this coupling).

Our starting point is the observation that the optimal coupling and the definition

of the evolutions implies that for any time t,

E
[∥∥X(t+1) −Y(t+1)

∥∥
1
| X(t),Y(t)

]
=
∥∥f(X(t))− f(Y(t))

∥∥
1
. (41)

Now, if f were globally contractive, so that the right hand side of (41) was always

bounded above by ρ′
∥∥X(t) −Y(t)

∥∥
1

for some constant ρ′ < 1, then we would get that

the expected distance between the two copies of the chains contracts at a constant

rate. Since the minimum possible positive `1 distance between two copies of the chain

is 1/N , this would have implied an O(logN) mixing time using standard arguments.

However, such a global assumption on f , which is equivalent to requiring that the

Jacobian J of f satisfies ‖J(x)‖1 < 1 for all x ∈ ∆m, is far too strong. In particular,

it is not satisfied by standard systems such as Eigen’s dynamics discussed later in

Section 5.7.1.

Nevertheless, these dynamics do satisfy a more local version of the above condition.

That is, they have a unique fixed point τ to which they converge quickly, and in the

vicinity of this fixed point, some form of contraction holds. These conditions motivate

the “unique fixed point”, “contraction near the fixed point”, and the “convergence

to fixed point” conditions in our definition of a smooth contractive evolution (22).

However, crucially, the “contraction near the fixed point” condition, inspired from

the definition of “asymptotically stable” fixed points in dynamical systems, is weaker

than the stepwise contraction condition described in the last paragraph, even in the

vicinity of the fixed point. As we shall see shortly, this weakening is essential for

generalizing the earlier results of [137] to the m > 2 case, but comes at the cost of
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making the analysis more challenging.

However, we first describe how the “convergence to fixed point” condition is used

to argue that the chains come close to the fixed point in O(logN) time. This step

of our argument is the only one technically quite similar to the development in [137];

our later arguments need to diverge widely from that paper. Although this step is

essentially an iterated application of appropriate concentration results along with the

fact that the “convergence to fixed point” condition implies that the deterministic

evolution f comes close to the fixed point τ at an exponential rate, complications

arise because f can amplify the effect of the random perturbations that arise at each

step. In particular, if L > 1 is the maximum of ‖J(x)‖1 over ∆m, then after ` steps, a

random perturbation can become amplified by a factor of L`. As such, if ` is taken to

be too large, these accumulated errors can swamp the progress made due to the fast

convergence of the deterministic evolution to the fixed point. These considerations

imply that the argument can only be used for ` = `0 logN steps for some small

constant `0, and hence we are only able to get the chains within Θ(N−γ) distance

of the fixed point, where γ < 1/3 is a small constant. In particular, the argument

cannot be carried out all the way down to distance O(1/N), which, if possible, would

have been sufficient to show that the coupling time is small with high probability.

Nevertheless, it does allow us to argue that both copies of the chain enter an O(N−γ)

neighborhood of the fixed point in O(logN) steps.

At this point, [137] showed that in the m = 2 case, one could take advantage

of the contractive behavior near the fixed point to construct a coupling obeying (41)

in which the right hand side was indeed contractive: in essence, this amounted to a

proof that ‖J‖1 < 1 was indeed satisfied in the small O(N−γ) neighborhood reached

at the end of the last step. This allowed [137] to complete the proof using standard

arguments, after some technicalities about ensuring that the chains remained for a

sufficiently long time in the neighborhood of the fixed point had been taken care of.
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The situation however changes completely in the m > 2 case. It is no longer

possible to argue in general that ‖J(x)‖1 < 1 when x is in the vicinity of the fixed

point, even when there is fast convergence to the fixed point. Instead, we have to

work with a weaker condition (the “contraction to the fixed point” condition alluded

to earlier) which only implies that there is a positive integer k, possibly larger than

1, such that in some vicinity of the fixed point,
∥∥Jk∥∥

1
< 1. In the setting used

by [137], k could be taken to be 1, and hence it could be argued via (41) that the

distance between the two coupled copies of the chains contracts in each step. This

argument however does not go through when only a kth power of J is guaranteed to

be contractive while J itself could have 1 → 1 norm larger than 1. This inability to

argue stepwise contraction is the major technical obstacle in our work when compared

to the work of [137], and the source of all the new difficulties that arise in this more

general setting.

As a first step toward getting around the difficulty of not having stepwise contrac-

tion, we prove 5.13, which shows that the eventual contraction after k steps can be

used to ensure that the distance between two evolutions x(t) and y(t) close to the fixed

point contracts by a factor ρk < 1 over an epoch of k steps (where k is as described

in the last paragraph), even when the evolutions undergo arbitrary perturbations u(t)

and v(t) at each step, provided that the difference u(t) − v(t) between the two pertur-

bations is small compared to the difference x(t−1) − y(t−1) between the evolutions at

the previous step. The last condition actually asks for a relative notion of smallness,

i.e., it requires that∥∥ξ(t)
∥∥

1
··=
∥∥u(t) − v(t)

∥∥
1
≤ δ

∥∥x(t−1) − y(t−1)
∥∥

1
, (42)

where δ is a constant specified in the theorem. Note that the theorem is a statement

about deterministic evolutions against possibly adversarial perturbations, and does

not require u(t) and v(t) to be stochastic, but only that they follow the required

conditions on the difference of the norm (in addition to the implied condition that
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the evolution x(t) and y(t) remain close to the fixed point during the epoch).

Thus, in order to use 5.13 for showing that the distance
∥∥X(t) −Y(t)

∥∥
1

between

the two coupled chains contracts after every k iterations of (41), we need to argue

that the required condition on the perturbations in (42) holds with high probability

over a given epoch during the coupled stochastic evolution of X(t) and Y(t). (In fact,

we also need to argue that the two chains individually remain close to the fixed point,

but this is easier to handle).

However, at this point, a complication arises from the fact that 5.13 requires

the difference ξ(t) between the perturbations at time t to be bounded relative to the

difference
∥∥X(t−1) −Y(t−1)

∥∥
1

at time t−1. In other words, the upper bounds required

on the ξ(t) become more stringent as the two chains come closer to each other. This

fact creates a trade-off between the probability with which the condition in (42) can

be enforced in an epoch, and the required lower bound on the distance between

the chains required during the epoch so as to ensure that probability (this trade-off is

technically based on 5.6). To take a couple of concrete examples, when
∥∥X(t) −Y(t)

∥∥
1

is Ω(logN/N) in an epoch, we can ensure that (42) remains valid with probability

at least 1−N−Θ(1) (see the discussion following 5.16), so that with high probability

Ω(logN) consecutive epochs admit a contraction allowing the distance between the

chains to come down from Θ(N−γ) at the end of the first step to Θ(logN/N) at the

end of this set of epochs.

Ideally, we would have liked to continue this argument till the distance between

the chains is Θ(1/N) and (due to the properties of the optimal coupling) they have a

constant probability of colliding in a single step. However, due to the trade-off referred

to earlier, when we know only that
∥∥X(t) −Y(t)

∥∥
1

is Ω(1/N) during the epoch, we can

only guarantee the condition of (42) with probability Θ(1) (see the discussion following

the proof of 5.16). Thus, we cannot claim directly that once the distance between the

chains is O(logN/N), the next Ω(log logN) epochs will exhibit contraction in distance
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leading the chain to come as close as O(1/N) with a high enough positive probability.

To get around this difficulty, we consider O(log logN) epochs with successively weaker

guaranteed upper bounds on
∥∥X(t) −Y(t)

∥∥
1
. Although the weaker lower bounds on

the distances lead in turn to weaker concentration results when 5.16 is applied, we

show that this trade-off is such that we can choose these progressively decreasing

guarantees so that after this set of epochs, the distance between the chains is O(1/N)

with probability that it is small but at least a constant. Since the previous steps,

i.e., those involving making both chains come within distance O(N−γ) of the fixed

point (for some small constant γ < 1), and then making sure that the distance

between them drops to O(logN/N), take time O(logN) with probability 1 − o(1),

we can conclude that under the optimal coupling, the collision or coupling time T

satisfies

P [T > O(logN)] ≤ 1− q, (43)

for some small enough constant q, irrespective of the starting states X(0) and Y(0)

(note that here we are also using the fact that once the chains are within distance

O(1/N), the optimal coupling has a constant probability of causing a collision in a

single step). The lack of dependence on the starting states allows us to iterate (43)

for Θ (1) consecutive “blocks” of time O(logN) each to get

P [T > O (logN)] ≤ 1

4
,

which gives us the claimed mixing time.

5.4.2 Overview of Theorem 5.8

The main difficulty to prove this theorem is the existence of multiple unstable

fixed points in the simplex from which the Markov chain should get away fast. As

before, we study the time T required for two stochastic evolutions with arbitrary

initial states X(0) and Y(0), guided by some function f , to collide. By the conditions
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of Theorem 5.8, function f has a unique stable fixed point z0 with

sp (J(z0)) < ρ < 1.

Additionally, it has α-unstable fixed points. Moreover, for all starting points x0 ∈ ∆m,

the sequence (f t(x0))t∈N has a limit. We can show that there exists constant c0 such

that P [T > c0 logN ] ≤ 1
4
, from which it follows that tmix(1/4) ≤ c0 logN . In order

to show collision after O(logN) steps, it suffices first to run each chain independently

for O(logN) steps. We first show that with probability Θ(1), each chain will reach

B(z0,
1

N1−ε ) after at most O(logN) steps, for some ε > 0.5 As long as this is true,

the coupling constructed for proving Theorem 5.7 can be used to show collision. To

explain why our claim holds, we break the proof into three parts.

(a) First, it is shown that as long as the state of the Markov chain is within o
(

log2/3N√
N

)
in `1 distance from some α-unstable fixed point w, then, with probability Θ(1), it

reaches distance Ω
(

log2/3N√
N

)
after O(logN) steps. Step (a) has the technical difficulty

that as long as a chain starts from a o( 1√
N

) distance from an unstable fixed point,

the variance of the process dominates the expansion due to the fact the fixed point

is unstable.

(b) Assuming (a), we show that with probability 1− 1
poly(N)

the Markov chain reaches

distance Θ(1) from any unstable fixed point after O(logN) steps.

(c) Finally, if the Markov chain has Θ(1) distance from any unstable fixed point

(the fixed points have pairwise `1 distance independent of N , i.e., they are “well

separated”), it will reach some 1
N1−ε -neighborhood of the stable fixed point z0 expo-

nentially fast (i.e., after O(logN) steps). For showing (a) and (b), we must prove

an expansion argument for ‖f t(x)−w‖1 as t increases, where w is an α-unstable

fixed point and also taking care of the random perturbations due to the stochastic

5B(x, r) denotes the open ball with center x and radius r in `1, which we call an r-neighborhood
of x.
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evolution. Ideally what we want (but is not true) is the following to hold:

∥∥f t+1(x)−w
∥∥

1
≥ α

∥∥f t(x)−w
∥∥

1
,

i.e., one step expansion. The first important fact is that f−1 is well-defined in a small

neighborhood of w due to the Inverse Function Theorem, and it also holds that

∥∥f t(x)−w
∥∥

1
≈
∥∥J−1(w)(f t+1(x)−w)

∥∥
1
≤
∥∥J−1(w)

∥∥
1

∥∥f t+1(x)−w
∥∥

1
,

where x is in some neighborhood of w and J−1(w) is the pseudoinverse of J(w) (see

the Remark 7 in Section 5.3). However even if w is α-unstable and sp (J−1(w)) < 1
α

,

it can hold that ‖J−1(w)‖1 > 1. At this point, we use Gelfand’s formula (Theorem

5.1). Since limt→∞(‖At‖1)1/t → sp (A) , for all ε > 0, there exists a k0 such that for

all k ≥ k0 we have ∣∣∥∥Ak∥∥
1
− (sp (A))k

∣∣ < ε.

We use this important theorem to show for small ε > 0, there exists a k such that

∥∥f t(x)−w
∥∥

1
≈
∥∥(J−1(w))k(f t+k(x)−w)

∥∥
1
≤ 1

αk
∥∥f t+k(x)−w

∥∥
1
,

where we used the fact that

∥∥(J−1(w))k
∥∥

1
< (sp

(
J−1(w)

)
)k − ε ≤ 1

αk
.

By taking advantage of the continuity of the J−1(x) around the unstable fixed point

w, we can show expansion for every k steps of the dynamical system. It remains to

show for (a) and (b) how one can handle the perturbations due to the randomness

of the stochastic evolution. In particular, if
∥∥X(0) −w

∥∥
1

is o
(

1√
N

)
, even with the

expansion we have from the deterministic dynamics (as discussed above), variance

dominates. We examine case (b) first, which is relatively easy (the drift dominates at

this step). Due to Chernoff bounds, the difference
∥∥X(t+k) −w

∥∥
1
−
∥∥fk(X(t))−w

∥∥
1

is O

(√
logN
N

)
(this captures the deviation on running the stochastic evolution for
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k steps vs running the deterministic dynamics for k steps, both starting from X(t))

with probability 1− 1
poly(N)

. Since
∥∥X(t) −w

∥∥
1

is Ω
(

log2/3N√
N

)
, then

∥∥X(t+k) −w
∥∥

1
≥ (αk − oN(1))

∥∥X(t) −w
∥∥

1
.

For (a), first we show that with probability Θ(1), after one step the Markov chain has

distance Ω( 1√
N

) of w. This claim just uses properties of the multinomial distribution.

After reaching distance Ω
(

1√
N

)
, we can use again the idea of expansion and being

careful with the variance and we can show expansion with probability at least 1
2
, every

k steps. Then we can show that with probability at least 1

log2/3N
, distance log2/3N√

N
is

reached after O(log logN) steps and basically we finish with (b). For (c), we use a

couple of lemmas , i.e., Lemma 5.18, Claim 58 and Lemma 5.25. Let ∆ be some

compact subset of ∆m, where we have excluded all the α-unstable fixed points along

with some open ball around each unstable fixed point of constant radius. We can

show that given that the initial state of the Markov chain belongs to ∆, it reaches a

B(z0,
1

N1−ε ) for some ε > 0 as long as the dynamical system converges for all starting

points in ∆ (and it should converge to the stable fixed point z0). We have roughly

that the dynamical system converges exponentially fast for every starting point in B

to the stable fixed point z0 and that with probability 1− 1
poly(n)

two arbitrary chains

independently will reach a 1
Nε neighborhood of the stable fixed point z0. Therefore

by (a), (b), (c) and the coupling from the proof of Theorem 5.7, we conclude the proof

of Theorem 5.8.

5.4.3 Overview of Theorems 5.9 and 5.10

To prove Theorem 5.10, we make use of Theorem 5.9, i.e., we reduce the case of

the stable limit cycle to the case of multiple stable fixed points. If s is the length of

the limit cycle, roughly the bound eΩ(N) on the mixing time loses a factor 1
s

compared

to the case of multiple stable fixed points. We now present the ideas behind the proof

of Theorem 5.9. First as explained above, we can show contraction after k steps (for
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some constant k) for the deterministic dynamics around a stable fixed point z with

sp(J(z)) < ρ < 1, i.e.,

∥∥f t+k(x)− z
∥∥

1
≈
∥∥Jk[z]

∥∥
1

∥∥f t(x)− z
∥∥

1
≤ ρk

∥∥f t(x)− z
∥∥

1
.

To do that, we use Gelfand’s formula, Taylor’s theorem and continuity of J(x) where

x lies in a neighborhood of the fixed point z. Hence, due to the above contraction of

the `1 norm and the concentration of Chernoff bounds, it takes a long time for the

chain X(t) to get out of the region of attraction of the fixed point z. Technically, the

error that aggregates due to the randomness of the stochastic evolution guided by f

does not become large due to the convergence of the series
∑∞

i=0 ρ
i. Hence, we focus

on the error probability, namely the probability the stochastic evolution guided by

f deviates a lot from the dynamical system with rule f if both have same starting

point after one step. Since this probability is exponentially small, i.e., it holds that

∥∥f(X(0))−X(1)
∥∥

1
> εm

with probability at most 2me−2ε2N , an exponential number of steps is required for

the above to be violated. Finally, as we have shown that it takes exponential time to

get out of the region of attraction of a stable fixed point z we do the following easy

(common) trick. Since the function has at least two fixed points, we start the Markov

chain very close to the fixed point that its neighborhood has mass at most 1/2 in the

stationary distribution (this can happen since we have at least 2 fixed points that are

well separated). Then, after exponential number of steps, it will follow that the total

variation distance between the distribution of the chain and the stationary will be at

least 1/4.

5.4.4 Overview of Theorem 5.11

Our first step towards the proof of Theorem 5.11 is to show that the RSM model

(see Section 5.7.1 for description of the model) can be seen as a stochastic evolution
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guided by the function f defined by f(p) = (QAp)t
‖QAp‖1

, where Q and A are matrices with

positive entries. Then we show that the dynamical system with update rule f has

a unique fixed point (due to Perron-Frobenius) and for all initial conditions in ∆m,

the dynamics converges to it (analogue to power method). Finally, we show that the

spectral radius of the Jacobian of f at the unique fixed point is λ2
λ1

where λ1, λ2 are

the largest and second largest eigenvalues in absolute value of QA, and hence < 1.

Thus the conditions of Theorem 5.7 are satisfied and the result follows.

5.4.5 Overview of Theorem 5.12

Below we give the necessary ingredients of the proof of Theorem 5.12. Our pre-

vious results, along with some analysis on the fixed points of g (function of grammar

acquisition dynamics) suffice to show the phase transition result. To prove Theorem

5.12, initially we show that the model (finite population) is essentially a stochastic

evolution (see Definition 19) guided by g as defined in Section 5.7.3 and proceed as

follows: We prove that in the interval 0 < τ < τc, the function g has multiple fixed

points whose Jacobian have spectral radius less than 1. Therefore due to Theorem

5.9 discussed above, the mixing time will be exponential in N . For τ = τc a bifurca-

tion takes place which results in function g of grammar acquisition dynamics having

only one fixed point inside simplex (specifically, the uniform point (1/m, . . . , 1/m)). In

dynamical systems, a local bifurcation occurs when a parameter (in particular the

mutation parameter τ) change causes two (or more) fixed points to collide or the

stability of an equilibrium (or fixed point) to change. To prove fast mixing in the

case τc < τ ≤ 1/m, we make use of Theorem 5.7. One of the assumptions is that the

dynamical system with g as update rule needs to converge to the unique fixed point

for all initial points in simplex. To prove convergence to the unique fixed point, we

define a Lyapunov function P such that

P (g(x)) > P (x) unless x is a fixed point. (44)
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As a consequence, the (infinite population) grammar acquisition dynamics converge to

the unique fixed point (1/m, . . . , 1/m). To show Equation (44), we use an inequality that

dates back in 1967 (see Theorem 1.1), which intuitively states the discrete analogue

of proving that for a gradient system dx
dt

= ∇V (x) it is true that dV
dt
≥ 0.

5.5 Unique stable fixed point

5.5.1 Perturbed evolution near the fixed point

As discussed in 5.4, the crux of the proof of our main theorem is analyzing how the

distance between two copies of a stochastic evolution guided by a smooth contractive

evolution evolves in the presence of small perturbations at every step. In this section,

we present our main tool, 5.13, to study this phenomenon. We then describe how

the theorem, which itself is presented in a completely deterministic setting, applies

to stochastic evolutions.

Fix any (L,B, ρ)-smooth contractive evolution f on ∆m, with fixed point τ . As

we noted in 5.4, since the Jacobian of f does not necessarily have operator (or 1→ 1)

norm less than 1, we cannot argue that the effect of perturbations shrinks in every

step. Instead, we need to argue that the condition on the spectral radius of the

Jacobian of f at its fixed point implies that there is eventual contraction of distance

between the two evolutions, even though this distance might increase in any given

step. Indeed, the fact that the spectral radius sp (J) of the Jacobian at the fixed

point τ of f is less than ρ < 1 implies that a suitable iterate of f has a Jacobian with

operator (and 1→ 1) norm less than 1 at τ . This is because Gelfand’s formula (5.1)

implies that for all large enough positive integers k′,

∥∥Jk(τ)
∥∥

1
< ρk.

We now use the above condition to argue that after k steps in the vicinity of the fixed

point, there is indeed a contraction of the distance between two evolutions guided by

f , even in the presence of adversarial perturbations, as long as those perturbations
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are small. The precise statement is given below; the vectors ξ(i) in the theorem model

the small perturbations.

Theorem 5.13 (Perturbed evolution I). Let f be a (L,B, ρ)-smooth contractive

evolution, and let τ be its fixed point. For all positive integers k > k0 (where k0

is a constant that depends upon f) there exist ε, δ ∈ (0, 1] depending upon f and

k for which the following is true. Let
(
x(i)
)k
i=0

,
(
y(i)
)k
i=0

, and
(
ξ(i)
)k
i=1

be sequences

of vectors with x(i),y(i) ∈ ∆m and ξ(i) orthogonal to 1, which satisfy the following

conditions:

1. (Definition). For 1 ≤ i ≤ k, there exist vectors u(i) and v(i) such that

x(i) = f(x(i−1)) + u(i), y(i) = f(y(i−1)) + v(i), and ξ(i) = u(i) − v(i).

2. (Closeness to fixed point). For 0 ≤ i ≤ k,
∥∥x(i) − τ

∥∥
1
≤ ε,

∥∥y(i) − τ
∥∥

1
≤ ε.

3. (Small perturbations). For 1 ≤ i ≤ k,
∥∥ξ(i)

∥∥
1
≤ δ

∥∥x(i−1) − y(i−1)
∥∥

1
.

Then, we have ∥∥x(k) − y(k)
∥∥

1
≤ ρk

∥∥x(0) − y(0)
∥∥

1
.

In the theorem, the vectors x(i) and y(i) model the two chains, while the vectors

u(i) and v(i) model the individual perturbations from the evolution dictated by f .

The theorem says that if the perturbations ξ(i) to the distance are not too large, then

the distance between the two chains indeed contracts after every k steps.

Proof. As observed above, we can use Gelfand’s formula to conclude that there exists

a positive integer k0 (depending upon f) such that we have
∥∥J(τ)k

∥∥
1
< ρk for all

k > k0. This k0 will be the sought k0 in the theorem, and we fix some appropriate

k > k0 for the rest of the section.

Since f is twice differentiable, J is continuous on ∆m. This implies that the

function on ∆k
m defined by z1, z2, . . . , zk 7→

∏k
i=1 J(zi) is also continuous. Hence,
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there exist ε1, ε2 > 0 smaller than 1 such that if ‖zi − τ‖ ≤ ε1 for 1 ≤ i ≤ k then∥∥∥∥∥
k∏
i=1

J(zi)

∥∥∥∥∥
1

≤ ρk − ε2. (45)

Further, since ∆m is compact and f is continuously differentiable, ‖J‖1 is bounded

above on ∆m by some positive constant L, which we assume without loss of generality

to be greater than 1. Similarly, since f has bounded second derivatives, it follows

from the multivariate Taylor’s theorem that there exists a positive constant B (which

we can again assume to be greater than 1) such that for any x,y ∈ ∆m, we can find

a vector ν such that ‖ν‖1 ≤ Bm ‖x− y‖2
2 ≤ Bm ‖x− y‖2

1 such that

f(x) = f(y) + J(y)(x− y) + ν. (46)

We can now choose

ε = min

{
ε1,

ε2
4Bmk(L+ 1)k−1

}
≤ 1, and δ = 2Bmε ≤ 1.

With this setup, we are now ready to proceed with the proof. Our starting point is

the use of a first order Taylor expansion to control the error x(i) − y(i) in terms of

x(i−1) − y(i−1). Indeed, Equation (46) when applied to this situation (along with the

hypotheses of the theorem) yields for any 1 ≤ i ≤ k that

x(i) − y(i) = f(x(i−1))− f(y(i−1)) + ξ(i)

= J(y(i−1))(x(i−1) − y(i−1)) + (ν(i) + ξ(i)), (47)

where ν(i) satisfies
∥∥ν(i)

∥∥
1
≤ Bm

∥∥x(i−1) − y(i−1)
∥∥2

1
. Before proceeding, we first take

note of a simple consequence of (47). Taking the `1 norm of both sides, and using

the conditions on the norms of ν(i) and ξ(i), we have∥∥x(i) − y(i)
∥∥

1
≤
∥∥x(i−1) − y(i−1)

∥∥
1

(
L+ δ +Bm

∥∥x(i−1) − y(i−1)
∥∥

1

)
.

Since both x(i−1) and y(i−1) are within distance ε of τ by the hypothesis of the theorem,

the above calculation and the definition of ε and δ imply that∥∥x(i) − y(i)
∥∥

1
≤ (L+ 4Bmε)

∥∥x(i−1) − y(i−1)
∥∥

1
≤ (L+ 1)

∥∥x(i−1) − y(i−1)
∥∥

1
,
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where in the last inequality we use 4Bmε ≤ ε2 ≤ 1. This, in turn, implies via

induction that for every 1 ≤ i ≤ k,

∥∥x(i) − y(i)
∥∥

1
≤ (L+ 1)i

∥∥x(0) − y(0)
∥∥

1
. (48)

We now return to the proof. By iterating (47), we can control x(k) − y(k) in terms of

a product of k Jacobians, as follows:

x(k) − y(k) =

(
i=k∏
i=1

J(y(k−i))

)(
x(0) − y(0)

)
+

k∑
i=1

(
j=k−i−1∏
j=0

J(y(k−j))

)(
ξ(i) + ν(i)

)
.

Since
∥∥y(i) − τ

∥∥
1
≤ ε by the hypothesis of the theorem, we get from (66) that the

leftmost term in the above sum has `1 norm less than (ρk − ε2)
∥∥x(0) − y(0)

∥∥
1
.

We now proceed to estimate the terms in the summation. Our first step to use

the conditions on the norms of ν(i) and ξ(i) and the fact that ‖J‖1 ≤ L uniformly to

obtain the upper bound

k∑
i=1

Lk−i
∥∥x(i−1) − y(i−1)

∥∥
1

(Bm
∥∥x(i−1) − y(i−1)

∥∥
1

+ δ).

Now, recalling that x(i) and y(i) are both within an ε `1-neighborhood of τ so that∥∥x(i) − y(i)
∥∥

1
≤ 2ε, we can estimate the above upper bound as follows:

k∑
i=1

Lk−i
∥∥x(i−1) − y(i−1)

∥∥
1

(Bm
∥∥x(i−1) − y(i−1)

∥∥
1

+ δ)

≤ (L+ 1)k−1
∥∥x(0) − y(0)

∥∥
1

k∑
i=1

(Bm
∥∥x(i−1) − y(i−1)

∥∥
1

+ δ)

≤ k(L+ 1)k−1(2Bmε+ δ)
∥∥x(0) − y(0)

∥∥
1

≤ ε2
∥∥x(0) − y(0)

∥∥
1
,

where the first inequality is an application of (48), and the last uses the definitions of

ε and δ. Combining with the upper bound of (ρk − ε2)
∥∥x(0) − y(0)

∥∥
1

obtained above

for the first term, this yields the result.
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Remark 9. Note that k in the theorem can be chosen as large as we want. However,

for simplicity, we fix some k > k0 in the rest of the discussion, and revisit the freedom

of choice of k only toward the end of the proof of the Theorem (5.7).

5.5.2 Evolution under random perturbations.

We now explore some consequences of the above theorem for stochastic evolu-

tions. Our main goal in this subsection is to highlight the subtleties that arise in

ensuring that the third “small perturbations” condition during a random evolution,

and strategies that can be used to avoid them. However, we first begin by showing

the second condition, that of “closeness to the fixed point” is actually quite simple

to maintain. It will be convenient to define for this purpose the notion of an epoch,

which is simply the set of (k + 1) initial and final states of k consecutive steps of a

stochastic evolution.

Definition 23 (Epoch). Let f be a smooth contractive evolution and let k be as in

the statement of 5.13 when applied to f . An epoch is a set of k+ 1 consecutive states

in a stochastic evolution guided by f . By a slight abuse of terminology we also use

the same term to refer to a set of k + 1 consecutive states in a pair of stochastic

evolutions guided by f that have been coupled using the optimal coupling.

Suppose we want to apply 5.13 to a pair of stochastic evolutions guided by f .

Recall the parameter ε in the statement of 5.13. Ideally, we would likely to show

that if both the states in the pair at the beginning of an epoch are within some

distance ε′ < ε of the fixed point τ , then (1) all the consequent steps in the epoch are

within distance ε of the fixed point (so that the closeness condition in the theorem

is satisfied), and more importantly (2) that the states at the last step of the epoch

are again within the same distance ε′ of the fixed point, so that we have the ability

to apply the theorem to the next epoch. Of course, we also need to ensure that the

condition on the perturbations being true also holds during the epoch, but as stated
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above, this is somewhat more tricky to maintain than the closeness condition, so we

defer its discussion to later in the section. Here, we state the following lemma which

shows that the closeness condition can indeed be maintained at the end of the epoch.

Lemma 5.14 (Remaining close to the fixed point). Let w < w′ < 1/3 be fixed

constants. Consider a stochastic evolution X(0),X(1), . . . on a population of size N

guided by a (L,B, ρ)-smooth contractive evolution f : ∆m → ∆m with fixed point τ .

Suppose α > 1 is such that
∥∥X(0) − τ

∥∥
1
≤ α

Nw . If N is chosen large enough (as a func-

tion of L, α,m, k, w, w′ and ρ), then with probability at least 1 − 2mk exp
(
−Nw′/2

)
we have

•
∥∥X(i) − τ

∥∥
1
≤ (α+m)(L+1)i

Nw , for 1 ≤ i ≤ k − 1.

•
∥∥X(k) − τ

∥∥
1
≤ α

Nw .

To prove the lemma, we need the following simple concentration result.

Lemma 5.15. Let X(0),X(1), . . . be a stochastic evolution on a population of size

N which is guided by a (L,B, ρ)-smooth contractive evolution f : ∆m → ∆m with

fixed point τ . For any t > 0 and γ ≤ 1/3, it holds with probability at least 1 −

2mt exp (−Nγ/2) that

∥∥X(i) − f i(X(0))
∥∥

1
≤ (L+ 1)im

Nγ
for all 1 ≤ i ≤ t.

Proof. Fix a coordinate j ∈ [m]. Since X(i) is the normalized frequency vector ob-

tained by taking N independent samples from the distribution f(X(i−1)), Hoeffding’s

inequality yields that

P
[∣∣∣X(i)

j − f(X(i−1))j

∣∣∣ > N−γ
]
≤ 2 exp

(
−N1−2γ

)
≤ 2 exp (−Nγ) ,

where the last inequality holds because γ ≤ 1/3. Taking a union bound over all

j ∈ [m], we therefore have that for any fixed i ≤ t,

P
[∥∥X(i) − f(X(i−1))

∥∥
1
>

m

Nγ

]
≤ 2m exp (−Nγ) . (49)
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For ease of notation let us define the quantities s(i) ··=
∥∥X(i) − f i(X(0))

∥∥
1

for 0 ≤ i ≤ t.

Our goal then is to show that it holds with high probability that s(i) ≤ (L+1)im
Nγ for all

i such that 0 ≤ i ≤ t.

Now, by taking an union bound over all values of i in (49), we see that the following

holds for all i with probability at least 1− 2mt exp (−Nγ):

s(i) =
∥∥X(i) − f i(X(0))

∥∥
1
≤
∥∥X(i) − f(X(i−1))

∥∥
1

+
∥∥f(X(i−1))− f i(X(0))

∥∥
1

(50)

≤ m

Nγ
+ Ls(i−1), (51)

where the first term is estimated using the probabilistic guarantee from (49) and the

second using the upper bound on the 1 → 1 norm of the Jacobian of f . However,

(51) implies that s(i) ≤ m(L+1)i

Nγ for all 0 ≤ i ≤ t, which is what we wanted to prove.

To see the former claim, we proceed by induction. Since s0 = 0, the claim is trivially

true in the base case. Assuming the claim is true for s(i), we then apply (51) to get

s(i+1) ≤ m

Nγ
+ Ls(i) ≤ m

Nγ

(
1 + L(L+ 1)i

)
≤ m

Nγ
· (L+ 1)i+1.

Proof of 5.14. Lemma 5.15 implies that with probability at least 1−2mk exp
(
−Nw′/2

)
we have ∥∥X(i) − f i(X(0))

∥∥
1
≤ (L+ 1)im

Nw′
, for 1 ≤ i ≤ k. (52)

On the other hand, the fact that max ‖J(x)‖1 ≤ L implies that∥∥f i+1(X(0))− τ
∥∥

1
=
∥∥f i+1(X(0))− f(τ)

∥∥
1
≤ L

∥∥f i(X(0))− τ
∥∥

1
,

so that ∥∥f i(X(0))− τ
∥∥

1
≤ Li

∥∥X(0) − τ
∥∥

1
≤ αLi

Nw
, for 1 ≤ i ≤ k. (53)

Combining (52),(53), we already get the first item in the lemma. However, for i = k,

we can do much better than the above estimate (and indeed, this is the most important

part of the lemma). Recall the parameter ε in 5.13. If we choose N large enough so

that

(α +m) (L+ 1)k

Nw
≤ ε, (54)
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then the above argument shows that with probability at least 1 − 2mk exp
(
−Nw′

)
,

the sequences y(i) = f i(X(0)) and z(i) = τ (for 0 ≤ i ≤ k) satisfy the hypotheses of

5.13: the perturbations in this case are simply 0. Hence, we get that

∥∥fk(X(0))− τ
∥∥

1
≤ ρk

∥∥X(0) − τ
∥∥

1
≤ αρk

Nw
. (55)

Using (55) with the i = k case of (52), we then have

∥∥X(k) − τ
∥∥

1
≤ (L+ 1)km

Nw′
+
ρkα

Nw
.

Thus, (since ρ < 1) we only need to choose N so that

Nw′−w ≥ (L+ 1)km

α(1− ρk) (56)

in order to get the second item in the lemma. Since w > 0 and w′ > w, it follows that

all large enough N will satisfy the conditions in both (54), (56), and this completes

the proof.

5.5.3 Controlling the size of random perturbations.

We now address the “small perturbations” condition of 5.13. For a given smooth

contractive evolution f , let α,w,w′ be any constants satisfying the hypotheses of

Lemma 5.14 (the precise values of these constants will specified in the next section).

For some N as large as required by the lemma, consider a pair X(t),Y(t) of stochastic

evolutions guided by f on a population of size N , which are coupled according to

the optimal coupling. Now, let us call an epoch decent if the first states X(0) and

Y(0) in the epoch satisfy
∥∥X(0) − τ

∥∥
1
,
∥∥Y(0) − τ

∥∥
1
≤ αN−w. The lemma (because

of the choice of N made in 54) shows that if an epoch is decent, then except with

probability that is sub-exponentially small in N ,

1. the current epoch satisfies the “closeness to fixed point” condition in 5.13, and

2. the next epoch is decent as well.
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Thus, the lemma implies that if a certain epoch is decent, then with all but sub-

exponential (in N) probability, a polynomial (in N) number of subsequent epochs

are also decent, and hence satisfy the “closeness to fixed point” condition of Theorem

5.13. Hypothetically, if these epochs also satisfied the “small perturbation” condition,

then we would be done, since in such a situation, the distance between the two chains

will drop to less than 1/N within O(logN) time, implying that they would collide.

This would in turn imply a O(logN) mixing time.

However, as alluded to above, ensuring the “small perturbations” condition turns

out to be more subtle. In particular, the fact that the perturbations ξ(i) need to

be multiplicatively smaller than the actual differences
∥∥x(i) − y(i)

∥∥
1

pose a problem

in achieving adequate concentration, and we cannot hope to prove that the “small

perturbations” condition holds with very high probability over an epoch when the

staring difference
∥∥X(0) −Y(0)

∥∥
1

is very small. As such, we need to break the ar-

guments into two stages based on the starting differences at the start of the epochs

lying in the two stages.

To make this more precise (and to state a result which provides examples of the

above phenomenon and will also be a building block in the coupling proof), we define

the notion of an epoch being good with a goal g. As before let X(t) and Y(t) be

two stochastic evolutions guided by f which are coupled according to the optimal

coupling, and let ξ(i) be the perturbations as defined in 5.13. Then, we say that a

decent epoch (which we can assume, without loss of generality, to start at t = 0)

is good with goal g if one of following two conditions holds. Either (1) there is a j,

0 ≤ j ≤ k− 1 such that
∥∥f(X(j))− f(Y(j))

∥∥
1
≤ g, or otherwise, (2) it holds that the

next epoch is also decent, and, further∥∥ξ(i)
∥∥

1
≤ δ

∥∥X(i) −Y(i)
∥∥

1
for 0 ≤ i ≤ k,

where δ again is as defined in 5.13. Note that if an epoch is good with goal g,

then either the expected difference between the two chains drops below g sometime
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during the epoch, or else, all conditions of 5.13 are satisfied during the epoch, and

the distance between the chains drops by a factor of ρk. Further, in terms of this

notion, the preceding discussion can be summarized as “the probability of an epoch

being good depends upon the goal g, and can be small if g is too small”. To make

this concrete, we prove the following theorem which quantifies this trade-off between

the size of the goal g and the probability with which an epoch is good with that goal.

Theorem 5.16 (Goodness with a given goal). Let the chains X(t), Y(t), and the

quantities N,m,w,w′, k, L, ε and δ be as defined above, and let β < (logN)2. If N

is large enough, then a decent epoch is good with goal g ··= 4L2mβ
δ2N

with probability at

least 1− 2mk
(
exp(−β/3) + exp(−Nw′/2)

)
.

Proof. Let X(0) and Y(0) denote the first states in the epoch. Since the current

epoch is assumed to be decent, 5.14 implies that with probability at least 1 −

2mk exp(−N−w′/2), the “closeness to fixed point” condition of 5.13 holds through-

out the epoch, and the next epoch is also decent. If there is a j ≤ k − 1 such that∥∥f(X(j))− f(Y(j))
∥∥

1
≤ g, then the current epoch is already good with goal g. So let

us assume that

∥∥f(X(i−1))− f(Y(i−1))
∥∥

1
≥ g =

4L

δ2
· βm
N

for 1 ≤ i ≤ k.

However, in this case, we can apply the concentration result in 5.6 with c = 4L2/δ2

and t = β to get that with probability at least 1− 2mk exp(−β/3),

∥∥ξ(i)
∥∥

1
≤ δ

L

∥∥f(X(i−1))− f(Y(i−1))
∥∥

1
≤ δ

∥∥X(i−1) −Y(i−1)
∥∥

1
for 1 ≤ i ≤ k.

Hence, both conditions (“closeness to fixed point” and “small perturbations”) for

being good with goal g hold with the claimed probability.

Note that we need to take β to a large constant, at least Ω(log(mk)), even to

make the result non-trivial. In particular, if we take β = 3 log(4mk), then if N is
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large enough, the probability of success is at least 1/e. However, with a slightly larger

goal g, it is possible to reduce the probability of an epoch not being good to oN(1): if

we choose β = logN , then a decent epoch is good with the corresponding goal with

probability at least 1−N−1/4, for N large enough.

In the next section, we use both these settings of parameters in the above theorem

to complete the proof of the mixing time result. As described in 5.4, the two settings

above will be used in different stages of the evolution of two coupled chains in order

to argue that the time to collision of the chains is indeed small.

Proof of the main theorem: Analyzing the coupling time.

Our goal is now to show that if we couple two stochastic evolutions guided by the

same smooth contractive evolution f using the optimal coupling, then irrespective of

their starting positions, they reach the same state in a small number of steps, with

reasonably high probability. More precisely, our proof would be structured as follows.

Fix any starting states X(0) and Y(0) of the two chains, and couple their evolutions

according to the optimal coupling. Let T be the first time such that X(T ) = Y(T ).

Suppose that we establish that P [T < t] ≥ q, where t and p do not depend upon the

starting states (X(0),Y(0)). Then, we can dovetail this argument for ` “windows” of

time t each to see that P [T > ` · t] ≤ (1− q)`: this is possible because the probability

bounds for T did not depend upon the starting positions (X(0),Y(0)) and hence can

be applied again to the starting positions (X(t),Y(t)) if X(t) 6= Y(t). By choosing `

large enough so that (1 − q)` is at most 1/e (or any other constant less than 1/2),

we obtain a mixing time of `t. We therefore proceed to obtain an upper bound on

P [T < t] for some t = Θ(logN).

As discussed earlier, we need to split the evolution of the chains into several stages

in order to complete the argument outlined above. We now describe these four differ-

ent stages. Recall that f is assumed to be a (L,B, ρ)-smooth contractive evolution.

Without loss of generality we assume that L > 1. The parameter r appearing below
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is a function of these parameters and k and is defined in 5.18. Further, as we noted

after the proof of 5.13, k can be chosen to be as large as desired. We now exercise

this choice by choosing k to be large enough so that

ρk ≤ e−1. (57)

The other parameters below are chosen to ease the application of the framework

developed in the previous section.

1. Approaching the fixed point. We define Tstart to be the first time such that

∥∥X(Tstart+i) − τ
∥∥

1
,
∥∥Y(Tstart+i) − τ

∥∥
1
≤ α

Nw
for 0 ≤ i ≤ k − 1,

where α ··= m+ r and w = min
(

1
6
, log(1/ρ)

6 log(L+1)

)
. We show below that

P [Tstart > tstart logN ] ≤ 4mkto logN exp
(
−N1/3

)
, (58)

where tstart ··= 1
6 log(L+1)

. The probability itself is upper bounded by exp
(
−N1/4

)
for N large enough.

2. Coming within distance Θ
(

logN
N

)
. Let β0 ··= (8/ρk) log(17mk) and h = 4L2m

δ2
.

Then, we define T0 to be the smallest number of steps needed after Tstart such

that either ∥∥X(Tstart+T0) −Y(Tstart+T0)
∥∥

1
≤ hβ0 logN

N
or∥∥f(X(Tstart+T0))− f(Y(Tstart+T0))

∥∥
1
≤ hβ0 logN

N(1 + δ)
.

We prove below that when N is large enough

P [T0 > kt0 logN ] ≤ 1

Nβ0/7
, (59)

where t0 ··= 1
k log(1/ρ)

.

3. Coming within distance Θ(1/N). Let β0 and h be as defined in the last item.

We now define a sequence of `1 ··=
⌈

log logN
k log(1/ρ)

⌉
random variables T1, T2, . . . T`. We
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begin by defining the stopping time S0 ··= Tstart +T0. For i ≥ 1, Ti is defined to

be the smallest number of steps after Si−1 such that the corresponding stopping

time Si ··= Si−1 + Ti satisfies

either
∥∥X(Si) −Y(Si)

∥∥
1
≤ hρikβ0 logN

N
or
∥∥f(X(Si))− f(Y(Si))

∥∥
1
≤ hρikβ0 logN

N(1 + δ)
.

Note that Ti is defined to be 0 if setting Si = Si−1 already satisfies the above

conditions. Define βi = ρikβ0. We prove below that when N is large enough

P [Ti > k + 1] ≤ 4mk exp (−(βi logN)/8) , for 1 ≤ i ≤ `1. (60)

4. Collision. Let β0 and h be as defined in the last two items. Note that after

time S`1 , we have∥∥∥f(X(S`1))− f(Y(S`1))
∥∥∥

1
≤ Lhβ`1 logN

N
=
Lhβ0ρ

k`1 logN

N
≤ Lhβ0

N
.

Then, from the properties of the optimal coupling we have that X(S`1+1) =

Y(S`1+1) with probability at least
(
1− Lhβ0

2N

)N
which is at least exp (−Lβ0h)

when N is so large that N > hLβ0.

Assuming (60), (59), (58), we can complete the proof of 5.7 as follows.

Proof of 5.7. Let X(0), Y(0) be the arbitrary starting states of two stochastic evo-

lutions guided by f , whose evolution is coupled using the optimal coupling. Let T

be the minimum time t satisfying X(t) = Y(t). By the Markovian property and the

probability bounds in items 1 to 4 above, we have (for large enough N)

P [T ≤ tstart logN + kt0 logN + (k + 1)`1]

≥ P [Tstart ≤ tstart logN ] · P [T0 ≤ kt0 logN ] ·
(

`1∏
i=1

P [Ti ≤ k + 1]

)
· e−Lβ0h

≥ e−Lβ0h
(
1− exp(−N1/4)

)
(1−N−β/7) ·

`1∏
i=1

(
1− 4mk exp(−(ρikβ0 logN)/8)

)
≥ exp (−Lβ0h− 1) ·

(
1− 4mk

`1∑
i=1

exp(−(ρikβ0 logN)/8)

)
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where the last inequality is true for large enough N . Applying 5.19 to the above sum

(with the parameters x and α in the lemma defined as x = exp(−(β0 logN)/8) and

α = ρk ≤ 1/e by the assumption in 57), we can put a upper bound on it as follows:

`1∑
i=1

exp(−(ρikβ0 logN)/8) ≤ 1

exp(ρkβ0/8)− 1

=
1

17mk − 1
≤ 1

16mk
,

where the first inequality follows from the lemma and the fact that log logN
k log(1/ρ)

≤ `1 ≤

1 + log logN
k log(1/ρ)

, and the last inequality uses the definition of β0 and m, k ≥ 1. Thus, for

large enough N , we have

P [T ≤ c logN ] ≥ q,

where c ··= 2(tstart +kt0) and q ··= (3/4) exp (−Lβ0h− 1). Since this estimate does not

depend upon the starting states, we can bootstrap the estimate after every c logN

steps to get

P [T > c` logN ] < (1− q)` ≤ e−q`,

which shows that

c

q
· logN

is the mixing time of the chain for total variation distance 1/e, when N is large

enough.

We now proceed to prove the claimed equations, starting with (58). Let t ··=

tstart logN for convenience of notation. From Lemma 5.18 we have

∥∥f t(X(0))− τ
∥∥

1
≤ rρt.

On the other hand, applying 5.15 to the chain X(0),X(1), . . . with γ = 1/3, we have

∥∥f t(X(0))−X(t)
∥∥

1
≤ (L+ 1)tm

N1/3
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with probability at least 1 − 2mt exp(−N1/3). From the triangle inequality and the

definition of t, we then see that with probability at least 1 − 2mt exp
(
−N1/3

)
, we

have ∥∥X(t) − τ
∥∥

1
≤ m

N1/6
+

r

N tstart log(1/ρ)
≤ m+ r

Nw
=

α

Nw
,

where α,w are as defined in item 1 above. Now, if we instead looked at the chain

starting at some i < k, the same result would hold for X(t+i). Further, the same

analysis applies also to Y(t+i). Taking an union bound over these 2k events, we get

the required result.

Before proceeding with the proof of the other two equations, we record an impor-

tant consequences of 58. Let w, α be as defined above, and let w′ > w be such that

w′ < 1/3. Recall that an epoch starting at time 0 is decent if both X(t) and Y(t) are

within distance α/Nw of τ .

Observation 5.17. For large enough N , it holds with probability at least 1−exp(−Nw′/4)

that for 1 ≤ i ≤ kN , X(Tstart+i),Y(Tstart+i) are within `1 distance α/Nw of τ .

Proof. We know from item 1 that the epochs starting at times Tstart + i for 0 ≤ i < k

are all decent. For large enough N , 5.14 followed by a union bound implies that the

N consecutive epochs starting at T + j + k` where ` ≤ N and 0 ≤ j ≤ N are also

all decent with probability at least 1− 2mk2N exp(−Nw′/2), which upper bounds the

claimed probability for large enough N .

We denote by E the event that the epochs starting at Tstart + i for 1 ≤ i ≤ kN are

all decent. The above observation says that P (E) ≥ 1 − exp(−N−w′/4) for N large

enough.

We now consider T0. Let g0 ··= hβ0 logN
N(1+δ)

, where h is as defined in items 2 and 3

above. From 5.16 followed by a union bound, we see that the first t1 logN consecutive

epochs starting at Tstart, Tstart + k, Tstart + 2k, . . . are good with goal g0 (they are

already known to be decent with probability at least P (E) from the above observation)
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with probability at least

1− 2mkt1

(
N−β0/(3(1+δ)) + exp(−Nw′/4)

)
logN − P (¬E),

which is larger than 1 − N−β0/7 for N large enough (since δ < 1). Now, if we have∥∥f(X(i))− f(Y(i))
∥∥

1
≤ g for some time i during these t1 logN good epochs then

T0 ≤ kt1 logN follows immediately. Otherwise, the goodness condition implies that

the hypotheses of 5.13 are satisfied across all these epochs, and we get

∥∥X(Tstart+kt1 logN) −Y(Tstart+kt1 logN)
∥∥

1
≤ ρkt1 logN

∥∥X(Tstart) −Y(Tstart)
∥∥

1

≤ ρkt1 logN α

Nw

≤ g0 ≤
hβ0 logN

N
,

where the second last inequality is true for large enough N .

Finally, we analyze Ti for i ≥ 1. For this, we need to consider cases according

to the state of the chain at time Si−1. However, we first observe that plugging our

choice of h into 5.16 shows that any decent epoch is good with goal gi ··= hβi logN
N(1+δ)

with

probability at least

1− 2mk
(

exp(−(βi logN)/(3(1 + δ))) + exp(−Nw′/4)
)
,

which is at least 1−2mk exp(−(βi logN)/7) forN large enough (since δ < 1). Further,

since we can assume via the above observation that all the epochs we consider are

decent with probability at least P (E), it follows that the epoch starting at Si−1 (and

also the one starting at Si−1 + 1) is good with goal gi with probability at least

p ··= 1− 2mk exp(−(βi logN)/7)− P (¬E) ≥ 1− 2mk exp(−(βi logN)/8),

where the last inequality holds whenever βi ≤ logN and N is large enough (we will

use at most one of these two epochs in each of the exhaustive cases we consider below).

Note that if at any time Si−1 + j (where j ≤ k + 1) during one of these two good
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epochs it happens that
∥∥f(X(Si−1+j))− f(Y(Si−1+j))

∥∥
1
≤ gi, then we immediately get

Ti ≤ k + 1 as required. We can therefore assume that this does not happen, so that

the hypotheses of 5.13 are satisfied across these epochs.

Now, the first case to consider is
∥∥X(Si−1) −Y(Si−1)

∥∥
1
≤ hβi−1 logN

N
. Since we are

assuming that 5.13 is satisfied across the epoch starting at Si−1, we get∥∥X(S+i−1+k) −Y(Si−1+k)
∥∥

1
≤ ρk

∥∥X(Si−1) −Y(Si−1)
∥∥

1
≤ ρk

hβi−1 logN

N
=
hβi logN

N
.

(61)

Thus, in this case, we have Ti ≤ k with probability at least p as defined in the last

paragraph.

Even simpler is the case
∥∥f(X(Si−1))− f(Y(Si−1))

∥∥
1
≤ hβi logN

N
in which case Ti is

zero by definition. Thus the only remaining case left to consider is

hβi logN

N
<
∥∥f(X(Si−1))− f(Y(Si−1))

∥∥
1
≤ hβi−1 logN

N(1 + δ)
.

Since h = 4L2m
δ2

, the first inequality allows us to use 5.6 with the parameters c and t

in that lemma set to c = 4/δ2 and t = βiL
2 logN , and we obtain∥∥X(Si−1+1) −Y(Si−1+1)

∥∥
1
≤ (1 + δ)

∥∥f(X(Si−1))− f(Y(Si−1))
∥∥

1
≤ hβi−1 logN

N
,

with probability at least 1 − 2m exp (−(βiL
2 logN)/3). Using the same analysis as

the first case from this point onward (the only difference being that we need to use

the epoch starting at Si−1 +1 instead of the epoch starting at Si−1 used in that case),

we get that

P [Ti ≤ 1 + k] ≥ p− 2m exp
(
−(βiL

2 logN)/3
)

≥ 1− 4mk exp (−(βi logN)/8) ,

since L, k > 1. Together with (61), this completes the proof of (60).

5.5.4 Proofs omitted from Section 5.5

Lemma 5.18 (Exponential convergence I). Let f be a smooth contractive evolu-

tion, and let τ and ρ be as in the conditions described in Section 5.3.2. Then, there
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exist a positive r such that for every z ∈ ∆m, and every positive integer t,

∥∥f t(z)− τ
∥∥

1
≤ rρt.

Proof. Let ε and k be as defined in 5.13. From the “convergence to the fixed point”

condition, we know that there exists an ` such that for all z ∈ ∆m,

∥∥f `(z)− τ
∥∥

1
≤ ε

Lk
. (62)

Note that this implies that f `+i(z) is within distance ε of τ for i = 0, 1, . . . , k, so

that 5.13 can be applied to the sequence of vectors f `(z), f `+1 (z) , . . . , f `+k(z) and

τ, f(τ) = τ, . . . , fk(τ) = τ (the perturbations are simply 0). Thus, we get

∥∥f `+k(z)− τ
∥∥

1
≤ ρk

∥∥f `(z)− τ
∥∥

1
≤ ρkε

Lk
.

Since ρ < 1, we see that the epoch starting at ` + k also satisfies (62) and hence we

can iterate this process. Using also the fact that the 1 → 1 norm of the Jacobian of

f is at most L (which we can assume without loss of generality to be at least 1), we

therefore get for every z ∈ ∆m, and every i ≥ 0 and 0 ≤ j < k

∥∥f `+ik+j(z)− τ
∥∥

1
≤ ρki+j

Lj

ρj
∥∥f `(z)− τ

∥∥
1

≤ ρki+j+`
Lj+`

ρj+`
‖z− τ‖1

≤ ρki+j+`
Lk+`

ρk+`
‖z− τ‖1

where in the last line we use the facts that L > 1, ρ < 1 and j < k. Noting that any

t ≥ ` is of the form `+ki+ j for some i and j as above, we have shown that for every

t ≥ ` and every z ∈ ∆m

∥∥f t(z)− τ
∥∥

1
≤
(
L

ρ

)k+`

ρt ‖z− τ‖1 . (63)
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Similarly, for t < `, we have, for any z ∈ ∆m∥∥f t(z)− τ
∥∥

1
≤ Lt ‖z− τ‖1

≤
(
L

ρ

)t
ρt ‖z− τ‖1 (64)

≤
(
L

ρ

)`
ρt ‖z− τ‖1 , (65)

where in the last line we have again used L > 1, ρ < 1 and t < `. From (65), (63),

we get the claimed result with r ··=
(
L
ρ

)k+`

.

5.5.5 Sums with exponentially decreasing exponents

The following technical lemma is used in the proof of 5.7.

Lemma 5.19. Let x, α be positive real numbers less than 1 such that α < 1
e
. Let ` be

a positive integer, and define y ··= xα
`
. Then

∑̀
i=0

xα
i ≤ y

1− y .

Proof. Note that since both x and α are positive and less than 1, so is y. We now

have ∑̀
i=0

xα
i

=
∑̀
i=0

xα
`−i

= y
∑̀
i=0

yα
−i−1

≤ y
∑̀
i=0

yi log(1/α), since 0 < y ≤ 1 and α−i ≥ 1 + i log(1/α),

≤ y
∑̀
i=0

yi, since 0 < y ≤ 1 and α < 1/e,

≤ y

1− y .

5.6 Multiple fixed points

5.6.1 One stable, many unstable fixed points

We start this section by proving some technical lemmas that will be very useful

for the proofs. The following lemma roughly states that there exists a k (derived
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from Theorem 5.1) such that after k steps in the vicinity a stable fixed point z, there

is as expected a contraction of the `1 distance between the frequency vector of the

deterministic dynamics and the fixed point.

Lemma 5.20 (Perturbed evolution II). Let f : ∆m → ∆m and z be a stable

fixed point of f with sp (J(z)) < ρ. Assume that f is continuously differentiable

for all x with ‖x− z‖1 < δ for some positive δ. From Gelfand’s formula (Theorem

5.1) consider a positive integer k such that
∥∥Jk[z]

∥∥
1
< ρk. There exist ε ∈ (0, 1], ε

depending upon f and k for which the following is true. Let
(
x(i)
)k
i=0

be sequences of

vectors with x(i) ∈ ∆m which satisfy the following conditions:

1. For 1 ≤ i ≤ k, it holds that

x(i) = f(x(i−1)).

2. For 0 ≤ i ≤ k,
∥∥x(i) − z

∥∥
1
≤ ε.

Then, we have ∥∥x(k) − z
∥∥

1
≤ ρk

∥∥x(0) − z
∥∥

1
.

Proof. We denote the set {x : ‖x− z‖1 < δ} by B(z, δ). Since f is continuously differ-

entiable on B(z, δ), ∇fi(x) is continuous on B(z, δ) for i = 1, ...,m. Let A(y1, . . . ,ym)

be a matrix so that Aij(y1, ...,ym) = (∇fi(yi))j.6 This implies that the function

on ×mki=1B(z, δ) defined by w11,w12, . . . ,w1m,w21, . . .wmk 7→
∏k

i=1A(wi1, . . . ,wim) is

also continuous. Hence, there exist ε1, ε2 > 0 smaller than 1 such that if ‖wij − z‖ ≤

ε1 for 1 ≤ i ≤ k, 1 ≤ j ≤ m then∥∥∥∥∥
k∏
i=1

A(wi1, . . . ,wim)

∥∥∥∥∥
1

≤
∥∥Jk[z]

∥∥
1
− ε2 < ρk. (66)

From Taylor’s theorem (Theorem 5.3) we have that x(t+1) = A(ξ
(k−t)
1 , . . . , ξ

(k−t)
m )(x(t)−

z) where ξ
(k−t)
i lies in the line segment from z to x(t) for i = 1, . . . ,m. By induction

6Easy to see that A(z, . . . , z) = J(z).
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we get that

x(k) − z =
k∏
j=1

A(ξ
(j)
1 , . . . , ξ(j)

m )(x(0) − z).

We choose ε = min(ε1, δ). Therefore since ξ
(j)
i ∈ B(z, ε) for i = 1, . . . ,m and j =

1, . . . , k, from inequality 66 we get that
∥∥x(k) − z

∥∥
1
< ρk

∥∥x(0) − z
∥∥

1
.

Lemma 5.21 below roughly says that the stochastic evolution guided by f does

not deviate by much from the deterministic dynamics with update rule f after t steps,

for t some small positive integer.

Lemma 5.21. Let f : ∆m → ∆m be continuously differentiable in the interior of

∆m. Let X(0) be the state of a stochastic evolution guided by f at time 0. Then

with probability 1 − 2t · m · e−2ε2N we have that
∥∥X(t) − f t(X(0))

∥∥
1
≤ tβtεm, where

β ··= supx∈∆m
‖J(x)‖1.

Proof. We proceed by induction. For t = 1 the result follows from concentration

(Chernoff bounds, Theorem 5.5). Using the triangle inequality we get that

∥∥X(t+1) − f t+1(X(0))
∥∥

1
≤
∥∥X(t+1) − f(X(t))

∥∥
1

+
∥∥f(X(t))− f t+1(X(0))

∥∥
1
.

With probability at least 1− 2m · e−2ε2N (Chernoff bounds, Theorem 5.5) we have

∥∥X(t+1) − f(X(t))
∥∥

1
≤ εm, (67)

and also by the fact that ‖f(x)− f(x′)‖1 ≤ β ‖x− x′‖1 and induction we get that

with probability at least 1− 2t ·m · e−2ε2N

∥∥f(X(t))− f t+1(X(0))
∥∥

1
≤ β

∥∥X(t) − f t(X(0))
∥∥

1
≤ β · tβtεm. (68)

It is easy to see that εm + tβt+1εm ≤ (t + 1)βt+1εm, hence from inequalities 67 and

68 the result follows with probability at least 1− 2(t+ 1) ·m · e−2ε2N .
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Existence of Inverse function. For the rest of this section when we talk about

the inverse of the Jacobian of a function f at an α-unstable fixed point, we mean the

pseudoinverse which also has left eigenvector all ones 1> with eigenvalue 0 (see also

Remark 7). Since we use a lot the inverse of a function f around a neighborhood

of α-unstable fixed points in our lemmas, we need to prove that the inverse is well

defined.

Lemma 5.22. Let f : ∆m → ∆m be continuously differentiable in the interior of

∆m. Let z be an α-unstable fixed point (α > 1). Then f−1(x) is well-defined in a

neighborhood of z and is also continuously differentiable in that neighborhood. Also

Jf−1(z) = J−1(z) where Jf−1(z) is the Jacobian of f−1 at z.

Proof. This comes from the Inverse function theorem. It suffices to show that J(z)x =

0 iff
∑

i xi = 0, namely the differential is invertible on the simplex ∆m. This is true

by assumption since the minimum eigenvalue λmin of (J(z)), excluding the one with

left eigenvector 1>, will satisfy λmin > α > 1 > 0. Finally the Jacobian of f−1 at z is

just the pseudoinverse J−1(z) (which will have as well 1> as a left eigenvector with

eigenvalue 0).

Distance Ω
(

log2/3N√
N

)
.

Lemma 5.23. Let f : ∆m → ∆m be continuously differentiable in the interior of

∆m. Let X(0) be the state of a stochastic evolution guided by f at time 0 and also

z be an α-unstable fixed point of f such that
∥∥X(0) − z

∥∥
1

is O
(

log2/3N√
N

)
. Then with

probability at least Θ(1) we get that∥∥X(t) − z
∥∥

1
≥ log2/3N√

N

after at most O(logN) steps.

Proof. We assume that X(t) is in a neighborhood of z which is oN(1) for the rest of

the proof, otherwise the lemma holds trivially. Let q be a positive integer such that
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‖(J−1(z))q‖1 <
1
αq
< 2

5
(using Gelfand’s formula 5.1 and the fact that α > 1). First

of all, it is easy to see that if
∥∥X(0) − z

∥∥
1

is o
(

1√
N

)
then with probability at least

Θ(1) = c1 we have after one step that
∥∥X(1) − z

∥∥
1
> c√

N
(this is true because the

variance of binomial is Θ(N) and by CLT). We choose c =
√

2 log(4mq)qβqm where

β ··= supx∈∆m
‖J(x)‖1. From Lemma 5.21 we get that with probability at least 1

2
the

deviation between the deterministic dynamics and the stochastic evolution after q

steps is at most log(4mq)qβqm√
2N

(by substitute ε = log(4mq)√
2N

in Lemma 5.21). Hence, using

Lemma 5.20 for the function h = f−1 around z and k = q, sp (J−1[z]) < 1
α

, after

q steps we get that
∥∥f q(X(1))− z

∥∥
1
≥ αq

∥∥X(1) − z
∥∥

1
with probability at least 1

2
c1.

From Lemma 5.21 and using the facts that αq > 5/2 and
∥∥X(1) − z

∥∥
1
≥ 2 log(4mq)qβqm√

2N

we conclude that

∥∥X(q+1) − z
∥∥

1
≥
∥∥f q(X(1))− z

∥∥
1
− log(4mq)qβqm√

2N

≥ αq
∥∥X(1) − z

∥∥
1
− log(4mq)qβqm√

2N
≥ 2

∥∥X(1) − z
∥∥

1
.

By induction, we conclude that
∥∥X(qt+1) − z

∥∥
1
≥ log2/3N√

N
with t to be at most

2/3(log logN) with probability at least c1
(logN)2/3

. Since we have made no assump-

tions on the position of the chain (except the distance), it follows that after at most

c2(logN)2/3 · (log logN) = O(logN) steps, the Markov chain has reached distance

greater than log2/3N√
N

from the fixed point with probability Θ(1).

Distance Θ(1). Combining Lemma 5.23 with the lemma below we can show that

after O(logN) number of steps, the Markov chain will have distance from an α-

unstable fixed point lower bounded by a constant Θ(1) with sufficient probability.

Lemma 5.24. Let f : ∆m → ∆m be continuously differentiable in the interior of

∆m. Let X(0) be the state of a stochastic evolution guided by f at time 0 and also z be

an α-unstable fixed point of f such that
∥∥X(0) − z

∥∥
1
≥ log2/3N√

N
. Then with probability

1− 1
poly(N)

we have that
∥∥X(t) − z

∥∥
1

is r ··= Θ(1) after at most O(logN) steps.
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Proof. Let r be such that we can apply Lemma 5.20 for f−1 with fixed point z and

parameters ρ = 1
a

and q such that aq < 1
2

since sp (J−1(z)) < 1
a

and q is given from

Gelfand’s formula. Using Lemma 5.21 for ε =
√

γ logN
N

we get that X(1), . . . ,X(q) have

`1 distance Ω
(

log2/3N√
N

)
from z, with probability at least 1−2 mq

N2γ . Then by induction

for some t follows that

∥∥X(t) − z
∥∥

1
≥
∥∥f q(X(t−q))− z

∥∥
1
− qβqm

√
γ logN

N

= (1− oN(1))
∥∥f q(X(t−q))− z

∥∥
1

≥ (1− oN(1))αq
∥∥X(t−q) − z

∥∥
1
> 2

∥∥X(t−q)∥∥
1
. (Lemma 5.21)

Therefore, after at most T = q logN steps we get that
∥∥X(T ) − z

∥∥
1
≥ r with proba-

bility at least 1− 2mq2 logN
N2γ from union bound (and choose γ = 2).

Below we show the last technical lemma of the section. Intuitively says that given

a dynamical system where the update rule is defined in the simplex, if for every

initial condition, the dynamics converges to some fixed point z, then z cannot be an

α-unstable unless the initial condition is z.

Lemma 5.25. Let f : ∆m → ∆m be continuously differentiable and assume that f has

z0, . . . , zl+1 (l is finite) fixed points, where z0 is stable such that sp (J(z0)) < ρ < 1

and z1, . . . , zl+1 are α-unstable with α > 1. Assume also that limq→∞ f
q(x) exists

for all x ∈ ∆m (and it is some fixed point). Let B = ∪li=1B(zi, ri), where B(zi, ri)

denotes the open ball of radius ri around zi and set ∆ = ∆m − B. Then for every ε,

there exists a t such that ∥∥f t(x)− z0

∥∥
1
< ε

for all x ∈ ∆.

Proof. If ∆ is empty, then it holds trivially. By assumption we have that for all

x ∈ ∆, limq→∞ f
q(x) = zi for some i = 0, . . . , l + 1. Let z be an α-unstable fixed

point. We claim that the if limt→∞ f
t(x) = z then x = z. Let us prove this claim.
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Assume x0 ∈ ∆ and that x0 is not a fixed point. By assumption limq→∞ f
q(x0) = zi

for some i > 0, hence for every δ > 0, there exists a q0 such that for q ≥ q0 we

get that ‖f q(x0)− zi‖1 ≤ δ. We choose some k such that sp
(
(J−1(zi))

k
)
< 1

αk
and

we consider an ε such that Theorem 5.20 holds for function f−1 and k. We pick

δ = min(ε,ri)
2

and assume a q0 such that by convergence assumption ‖f q(x0)− zi‖1 ≤ δ

for q ≥ q0. Hence Theorem 5.20 holds for the trajectory (f t+q0(x0))t∈N. Set s =

‖f q0(x0)− zi‖1 and observe that for t = q0 +k
⌈

logα
2δ
s

k

⌉
it holds that ‖f t(x0)− zi‖1 ≥

at−q0 ‖f q0(x0)− z‖1 ≥ 2δ (due to Lemma 5.20), i.e., we reached a contradiction.

Hence limt→∞ f
t(x) = z0 for all x ∈ ∆. The rest follows from Lemma 5.26 which is

stated below.

Lemma 5.26. Let S ⊂ ∆m be compact and assume that limt→∞ f
t(x) = z for all

x ∈ S. Then for every ε, there exists a q such that

‖f q(x)− z‖1 < ε

for all x ∈ S.

Proof. Because of the convergence assumption, for every ε > 0 and every x ∈ S, there

exists an d = dx (depends on x) such that

∥∥fd(x)− z
∥∥

1
< ε.

Define the sets Ai = {y ∈ S | ‖f i(y)− z‖1 < ε} for each positive integer i. Then,

since f i is continuous, the sets Ai are open in S, and therefore, by the above condition,

form an open cover of S (since every y must lie in some Ai). By compactness, some

finite collection of them must therefore cover S, and hence by taking q to be the

maximum of the indices of the sets in this finite collection the lemma follows.

We are now able to prove the main theorem of the section, i.e., Theorem 5.8.
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Proof of Theorem 5.8. Consider r1, . . . , rl as can occur from Lemma 5.23 and assume

without loss of generality that the open balls B(zi, ri) for i = 1, . . . , l, with center zi

and radius ri (in `1 distance) are disjoint sets and that ∆ ··= ∆m\∪li=1B(zi, ri) is not

empty (otherwise we could decrease ri’s since they remain constants and Lemma 5.23

would still hold). We consider two chains X(0),Y(0). We claim that with probability

Θ(1) (which can be boosted to any constant) each chain reaches within 1
Nw distance

of the stable fixed point z0 for some w > 0, after at most T = O(logN) steps. Then

the coupling constructed to prove 5.7 works because it uses the smoothness of f and

the stability of the fixed point, as long as the two chains are within 1
Nw for some w > 0

distance of z0. Due to the coupling, as the two chains reach within 1
Nw distance of z0,

they collide after O(logN) steps (with probability Θ(1) which also can be boosted to

any constant) and hence the mixing time will be O(logN). To prove the claim, we

first use Lemmas 5.24 and 5.23. It occurs that with probability say Θ(1) after at most

O(log2/3N log logN) +O(logN) steps, each chain will have reached the compact set

∆. Moreover, from Lemma 5.28 we have that for all x ∈ ∆, f t(x) converges to fixed

point z0 exponentially fast. Hence, using claim (58) (by choosing z0, ρ,∆ same as in

the proof of Theorem 5.8 and r from Lemma 5.28) follows that after O(logN) steps,

each chain that started in ∆ comes within 1
Nw distance of z0 with sufficiently enough

probability.

5.6.2 Multiple stable fixed points and limit cycles

Staying close to fixed point. We prove the main lemma of this section, then

our second result will be a corollary. The main lemma states that as long as the

Markov chain starts from a neighborhood of one stable fixed point, it takes at least

exponential time to get away from that neighborhood with probability say 9
10

.

Lemma 5.27. Let f : ∆m → ∆m be continuously differentiable in the interior of ∆m

with stable fixed points z1, . . . , zl and k (independent of N) be such that
∥∥J(zi)

k
∥∥

1
<
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ρki < 1 for all i = 1, . . . , l. Let X(0) be the state of a stochastic evolution guided by f

at time 0. There exists a small constant εi (independent of N) such that given that

X(0) satisfies
∥∥X(0) − zi

∥∥
1
≤ mεi for some stable fixed point zi, after t = e2εi

2N

20mk
steps

it holds that
∥∥X(t) − zi

∥∥
1
≤ (k+1)βkεim

1−ρi with probability at least 9
10

.

Proof. εi will be chosen later. By Lemma 5.21 it follows that

∥∥X(t) − z
∥∥

1
≤
∥∥f t(X(0))− z

∥∥
1

+ tβtεim

with probability at least 1 − 2m · ke−2ε2iN for t = 1, . . . , k. Since
∥∥f t(X(0))− z

∥∥
1
≤

βt
∥∥X(0) − z

∥∥
1
, it follows that

∥∥X(t) − z
∥∥

1
≤ (t + 1)βtεim with probability at least

1 − 2m · ke−2ε2iN for t = 1, . . . , k − 1. Assume that
∥∥X(t) − z

∥∥
1
≤ (t + 1)βtεim is

true for t = 1, . . . , k − 1. We choose εi small enough constant such that Lemma 5.20

holds with ε = (k+1)βkεim
1−ρi . To prove the lemma, we use induction on t and show that∥∥X(t) − zi

∥∥
1
≤
(
(k + 1)βkεim

)
·
(∑t

j=0 ρ
j
i

)
<

((k+1)βkεim)
1−ρi < ε and hence Lemma 5.20

will hold. For t = k we have that

∥∥X(k) − zi
∥∥

1
≤
∥∥fk(X(0))− zi

∥∥
1

+
∥∥fk(X(0))−X(k)

∥∥
1

(triangle inequality)

≤ ρki
∥∥X(0) − zi

∥∥
1

+ kβkεim (Lemma 5.20 and Lemma 5.21)

< (1 + ρki )(k + 1)βkεim < (
k∑
j=0

ρji )(k + 1)βkεim.

Let t′ = t− k, be a time index. We do the same trick as for the base case and we get

that

∥∥X(t) − zi
∥∥

1
≤
∥∥∥fk(X(t′))− zi

∥∥∥
1

+
∥∥∥fk(X(t′))−X(t)

∥∥∥
1

≤ ρki

∥∥∥X(t′) − z
∥∥∥

1
+ kβkεim

≤ ρki
(
(k + 1)βkεim

)
·
(

t′∑
j=0

ρji

)
+ (k + 1)βkεim (induction)

=
(
(k + 1)βkεim

)
·
(

1 +
t∑

j=k

ρji

)
<
(
(k + 1)βkεim

)
·
(

t∑
j=0

ρji

)
.
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The error probability, i.e., at least one of the steps above fails and the chain gets

larger noise than kβkε1m, by union bound will be at most e2ε
2
i N

20mk
· 2mk · e−2ε2iN = 1

10

(by Lemma 5.21).

We can now prove Theorem 5.9 which follows as a corollary from Lemma 5.27.

Proof of Theorem 5.9. Two stable fixed points suffice; let z1, z2. Consider the εi’s

from the previous lemma (Lemma 5.27) and set Si = {x : ‖x− zi‖1 ≤ (k+1)βkεim
1−ρi }

for i = 1, 2 where β ··= supx∈∆m
‖J(x)‖1. We can choose ε1, ε2 so small such that

S1 ∩ S2 = ∅ (by continuity). Let µ be the stationary distribution. Set S = S1, T =

e2ε
2
1N

20mk
and y = z1 if µ(S1) ≤ 1

2
, otherwise set S = S2, T = e2ε

2
2N

20mk
and y = z2. Assume∥∥X(0) − y

∥∥
1
≤ εm. Therefore from Lemma 5.27 we get that P

[
X(T ) ∈ S̄

]
≤ 1

10
. and

also by assumption µ(S̄) ≥ 1
2
. Let ν(T ) be the distribution of X(T ). However

∥∥µ, ν(T )
∥∥

TV
≥
∣∣µ(S̄)− P

[
X(T ) ∈ S̄

]∣∣ > 1

4

and the result follows, i.e., tmix(1/4) is eΩ(N).

Stable limit cycle. This part technically is small, because it depends on the pre-

vious section. We denote by w1, . . . ,ws (s ≥ 2) the points in the stable limit cycle.

Again we assume that wi’s are well separated.

Proof of Theorem 5.10. Let h(x) = f s(x). It is clear to see that the Markov chain

guided by h satisfies the assumptions of 5.9. The fixed points of h are just the

points in the limit cycle, i.e., w1, . . . ,ws. Additionally, it easy to see (via chain rule)

that Jfs(wi) = Jfs−1(f(wi))J(wi) = Jfs−1(wi+1)J(wi), where we denote by Jf i the

Jacobian of function f i(x) and wl+1 = w1. Therefore

Jh(wi) =
i−1∏
j=1

J(wi−j)
s∏
j=i

J(ws+i−j).

Matrices don’t commute in general but it is true that AB,BA have the same eigenval-

ues hence sp (Jh(wi)) < ρ is the same for all i = 1, . . . , s. Finally, let k be such that
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∥∥Jfs(wi)
k
∥∥

1
< ρk (using Gelfand’s formula 5.1). For each wi consider εi as in the proof

of 5.27, for function h and upper bound ρ on the spectral radius of Jfs(wi). Then anal-

ogously for t = e2ε
2
i N

20mk·s with probability at least 9
10

we have
∥∥X(t) −wi

∥∥
1
≤ (k+1)βkεim

1−ρ

and the proof for eΩ(N) mixing comes from Theorem 5.9.

5.6.3 Proofs omitted from Section 5.6

Lemma 5.28 (Exponential convergence II). Choose z0, ρ,∆ as in the proof of

Theorem 5.8, and set β ··= supx∈∆m
‖J [x]‖1. Then there exist a positive r such that

for every x ∈ ∆, and every positive integer t,

∥∥f t(x)− z0

∥∥
1
≤ rρt.

Proof. This is almost identical to the proof of Lemma 5.18. Let ε and k be as defined

in 5.20. From Lemma 5.25, we know that there exists an ` such that for all x ∈ ∆,

∥∥f `(x)− z0

∥∥
1
≤ ε

βk
. (69)

Note that this implies that f `+i(x) is within distance ε of z0 for i = 0, 1, . . . , k, so

that 5.20 can be applied to the sequence of vectors f `(x), f `+1 (x) , . . . , f `+k(x) and

z0. Thus, we get

∥∥f `+k(x)− z0

∥∥
1
≤ ρk

∥∥f `(x)− z0

∥∥
1
≤ ρkε

βk
.

Since ρ < 1, we can iterate this process. Using also the fact that the 1→ 1 norm of

the Jacobian of f is at most β (which we can assume without loss of generality to be

at least 1), we therefore get for every x ∈ ∆, and every i ≥ 0 and 0 ≤ j < k

∥∥f `+ik+j(x)− z0

∥∥
1
≤ ρki+j

βj

ρj
∥∥f `(x)− z0

∥∥
1

≤ ρki+j+`
βj+`

ρj+`
‖x− z0‖1 ≤ ρki+j+`

βk+`

ρk+`
‖x− z0‖1

where in the last line we use the facts that β > 1, ρ < 1 and j < k. Noting that any

t ≥ ` is of the form `+ki+ j for some i and j as above, we have shown that for every
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t ≥ ` and every x ∈ ∆

∥∥f t(x)− z0

∥∥
1
≤
(
β

ρ

)k+`

ρt ‖x− z0‖1 . (70)

Similarly, for t < `, we have, for any z ∈ ∆

∥∥f t(x)− z0

∥∥
1
≤ βt ‖x− z0‖1

≤
(
β

ρ

)t
ρt ‖x− z0‖1 ≤

(
β

ρ

)`
ρt ‖x− z0‖1 , (71)

where in the last line we have again used β > 1, ρ < 1 and t < `. From (71), (70), we

get the claimed result with r ··=
(
β
ρ

)k+`

.

5.7 Models of Evolution and Mixing times

5.7.1 Eigen’s model (RSM)

An individual of type i has a fitness (that translates to the ability to reproduce)

which is specified by a positive integer ai, and captured as a whole by a diagonal

m×m matrix A whose (i, i)th entry is ai. The reproduction is error-prone and this is

captured by anm×m stochastic matrixQ whose (i, j)th entry captures the probability

that the jth type will mutate to the ith type during reproduction.7 The population is

assumed to be infinite and its evolution deterministic. The population is assumed to

be unstructured, meaning that only the type of each member of the population matters

and, thus, it is sufficient to track the fraction of each type. One can then track the

fraction of each type at step t of the evolution by a vector x(t) ∈ ∆m (the probability

simplex of dimension m) whose evolution is then governed by the difference equation

x(t+1) = QAx(t)

‖QAx(t)‖1
. Of interest is the steady state8 or the limiting distribution of this

process and how it changes as one changes the evolutionary parameters Q and A.

This model was proposed in the pioneering work of Eigen and co-authors [43, 45].

One stochastic version of this dynamics, motivated by the Wright-Fisher model in

7We follow the convention that a matrix if stochastic if its columns sum up to 1.
8Note that there is a unique steady state, called the quasispecies, when QA > 0.
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population genetics, was studied by Dixit et al. [39]. Here, the population is again

assumed to be unstructured and fixed to a size N. Thus, after normalization, the

composition of the population is captured by a random point in ∆m; say X(t) at

time t. In the replication (R) stage, one first replaces an individual of type i in the

current population by ai individuals of type i: the total number of individuals of type

i in the intermediate population is therefore aiNX
(t)
i . In the selection (S) stage, the

population is culled back to size N by sampling with replacement N individuals from

this intermediate population. In analogy with the Wright-Fisher model, we assume

that the N individuals are sampled with replacement.9 Finally, since the evolution

is error prone, in the mutation (M) stage, one then mutates each individual in this

intermediate population independently and stochastically according to the matrix Q.

The vector X(t+1) then is the normalized frequency vector of the resulting population.

In the next section we show a rapid mixing result for RSM (Theorem 5.11).

5.7.2 Mixing time for Eigen’s model

We first show that the Eigen or RSM model discussed in Section 5.7.2 is a special

case of the abstract model defined in the last section, and hence satisfies the mixing

time bound in Theorem 5.7. Our first step is to show that the RSM model can be

seen as a stochastic evolution guided by the function f defined by f(p) = (QAp)t
‖QAp‖1

,

where Q and A are matrices with positive entries, with Q stochastic (i.e., columns

summing up to 1), as described in the introduction. We will then show that this f is

a smooth contractive evolution, which implies that Theorem 5.7 applies to the RSM

process.

We begin by recalling the definition of the RSM process. Given a starting pop-

ulation of size N on m types represented by a 1/N -integral probability vector p =

9Culling via sampling without replacement was considered in [39], but the Wright-Fisher inspired
sampling with replacement is the natural model for culling in the more general setting that we
consider in this chapter.
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(p1, p2, . . . , pm), the RSM process produces the population at the next step by inde-

pendently sampling N times from the following process:

1. Sample a type T from the probability distribution Ap
‖Ap‖1

.

2. Mutate T to the result type S with probability QST .

We now show that sampling from this process is exactly the same as sampling from

the multinomial distribution f(p) = QAp
‖QAp‖1

. To do this, we only need to establish

the following claim:

Claim 5.29. For any type t ∈ [m], P [S = t] =
∑
j QtjAjjpj∑
j Ajjpj

= (QAp)t
‖QAp‖1

.

Proof. We first note that ‖QAp‖1 =
∑

ij QijAjjpj = (
∑

iQij)·(
∑

j Ajjpj) =
∑

j Ajjpj =

‖Ap‖1, where in the last equality we used the fact that the columns of Q sum up to

1. Now, we have

P [S = t] :=
m∑
i

Qti ·
(Ap)i
‖Ap‖1

=

∑
i=1QtiAiipi∑

j Ajjpj
=

(QAp)t
‖QAp‖1

.

From 5.29, we see that producing N independent samples from the process de-

scribed above (which corresponds exactly to the RSM model) produces the same dis-

tribution as producing N independent samples from the distribution (QAp)
‖QAp‖1

. Thus,

the RSM process is a stochastic evolution guided by f(x) := QAx
‖QAx‖1

. We now pro-

ceed to verify that this f is a smooth contractive evolution. We first note that the

“smoothness” condition is directly implied by the definition of f . For the “unique-

ness of fixed point” condition, we observe that every fixed point of QAx
‖QAx‖1

in the

simplex ∆m must be an eigenvector of QA. Since QA is a matrix with positive en-

tries, the Perron-Frobenius theorem implies that it has a unique positive eigenvector

v (for which we can assume without loss of generality that ‖v‖1 = 1) with a positive

eigenvalue λ1. Therefore f(x) has a unique fixed point τ = v in the simplex ∆m

which is in its interior. The Perron-Frobenius theorem also implies that for every

x ∈ ∆m, limt→∞(QA)tx/λt1 → v. In fact, this convergence can be made uniform
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over ∆m (meaning that given an ε > 0 we can choose t0 such that for all t > t0,

‖(QA)tx/λt1 − v‖1 < ε for all x ∈ ∆m) since each point x ∈ ∆m is a convex com-

bination of the extreme points of ∆m and the left hand side is a linear function of

x. From this uniform convergence, it then follows easily that limt→∞ f
t(x) = v, and

that the convergence in this limit is also uniform. The “convergence to fixed point”

condition follows directly from this observation.

Finally, we need to establish that the spectral radius of the Jacobian J ··= J(v)

of f at its fixed point is less than 1. A simple computation shows that the Jacobian

at v is J = 1
λ1

(I − V )QA where V is the matrix each of whose columns is the vector

v. Since QA has positive entries, we know from the Perron-Frobenius theorem that

λ1 as defined above is real, positive, and strictly larger in magnitude than any other

eigenvalue of QA. Let λ2, λ3, . . . , λm be the other, possibly complex, eigenvalues

arranged in decreasing order of magnitude (so that λ1 > |λ2|). We now establish the

following claim from which it immediately follows that sp (J) = |λ2|
λ1

< 1 as required.

Claim 5.30. The eigenvalues of M ··= (I − V )QA are λ2, λ3, . . . , λm, 0.

Proof. Let D be the Jordan canonical form of QA, so that D = U−1QAU for some

invertible matrix U . Note that D is an upper triangular matrix with λ1, λ2, . . . , λm on

the diagonal. Further, the Perron-Frobenius theorem applied to QA implies that λ1

is an eigenvalue of both algebraic and geometric multiplicity 1, so that we can assume

that the topmost Jordan block in D is of size 1 and is equal to λ1. Further, we can

assume the corresponding first column of U is equal to the corresponding positive

eigenvector v satisfying ‖v‖1 = 1. It therefore follows that U−1V = U−1v1T is the

matrix e11
T , where e1 is the first standard basis vector.

Now, since U is invertible, M has the same eigenvalues as U−1MU = (U−1 −

U−1V )QAU = (I − e11
TU)D, where in the last line we use UD = QAU . Now, note

that all rows except the first of the matrix e11
TU are zero, and its (1, 1) entry is 1

since the first column of U is v, which in turn is chosen so that 1Tv = 1. Thus, we
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get that (I − e11
TU)D is an upper triangular matrix with the same diagonal entries

as D except that its (1, 1) entry is 0. Since the (1, 1) entry of D was λ1 while its other

diagonal entries were λ2, λ3, . . . , λm, it follows that the eigenvalues of (I − e11
TU)D

(and hence those of M) are λ2, λ3, . . . , λm, 0, as claimed.

We thus see that the RSM process satisfies the condition of being guided by a

smooth contractive evolution and hence has the mixing time implied by Theorem 5.7.

5.7.3 Dynamics of grammar acquisition and sexual evolution

We begin by describing the evolutionary processes for grammar acquisition and

sexual evolution. As we will explain, the two turn out to be identical and hence we

primarily focus on the model for grammar acquisition in the remainder of the section.

The starting point of the model is Chomsky’s Universal Grammar theory [27].10

In his theory, language learning is facilitated by a predisposition that our brains have

for certain structures of language. This universal grammar (UG) is believed to be

innate and embedded in the neuronal circuitry. Based on this theory, an influential

model for how children acquire grammar was given by appealing to evolutionary

dynamics for infinite and finite populations respectively in [101] and [71]. We first

describe the infinite population model, which is a dynamical system that guides the

stochastic, finite population model. Each individual speaks exactly one of the m

grammars from the set of inherited UGs {G1, . . . , Gm}; denote by xi the fraction

of the population using Gi. The model associates a fitness to every individual on

the basis of the grammar she and others use. Let Aij be the probability that a

person who speaks grammar j understands a randomly chosen sentence spoken by

an individual using grammar i. This can be viewed as the fraction of sentences

according to grammar i that are also valid according to grammar j. Clearly, Aii =

10Like any important problem in the sciences, Chomsky’s theory is not uncontroversial; see [52]
for an in-depth discussion.
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1. The pairwise compatibility between two individuals speaking grammars i and j

is Bij ··= Aij+Aji
2

, and the fitness of an individual using Gi is fi ··=
∑m

j=1 xjBij,

i.e., the probability that such an individual is able to meaningfully communicate

with a randomly selected member of the population.

In the reproduction phase each individual produces a number of offsprings propor-

tional to her fitness. Each child speaks one grammar, but the exact learning model

can vary and allows for the child to incorrectly learn the grammar of her parent. We

define the matrix Q where the entry Qij denotes the probability that the child of

an individual using grammar i learns grammar j (i.e., Q is column stochastic ma-

trix); once a child learns a grammar it is fixed and she does not later use a different

grammar. Thus, the frequency x′i of the individuals that use grammar Gi in the next

generation will be

x′i = gi(x) ··=
m∑
j=1

Qjixj(Bx)j
x>Bx

(with g : ∆m 7→ ∆m encoding the update rule). Nowak et al. [101] study the sym-

metric case, i.e., Bij = b and Qij = τ ∈ (0, 1/m] for all i 6= j and observe a threshold:

When τ, which can be thought of as quantifying the error of learning or mutation,

is above a critical value, the only stable fixed point is the uniform distribution (all

1/m) and below it, there are multiple stable fixed points.

Finite population models can be derived from the grammar acquisition dynamics

in a standard way. We describe the Wright-Fisher finite population model for the

grammar acquisition dynamics. The population size remains N at all times and the

generations are non-overlapping. The current state of the population is described

by the frequency vector X(t) at time t which is a random vector in ∆m and notice

also that the population that uses Gi is NX
(t)
i . In the replication (R) stage, one

first replaces the individuals that speak grammar Gi in the current population by
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NX
(t)
i (B(NX(t)))i and the total population has size N2X(t)>BX(t).11 In the selection

(S) stage, one selects N individuals from this population by sampling independently

with replacement. Since the evolution is error prone, in the mutation (M) stage, the

grammar of each individual in this intermediate population is mutated independently

at random according to the matrix Q to obtain frequency vector X(t+1). Given these

rules, note that

E[X(t+1)|X(t)] = g(X(t)).

In other words, in expectation, fixing X(t), the next generation’s frequency vector

X(t+1) is exactly g(X(t)), where g is the grammar acquisition dynamics. Of course,

this holds only for one step of the process. This process is a Markov chain with state

space {(y1, . . . , ym) : yi ∈ N,
∑

i yi = N} of size
(
N+m−1
m−1

)
. If Q > 0 then it is ergodic

(i.e., it is irreducible and aperiodic) and thus has a unique stationary distribution. In

our analysis, we consider the symmetric case as in Nowak et al. [101], i.e., Bij = b

and Qij = τ ∈ (0, 1/m] for all i 6= j.

Note that the grammar acquisition model described above can also be seen as a

(finite population) sexual evolution model: Assume there are N individuals and m

types. Let Y(t) be a vector of frequencies at time t, where Y
(t)
i denotes the fraction of

individuals of type i. Let F be a fitness matrix where Fij corresponds to the number

of offspring of type i, if an individual of type i chooses to mate with an individual

of type j (assume Fij ∈ N). At every generation, each individual mates with every

other individual. It is not hard to show that the number of offspring after the matings

will be N2(Y(t)>FY(t)) and there will be N2Y
(t)
i (FY(t))i individuals of type i. After

the reproduction step, we select N individuals at random with replacement, i.e., we

sample an individual of type i with probability
Y

(t)
i (FY(t))i

Y(t)>FY(t) . Finally in the mutation

step, every individual of type i mutates with probability τ (mutation parameter) to

11Here we assume that Bij is an positive integer and thus N2X
(t)
i (BX(t))i is an integer since the

individuals are whole entities; this can be achieved by scaling and is without loss of generality.
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some type j. Let Fii = A, Fij = B for all i 6= j with A > B (this is called homozygote

advantage) and set b = B
A
< 1. It is self-evident that this sexual evolution model is

identical with the (finite population) grammar acquisition model described above

since both end up having the same reproduction, selection and mutation rule. It

holds that E[X(t+1)|X(t)] = g(Xt)12 with

gi(x) = (1− (m− 1)τ)
N2xi(Bx)i
N2(x>Bx)

+
∑
j 6=i

τ
N2xj(Bx)j
N2(xTBx)

= (1−mτ)
xi(Bx)i
(x>Bx)

+ τ

where Bii = 1, Bij = b with i 6= j.13 For the aforementioned Markov chains (symmet-

ric case), we prove Theorem 5.12 in the next section.

5.7.4 Mixing time for grammar acquisition and sexual evolution

Sampling from distribution g(x). In this section, we prove that the finite popula-

tion grammar acquisition model discussed in preliminaries can be seen as a stochastic

evolution guided by the function g defined by g(x) = (1−mτ)xi(Bx)i
x>Bx

+ τ (we assume

that we have m grammars and g : ∆m → ∆m, see Definition 19 to check what a

stochastic evolution guided by a function is). Given a starting population of size N

on m types represented by a 1/N -integral probability vector x = (x1, x2, . . . , xm) we

consider the following process P1:

1. Reproduction, i.e., the number of individuals that use grammar Gi becomes

N2xi(Bx)i and the total number is N2x>Bx.

2. Each individual that uses grammar S can end up using grammar T with prob-

ability QST .

We now show that sampling from P1 is exactly the same as sampling from the multi-

nomial distribution g(x). Taking one sample (individual) we compute the probability

to use grammar t.

12We use same notation for the update rule as before, i.e., g because it turns out to be the same
function.

13Observe that this rule is invariant under scaling of fitness matrix B.
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Claim 5.31. P [type t] =
N2

∑
j Qjtxj(Bx)j

N2x>Bx
= (1−mτ)xt(Bx)t

x>Bx
+ τ .

Proof. We have

P [type t] :=
m∑
i=1

Qit ·
xi(Bx)i
x>Bx

= (1−mτ)
xt(Bx)t
x>Bx

+ τ
xt(Bx)t
x>Bx

+ τ
∑
i 6=t

xi(Bx)i
x>Bx

= (1−mτ)
xt(Bx)t
x>Bx

+ τ
x>Bx

x>Bx
.

From 5.31, we see that producing N independent samples from the process P1 de-

scribed above (which is the finite grammar acquisition model discussed in the intro-

duction) produces the same distribution as producing N independent samples from

the distribution g(x). So, we assume that the finite grammar acquisition model is a

stochastic evolution guided by g (see Definition 19).

Analyzing the Infinite Population Dynamics. In this section we prove several

structural properties of the grammar acquisition dynamics. We start this section by

proving that the grammar acquisition dynamics converges to fixed points. 14

Theorem 5.32 (Convergence of grammar acquisition dynamics). The gram-

mar acquisition dynamics converges to fixed points. In particular, the Lyapunov

function P (x) = (x>Bx)
1
τ
−m∏

i x
2
i is strictly increasing along the trajectories for

0 ≤ τ ≤ 1/m.

Proof. We first prove the results for rational τ ; let τ = κ/λ. We use the theorem of

Baum and Eagon [14]. Let

L(x) = (x>Bx)λ−mκ
∏
i

x2κ
i .

14This requires proof since convergence to limit cycles or the existence of strange attractors are a
priori not ruled out.
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Then

xi
∂L

∂xi
= 2κL+

2xi(Bx)i(λ−mκ)L

x>Bx
.

It follows that

xi
∂L
∂xi∑

i xi
∂L
∂xi

=
2κL+ 2xi(Bx)i(λ−mκ)L

x>Bx

2mκL+ 2(λ−mκ)L

=
2κL

2λL
+

2L(λ−mκ)xi(Bx)i
2λLx>Bx

= (1−mτ)xi
(Bx)i
x>Bx

+ τ

where the first equality comes from the fact that
∑m

i=1 xi(Bx)i = x>Bx. Since L is

a homogeneous polynomial of degree 2λ, from Theorem 1.1 we get that L is strictly

increasing along the trajectories, namely

L(g(x)) > L(x)

unless x is a fixed point. So P (x) = L1/κ(x) is a potential function for the dynamics.

To prove the result for irrational τ , we just have to see that the proof of [14] holds

for all homogeneous polynomials with degree d, even irrational.

To finish the proof let Ω ⊂ ∆m be the set of limit points of an orbit x(t) (frequen-

cies at time t for t ∈ N). P (x(t)) is increasing with respect to time t by above and so,

because P is bounded on ∆m, P (x(t)) converges as t → ∞ to P ∗ = supt{P (x(t))}.

By continuity of P we get that P (y) = limt→∞ P (x(t)) = P ∗ for all y ∈ Ω. So P is

constant on Ω. Also y(t) = limn→∞ x(tn + t) as n → ∞ for some sequence of times

{ti} and so y(t) lies in Ω, i.e., Ω is invariant. Thus, if y ≡ y(0) ∈ Ω the orbit y(t)

lies in Ω and so P (y(t)) = P ∗ on the orbit. But P is strictly increasing except on

equilibrium orbits and so Ω consists entirely of fixed points.

Fixed points and bifurcation. Let z be a fixed point. z satisfies the following

equations:

zi − τ
zi(Bz)i

=
zj − τ
zj(Bz)j

=
1−mτ
zTBz

for all i, j. (72)
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The previous equations can be derived by solving zi = (1 − mτ)zi
zi(Bz)i
z>Bz

+ τ . By

solving with respect to τ we get that

τ =
zizj((Bz)i − (Bz)j)

zi(Bz)i − zj(Bz)j
for zi(Bz)i 6= zj(Bz)j.

Fact 5.33. The uniform point (1/m, . . . , 1/m) is a fixed point of the dynamics for all

values of τ .

To see why 5.33 is true, observe that gi(1/m, . . . , 1/m) = (1−mτ) 1
m

+ τ = 1
m

for all i

and hence g(1/m, . . . , 1/m) = (1/m, . . . , 1/m). The fixed points satisfy the following

property:

Lemma 5.34 (Two Distinct Values). Let (x1, . . . , xm) be a fixed point. Then

x1, . . . , xm take at most two distinct values.

Proof. Let xi 6= xj for some i, j. Then it follows that

τ =
xixj((Bx)i − (Bx)j)

xi(Bx)i − xj(Bx)j
=

xixj(1− b)
(1− b)(xi + xj) + b

.

Hence if xj′ 6= xi then

xj′

(1− b)(xi + xj′) + b
=

xj
(1− b)(xi + xj) + b

from which follows that xj = xj′ . Finally, the uniform fixed point satisfies trivially

the property.

We shall compute the threshold τc such that for 0 < τ < τc the dynamics has

multiple fixed points and for 1/m ≥ τ > τc we have only one fixed point (which by

Fact 5.33 must be the uniform one). Let

h(x) = −x2(m− 2)(1− b)− 2x(1 + b(m− 2)) + 1 + b(m− 2).

By Bolzano’s theorem and the fact that h(0) = 1 + b(m − 2) > 0 and h(−1) < 0,

h(1) = 1−m < 0, it follows that there exists one positive solution for h(x) = 0 which

is between 0 and 1; we denote it by s1.
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We can now define

τc ··=
(1− b)s1(1− s1)

(m− 1)b+ (1− b)(1 + (m− 2)s1)
.

Lemma 5.35 (Bifurcation). If τc < τ ≤ 1/m then the only fixed point is the uniform

one. If 0 ≤ τ < τc then there exist multiple fixed points.

Proof. Assume that there are multiple fixed points (apart from the uniform, see 5.33)

and let (x1, . . . , xm) be a fixed point, where x and y being the two values that the

coordinates xi take (by Lemma 5.34). Let k ≥ 1 be the number of coordinates with

value x and m− k the coordinates with values y where m > k and kx+ (m− k)y = 1

(in case k = 0 or m = k we get the uniform fixed point). Solving by τ we get that

τ = xy(1−b)
b+(1−b)(x+y)

. We set y = 1−kx
m−k and we analyze the function

f(x, k) =
(1− b)x(1− kx)

(m− k)b+ (1− b)(1 + (m− 2k)x)

It follows that f is decreasing with respect to k (assuming x < 1/k+1 such that y > 0,

see Appendix A.3 for Mathematica code for proving f(x, k) is decreasing with respect

to k). Hence the maximum is attained for k = 1. Hence, we can consider

f(x) ··= f(x, 1) =
(1− b)x(1− x)

(m− 1)b+ (1− b)(1 + (m− 2)x)
.

By solving df
dx

= 0 it follows that h(x) = 0 (where h(x) is the numerator of the

derivative of f). This occurs at s1. For τ > τc there exist no fixed points whose

coordinates can take on more than one value by construction of f , namely the only

fixed point is the uniform one.

Stability analysis. The equations of the Jacobian are given below:

∂gi
∂xi

= (1−mτ)

(
(Bx)i + xiBii

x>Bx
− xi(Bx)i · 2(Bx)i

(x>Bx)2

)
, (73)

∂gj
∂xi

= (1−mτ)

(
xjBji

x>Bx
− xj(Bx)j · 2(Bx)i

(x>Bx)2

)
for j 6= i. (74)
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Fact 5.36. The all ones vector (1, . . . , 1) is a left eigenvector of the Jacobian with

corresponding eigenvalue 0.

Proof. This can be derived by computing

m∑
j=1

∂gj
∂xi

= (1−mτ)

(
2(Bx)i
x>Bx

− 2x>Bx(Bx)i
(x>Bx)2

)
= 0.

We will focus on two specific classes of fixed points. The first one is the uniform,

i.e., (1/m, . . . , 1/m) which we denote by zu and the other one is (y, . . . , y, x︸︷︷︸
ith

, y, . . . , y)

with x+ (m− 1)y = 1 and x > s1, which we denote by zi (for 1 ≤ i ≤ m).

Stability of zu. Let

τu ··=
1− b

m(2− 2b+mb)
.

Lemma 5.37. If τu < τ ≤ 1/m, then sp (J(zu)) < 1 and if 0 ≤ τ < τu, then

sp (J(zu)) > 1.

Proof. The Jacobian of the uniform fixed point has diagonal entries equal to (1 −

mτ)
(

1− 2
m

+ 1
1+(m−1)b

)
and non-diagonal entries (1−mτ)

(
b

1+(m−1)b
− 2

m

)
. Consider

the matrix

Wu ··= J(zu)− (1−mτ)

(
1 +

1− b
1 + (m− 1)b

)
Im

where Im is the identity matrix of size m × m. The matrix Wu has eigenvalue 0

with multiplicity m− 1 and eigenvalue m(1−mτ)
(

b
1+(m−1)b

− 2
m

)
with multiplicity

1. Hence the eigenvalues of J(zu) are 0 with multiplicity 1 and (1−mτ)(1+ 1−b
1+(m−1)b

)

with multiplicity m− 1. Thus, the Jacobian of zu has spectral radius less than one if

and only if −1 < (1−mτ)(1 + 1−b
1+(m−1)b

) < 1. By solving with respect to τ it follows

that

1− b
m(2− 2b+mb)

< τ <
3− 3b+ 2bm

m(2− 2b+mb)
.

Because 1/m < 3−3b+2bm
m(2−2b+mb)

(as b ≤ 1), the first part of the lemma follows. In case

0 ≤ τ < 1−b
m(2−2b+mb)

then (1−mτ)(1 + 1−b
1+(m−1)b

) and the second part follows.
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Hence, we conclude that τu is the threshold below which the uniform fixed point

satisfies sp (J(zu)) > 1 and above which sp (J(zu)) < 1.

Stability of zi.

Lemma 5.38. If 0 ≤ τ < τc then sp (J(zi)) < 1.

Proof. Consider the matrix

Wi ··= J(zi)− (1−mτ)
y + b+ (1− 2b)y

z>i Bzi
Im

where Im is the identity matrix of size m×m. The matrix Wi has eigenvectors of the

form

(w1, . . . , wi−1, 0, wi+1, . . . , wm)

with
∑m

j=1,j 6=iwj = 0 (the dimension of the subspace is m − 2) and corresponding

eigenvalues 0. Hence the Jacobian has m−2 eigenvalues of value (1−mτ)y+b+(1−2b)y

z>i Bzi
.

It is true that 0 < (1−mτ)y+b+(1−2b)y

z>i Bzi
< 1 (see Appendix A.3 for Mathematica code).

Finally, since J(zi) has an eigenvalue zero (see Fact 5.36), the last eigenvalue is

Tr(J(zi))− (1−mτ)(m− 2)
y + b+ (1− 2b)y

z>i Bzi
= (1−mτ)·(

2b+ (2− b)x+ ((m− 3)b+ 2)y

z>i Bzi
− 2x(b+ (1− b)x)2 + 2(m− 1)y(b+ (1− b)y)2

(z>i Bzi)2

)
which is also less than 1 and greater than 0 (see Appendix A.3 for Mathematica

code).

Remark 10. In the case where m = 2 it follows that τu = τc = 1−b
4

. For m > 2 we

have τu < τc (see Mathematica code in Lemma A.3.3).

Analyzing the Mixing Time. We prove our result concerning the grammar ac-

quisition model (finite population). The structural lemmas proved in the previous

section are used here. Now, we proceed by analysing the mixing time of the Markov

chain for the two intervals (0, τc) and (τc, 1/m].

Regime 0 < τ < τc.
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Lemma 5.39. For the interval 0 < τ < τc. the mixing time of the Markov chain is

exp(Ω(N)).

Proof. By Lemma 5.38 it is true that there exist m fixed points zi with sp (J(zi)) <

1 and their pairwise distance is some positive constant independent of N (well-

separated). Hence using Theorem 5.9 and because the Markov chain is a stochastic

evolution guided by g (see 5.31), we conclude that the mixing time is eΩ(N).

Regime τc < τ ≤ 1/m. We prove the second part of Theorem 5.12.

Lemma 5.40. For the interval τc < τ ≤ 1/m, the assumptions of Theorem 5.7 are

satisfied, namely the mixing time of the Markov chain is O(logN).

Proof. By Lemma 5.35, we know that in the interval τc < τ ≤ 1/m there is a unique

fixed point (the uniform zu) and also by Lemma 5.37 that sp (J(zu)) < 1. It is trivial

to check that g is twice differentiable with bounded second derivative. It suffices

to show the 4th condition in the Definition 22. Due to Theorem 5.32 we have

limk→∞ g
k(x) → zu for all x ∈ ∆m. The rest follows from Lemma 5.26 (by setting

S = ∆m).

Our result on grammar acquisition model is a consequence of 5.39, 5.40.

Remark 11. For τ = 1/m the Markov chain mixes in one step. This is trivial since

g maps every point to the uniform fixed point zu.

5.8 Conclusion and Remarks

The results of this chapter appear in [104, 105]. We examine the mixing time of

a class of Markov chains that are guided by dynamical systems on the simplex. We

make an interesting connection between the mixing time of the Markov chains and the

geometry of the underlying dynamical systems (structure of limit points, convergence,

stability). We prove that when the dynamical system has one stable fixed point then
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the mixing time of the corresponding Markov chain is rapidly mixing, something that

is not true when there are multiple fixed points. We also provide two applications,

i.e., RSM and grammar acquisition models. We prove that the RSM model has

mixing time O(logN) whereas in the grammar acquisition model we show a phase

transition result. Questions that arise:

• Study the mixing at the threshold for the grammar acquisition model. More

generally, how can we handle the case where the spectral radius of the Jacobian

of the update rule of the dynamics is one?

• A natural next step is to study the evolution of structured populations. Roughly,

this setting extends the evolutionary Markov chains by introducing an addi-

tional input parameter, a graph on N vertices. The graph provides structure

to the population by locating each individual at a vertex, and the main differ-

ence from the is that at time t+ 1, an individual determines its new vertex by

sampling with replacement from among its neighbors in the graph at time t;

see [76] for more details. Here, it is no longer sufficient to just keep track of the

fraction of each type. The stochastic evolution model can be seen as a special

case when the underlying graph is the complete graph on N vertices, so that

the locations of the individuals in the population are of no consequence. Our

results do not seem to apply directly to this setting and it is a challenging open

problem to prove bounds in the general graph setting.
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CHAPTER VI

AVERAGE CASE ANALYSIS IN POTENTIAL GAMES

6.1 Introduction

The study of game dynamics is a basic staple of game theory with several books

dedicated exclusively to it [61, 54, 142, 22, 121]. Historically, the golden standard for

classifying the behavior of learning dynamics in games has been to establish conver-

gence to equilibria. Thus, it is hardly surprising that a significant part of the work

on learning in games focuses on potential games (and slight generalizations thereof)

where many dynamics (e.g., replicator, smooth fictitious play) are known to converge

to equilibrium sets. The structure of the convergence proofs is essentially universal

across different learning dynamics and boils down to identifying a Lyapunov/potential

function that strictly decreases along any nontrivial trajectory. In potential games,

as their name suggests, this function is part of the description of the game and pre-

cisely guides self-interested dynamics towards critical points of these functions that

correspond to equilibria of the learning process.

Potential games are also isomorphic to congestion games [89]. Congestion games

have been instrumental in the study of efficiency issues in games. They are amongst

the most extensively studied class of games from the perspective of price of anarchy

and price of stability with many tight characterization results for different subclasses

of games (e.g., linear congestion games [120], symmetric load balancing [98] and

references therein).

Our contribution. We show that this is far from the case. We focus on simple

systems where replicator dynamic, arguably one of the most well studied game dy-

namics, is applied to linear congestion games and (network) coordination games. We
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resolve a number of basic open questions in the following results:

(A) Point-wise convergence to equilibrium. In the case of linear congestion

games and (network) coordination games we prove convergence to equilibrium instead

of equilibrium sets. Convergence to equilibrium sets implies that the distance of

system trajectories from the sets of equilibria converges to zero (see Theorems 6.2,

A.3). On the other hand, convergence to equilibrium, also referred to as point-wise

convergence, implies that every system trajectory has a unique limit point, which

is an equilibrium. In games with continuums of equilibria, (e.g., N balls N bins

games1 with N ≥ 4), the first statement is more inclusive that the second. In fact,

system equilibration is not implied by set-wise convergence, and the limit set of a

trajectory may have complex topology (e.g., the limit of social welfare may not be well

defined). Despite numerous positive convergence results in classes of congestion games

[53, 17, 48, 16, 2], this is the first to our knowledge result about deterministic point-

wise convergence for any concurrent dynamic. The proof is based on combining global

Lyapunov functions arguments with local information theoretic Lyapunov functions

around each equilibrium.

(B) Global stability analysis. Although the point-wise convergence result is in-

teresting in itself, it critically enables all other results of this chapter. Specifically,

we establish that modulo point-wise convergence, all but a zero measure set of initial

conditions converge to equilibrium points which are weakly stable Nash equilibria

(see Definition 10, Theorem 6.4, Corollary 6.5). This is a technical result that com-

bines game theoretic arguments with tools from dynamical systems (Center-Stable

Manifold Theorem 1.3) and analysis (Lindelőf’s lemma A.1).

(C) Invariant functions. Sometimes a game may have multiple (weakly) stable

equilibria. In this case we would like to be able to predict which one will arise given

1These are symmetric load balancing games with N agents and N machines where the cost
function of each machine is the identity function.
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a specific (or maybe a randomly chosen) initial condition. Systems invariants allows

us to do exactly that. A system invariant is a function defined over the system

state space such that it remains constant along every system trajectory. Establishing

invariant properties of replicator dynamics in generalized zero-sum games has helped

prove interesting topological properties of the system trajectories such as (near) cycles

[112, 111, 106]. In the case of bipartite coordination games with fully mixed Nash

equilibria, we can establish similar invariant functions. Specifically, the difference

between the sum of the Kullback-Leibler (KL) divergences of the evolving mixed

strategies of the agents on the left partition from their fully mixed Nash equilibrium

strategy and the respective term for the agents in the right partition remains constant

along any trajectory. In the special case of star graphs, we show how to produce n

such invariants where n is the degree of the star. This allows for creating efficient

oracles for predicting to which Nash equilibrium the system converges provably for

any initial condition without simulating explicitly the system trajectory.

Applications. The tools that we have developed allow for novel insights in classic

and well studied class of games. We group our results into two clusters, average case

performance analysis and estimating risk dominance/regions of attraction:

Average Case Performance. We propose a novel quantitative framework for an-

alyzing the efficiency of potential games with many equilibria. Informally, we define

the expected system performance as the weighted average of the social costs of all

equilibria where the weight of each equilibrium is proportional to the volume (or more

generally measure) of its region of attraction. The main idea is as follows: The agents

start participating in the game having some prior beliefs about which are the best

actions for them. We will typically assume that the initial beliefs are chosen accord-

ing to a uniform prior given that we want to assume no knowledge about the agents’

internal beliefs2. Given this initial condition the agents start interacting through the

2Our techniques extend to arbitrarily correlated beliefs, any prior over initial mixed strategies.

184



game and update their beliefs (i.e., their randomized strategies) up until they reach

equilibrium. At this point the measure of the region of attraction of an equilibrium

captures exactly the likelihood that we will converge to that state. So the average

case performance computes, as its names suggests, what will be the resulting system

performance on average. As is typical in algorithmic game theory, we can normalize

this quantity by dividing with the performance of the optimal state. We define this

ratio as the average price of anarchy. In our convergent systems it always lies be-

tween the price of stability and the price of anarchy. We analyze the average price

of anarchy in a number of settings which include, N balls N bins games, symmetric

linear load balancing games (with agents of equal weights),3 parametric versions of

coordination games as well as star network extensions of them. These are games with

large gaps between the price of stability and price of anarchy and replicator is shown

to be able to zero in on the good equilibria with high enough probability so that the

average price of anarchy is always a small constant. This measure of performance

could help explain why some games are easy in practice, despite having large price of

anarchy. We aggregate these results below:

Table 2: Our APoA results

Average PoA Techniques PoS Pure PoA PoA
n balls n bins game 1 A & B 1 1 Θ(log n/ log log n)
Symmetric Load Balancing [1, 1.5] A & B 1 1 Ω(log n/ log log n)
w-Coordination Game [1.15, 1.21] A & B & C 1 Θ(w) Θ(w)
N -Star w-Coordination Game4 [1.15, 3.6] A & B & C 1 Θ(w) Θ(w)

Risk dominance/Regions of attraction. Risk dominance is an equilibrium re-

finement process that centers around uncertainty about opponent behavior. A Nash

equilibrium is considered risk dominant if it has the largest basin of attraction5. The

3We focus mostly on the makespan as a measure of social cost.
5Although risk dominance [60] was originally introduced as a hypothetical model of the method

by which perfectly rational players select their actions, it may also be interpreted [91] as the result
of evolutionary processes.
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benchmark example is the Stag Hunt game, shown in Figure 10(a). In such symmet-

ric 2x2 coordination games a strategy is risk dominant if it is a best response to the

uniformly random strategy of the opponent. We show that the likelihood of the risk

dominant equilibrium of the Stag Hunt game is 1
27

(9 + 2
√

3π) ≈ 0.7364 (instead of

merely knowing that it is at least 1/2, see Figure 11). The size of the region of at-

traction of the risk dominated equilibrium is 0.2636, whereas the mixed equilibrium

has region of attraction of zero measure. Moving to networks of coordination games,

we show how to construct an oracle that predicts the limit behavior of an arbitrary

initial condition, in the case of coordination games played over a star network with

N agents. This is the most economic class of games that exhibits two characteris-

tics that intuitively seem to pose intractable obstacles to the quantitative analysis of

nonlinear systems: i) they have (arbitrarily many) free variables, ii) they exhibit a

continuum of equilibria.

6.2 Related work

A number of positive convergence results have been established for concurrent

dynamics [53, 17, 48, 16, 2, 70], however, they usually depend on strong assumptions

about network structure (e.g., load balancing games) and/or symmetry of available

strategies and/or are probabilistic in nature and/or establish convergence to approx-

imate equilibria. On the contrary our convergence results are deterministic, hold for

any network structure and in the case of the replicator dynamics are point-wise.

Apart from replicator dynamics, nonlinear dynamical systems have been studied

quite extensively in a number of different fields including computer science. Specif-

ically, quadratic dynamical systems [114] are known to arise in the study genetic

algorithms [62]. These are a class of heuristics for combinatorial optimization based

loosely on the mechanisms of natural selection [115, 13]. Both positive and negative

computational complexity and convergence results are known for them, including
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convergence to a stationary distribution (analogous of classic theorems for Markov

chains) [113, 115, 9] depending on the specifics of the model. In contrast, replicator

dynamic in linear congestion games defines a cubic dynamical system.

Price of anarchy-like bounds in potential games using equilibrium stability refine-

ments (e.g., stochastically stable states) have been explored before [30, 10, 2]. Our

approach and techniques are more expansive in scope, since they also allow for com-

puting the actual likelihoods of each equilibrium as well as the topology of the regions

of attractions of different equilibria. Finally, in independent parallel work Zhang and

Hofbauer have examined equilibrium selection issues in 2x2 coordination games for

replicator dynamics [143], however, their techniques do not scale to larger games and

they do not analyze the average case performance of these games but mostly focus

on which equilibrium is more likely to arise.

6.3 Definitions and basic tools

6.3.1 Average performance of a system

Let µ be the Lebesgue measure in Rn and assume that µ(S) > 0. Given a

dynamical system (continuous time) we assume that limt→∞ φt(x) exists for all x ∈

S (the limit is called a limit point); the system converges point-wise for all initial

conditions. If that is true, by continuity occurs that every trajectory converges to

some equilibrium of the dynamics6.

We would like to understand the average (long-term) behavior of the convergent

system, for example if the initial condition is chosen uniformly at random from S.

Intuitively, since the system converges to fixed points, we would like each fixed point

x0 to be assigned weight proportional to its region of attraction denoted by Rx0 . Let

ψ(x) = limt→∞ φt(x), i.e., ψ maps each starting point x to the limit of the φt(x). It

turns out that ψ is a measurable function.

6If limt→∞ ht(x) = y and h continuous then h(y) = y. Set h ··= φ1.
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Lemma 6.1. ψ(x) is a measurable function.

Proof. For an arbitrary c ∈ R we have that

{x : ψ(x)i < c} = ∪∞k=1 ∪∞m=1 ∩∞n>m{x : φn(x)i < c− 1

k
}}.

The set {x : φn(x)i < c − 1
k
} is measurable since φn(x)i is a (Lebesgue) measurable

function (by continuity). Therefore ψ(x)i is a measurable function.

Therefore, we can define the average (long-term) performance of the system under

some function u. Let u : S → R be continuous, then the average performance of a

system is defined as

apu ··=
∫
S u ◦ ψdµ
µ(S)

= Ex∼U(S)[u(ψ(x))], (75)

with U(S) to be the uniform distribution on S. u quantifies the quality of the points

x ∈ S (e.g., social welfare in games). Observe that if m ··= minx∈FP u(x),M ··=

maxx∈FP u(x) where FP denotes the set of fixed points7, then m ≤ apu ≤ M (a).

We believe that computing/approximating average performance is a very important

problem in order to understand the average behavior of a system.

To see the connection with game theory, think of S as the set of mixed (ran-

domized) strategies, a fixed point with region of attraction of positive measure as

a Nash equilibrium, u as the social cost/welfare. Then the integral (75) becomes a

weighted average among the social cost/welfare of the Nash equilibria. Therefore, by

observation (a) the average performance is sandwiched between the values (of social

cost/welfare) of best and worst Nash. We use (continuous time) replicator dynamics

on congestion and network coordination games as our benchmark. In that case, the

set of Nash equilibria is a subset of the set of fixed points, we can show the dynamics

converge point-wise and finally Nash equilibria are the only fixed points that get re-

gion of attraction of positive Lebesgue measure (they are linearly stable fixed points

7The set of fixed points in S is closed.
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of the dynamics). Later in this section we define the notion of average price of anar-

chy which is essentially a scaled version of average performance, defined particularly

for games.

Remark 12 (Generalizations of average performance). It is remarkable that the

definition of average performance can be used for point-wise convergent discrete time

dynamical systems (function ψ(x) will be equal to limk→∞ g
k(x) where g is the rule of

the discrete dynamics). Also, different measurement can be defined where the initial

condition follows other distribution than the uniform (it should be called something

different from average performance!).

6.3.2 Definition of average price of anarchy (APoA)

In this section we define the notion of average price of anarchy, following the

machinery from Section 6.3.1. It is natural to set S to be the product of simplexes

∆, but this is not the case since ∆ has measure zero in RM , where M ··=
∑

i |Si|. The

reason is that the probabilities sum up to one for each player. To circumvent this issue

(since from Section 6.3.1 we need µ(S) > 0), we consider a natural projection g of the

points p ∈ ∆ to RM−N by excluding a specific but arbitrarily chosen 8 variable for

each player. We denote g(∆) the “projected” product of simplexes and the projection

of any point p ∈ ∆ by g(p) (for example (p1,a, p1,b, p1,c, p2,a′ , p2,b′)→g (p1,a, p1,b, p2,a′)

where p1,a + p1,b + p1,c = 1 and p2,a′ + p2,b′ = 1)). Given a dynamical system which

describes the actions of rational agents for some particular game, is defined in g(∆)

(projected set of mixed strategies) and which converges point-wise to fixed points, we

can define apsc, apsw to be the average performance as in Section 6.3.1. For cost/utility

functions the average price of anarchy is defined as follows:

APoA=
apsc

mins∗∈×iSi sc(s∗)
, APoA=

maxs∗∈×iSi sw(s∗)

apsw

.

8Choose an arbitrary ordering of the strategies of each agent and then exclude the last strategy.
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Remark 13. The definition of APoA does not rely on the fact that the games are

congestion or network coordination and it does not rely on replicator dynamics. All it

needs is that given a game, we have a dynamic that converges point-wise for all initial

mixed strategies. Essentially APoA is a scaled version of the average performance. In

the next section we show that replicator dynamics converges point-wise for congestion

and network coordination games and also that the fixed points (of replicator on these

2 classes of games) with region of attraction of positive measure are Nash equilibria.

In particular APoA is well-defined.

6.4 Analysis of replicator dynamics in potential games

In this section we develop the mathematical machinery necessary for computing

the average case performance of replicator dynamics in different classes of potential

games. Specifically, we establish point-wise convergence of replicator dynamics for

linear congestion games and arbitrary networks of coordination games (Theorem 6.2).

This allows us to define properly the average case performance which is essentially

equal to the weighted sum of the social cost/welfare of all equilibria weighted by

the cumulative measure/volume of all initial conditions that converge to each (point-

wise). Next, we show that the union of regions of attraction of (locally) unstable

equilibria is of measure zero (Theorem 6.4). Combining this result with a game

theoretic characterization of (un)stable equilibria in [70], known as weakly stable

equilibria, establishes that only weakly stable equilibria affect the average case system

performance. The analysis here is a strengthening of the techniques of [70] to carefully

account for the possibility of continuums of unstable equilibria. Finally, we still need

to compute for each weakly stable equilibrium the size of its region of attraction.

The tool that is necessary for this is to establish invariants for replicator dynamics

in different classes of games. We present an information theoretic invariant function

(Theorem 6.7) for replicator dynamics for bipartite network coordination games.

190



6.4.1 Point-wise convergence

We show that replicator dynamics converges point-wise for the class of linear con-

gestion and network coordination games. The proof of the theorem has two steps.

The first step is standard, utilizes the potential function of the game and establishes

convergence to equilibria sets. The critical, second step is to construct a local Lya-

punov function in some small neighborhood of a limit point.

Theorem 6.2 (Point-wise convergence). Given any initial condition replicator

dynamics converges to a fixed point (point-wise convergence) in all linear congestion

and network coordination games.

Proof. We prove here the result in the case of linear congestion games. The argument

for network coordination games follows similar lines and is in Appendix A.3.

We denote by ĉi the expected cost of agent i under mixed strategy profile p.

Moreover, ciγ is his expected cost when he deviates to strategy γ and all other agents

still play according to p. We observe that Ψ(p) =
∑

i ĉi +
∑

i,γ

∑
e∈γ(be + ae)piγ is a

Lyapunov function since

∂Ψ

∂piγ
= ciγ +

∑
j 6=i

pjγ′
∂cjγ′

∂piγ
+
∑
e∈γ

(be + ae)

= ciγ +
∑
j 6=i

∑
γ′

∑
e∈γ∩γ′

aepjγ′ +
∑
e∈γ

(be + ae)︸ ︷︷ ︸
ciγ

= 2ciγ

and hence dΨ
dt

=
∑

i,γ
∂Ψ
∂piγ

dpiγ
dt

= −∑i,γ,γ′ piγpiγ′(ciγ− ciγ′)2 ≤ 0, with equality at fixed

points. Hence (as in [70]) we have convergence to equilibria sets (compact connected

sets consisting of fixed points). We will furthermore argue that each trajectory has a

unique (equilibrium) limit point.

Let q be a limit point of the trajectory p(t) where p(t) is in the interior of ∆ for all

t ∈ R (since we started in the interior of ∆) then we have that Ψ(q) < Ψ(p(t)). We

define the relative entropy I(p) = −∑i

∑
γ:qiγ>0 qiγ ln(piγ/qiγ) ≥ 0 (Jensen’s ineq.)
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and I(p) = 0 iff p = q. We denote by d̂i, diγ the expected costs of agent i under the

mixed strategies q.

dI

dt
= −

∑
i

∑
γ:qiγ>0

qiγ(ĉi − ciγ) = −
∑
i

ĉi +
∑
i,γ

qiγciγ

= −
∑
i

ĉi +
∑
i,γ

∑
e∈γ

(be + ae)qiγ +
∑
i,γ

∑
j 6=i

∑
γ′

∑
e∈γ∩γ′

aeqiγpjγ′

= −
∑
i

ĉi +
∑
i,γ

∑
e∈γ

(be + ae)qiγ +
∑
i,γ

∑
j 6=i

∑
γ′

∑
e∈γ∩γ′

aeqjγ′piγ

=
∑
i

d̂i −
∑
i

ĉi +
∑
i,γ

∑
e∈γ

(be + ae)qiγ −
∑
i,γ

∑
e∈γ

(be + ae)piγ −
∑
i,γ

piγ(d̂i − diγ)

= Ψ(q)−Ψ(p)−
∑
i,γ

piγ(d̂i − diγ).

We break the term
∑

i,γ piγ(d̂i − diγ) to positive and negative terms (zero terms

are ignored), i.e.,
∑

i,γ piγ(d̂i−diγ) =
∑

i,γ:d̂i>diγ
piγ(d̂i−diγ)+

∑
i,γ:d̂i<diγ

piγ(d̂i−diγ).

Claim 6.3. There exists an ε > 0 so that the function Z(p) = I(p) + 2
∑

i,γ:d̂i<diγ
pi,γ

has dZ
dt
< 0 for ‖p− q‖1 < ε and Ψ(q) < Ψ(p).

Proof of Claim. To prove this claim, first assume that p → q. We get ĉi − ciγ →

d̂i − diγ for all i, γ. Hence for small enough ε > 0 with ‖p− q‖1 < ε, we have that

ĉi − ciγ ≤ 3
4
(d̂i − diγ) for the terms which d̂i − diγ < 0. Therefore

dZ

dt
= Ψ(q)−Ψ(p)−

∑
i,γ:d̂i>diγ

piγ(d̂i − diγ)−
∑

i,γ:d̂i<diγ

piγ(d̂i − diγ) + 2
∑

i,γ:d̂i<diγ

piγ(ĉi − ciγ)

≤ Ψ(q)−Ψ(p)−
∑

i,γ:d̂i>diγ

piγ(d̂i − diγ)−
∑

i,γ:d̂i<diγ

piγ(d̂i − diγ) + 3/2

∑
i,γ:d̂i<diγ

piγ(d̂i − diγ)

= Ψ(q)−Ψ(p)︸ ︷︷ ︸
<0

+
∑

i,γ:d̂i>diγ

−piγ(d̂i − diγ)

︸ ︷︷ ︸
≤0

+1/2

∑
i,γ:d̂i<diγ

piγ(d̂i − diγ)

︸ ︷︷ ︸
≤0

< 0,

where we substitute
piγ
dt

= piγ(ĉi−ciγ) (replicator equations), and the claim is proved.

Notice that Z(p) ≥ 0 (sum of positive terms, I(p) ≥ 0) and is zero iff p = q. (i)
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To finish the proof of the theorem, if q is a limit point of p(t), there exists an

increasing sequence of times ti, with tn → ∞ and p(tn) → q. We consider ε′ such

that the set C = {p : Z(p) < ε′} is inside B = ‖p− q‖1 < ε where ε is from

claim above. Since p(tn) → q, consider a time tN where p(tN) is inside C. From

the claim above we get that Z(p) is decreasing inside B (and hence inside C), thus

Z(p(t)) ≤ Z(p(tN)) < ε′ for all t ≥ tN , hence the orbit will remain in C. By the

fact that Z(p(t)) is decreasing in C (claim above) and also Z(p(tn)) → Z(q) = 0 it

follows that Z(p(t))→ 0 as t→∞. Hence p(t)→ q as t→∞ using (i).

Remark 14. If the fixed points of the dynamics are isolated then a (global) Lyapunov

function suffices to show that the system converges point-wise (first step of the proof

above). However, this is not the case even in linear congestion games (see Lemma

6.27, where there are uncountable many fixed points which are Nash equilibria).

6.4.2 Global stability analysis

Replicator dynamics - in linear congestion games and network coordination games

and essentially any dynamics that converges point-wise - induces a probability distri-

bution over the fixed points. The probability for each fixed point is proportional to

the volume of its region of attraction. The fixed points can be exponentially many

or even accountable many, but as it is stated below (Corollary 6.5), only the weakly

stable Nash equilibria (see Definition 10) have non-zero volumes of attraction.

In [70] Kleinberg et al. showed that in congestion games, every stable fixed point

is a weakly stable Nash equilibrium. The following theorem (that assumes point-wise

convergence) has a corollary that for all but measure zero initial conditions replicator

dynamics converges to a weakly stable Nash equilibrium.

Theorem 6.4 (Replicator converges to stable fixed points). The set of initial

conditions for which the replicator converges to unstable fixed points has measure zero

in ∆ for linear congestion games and network coordination games.
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Proof. To prove the theorem we will use Center Stable Manifold Theorem (see The-

orem 1.3). In order to do that we need a map whose domain is full-dimensional.

However, a simplex in Rn has dimension n− 1. Therefore, we need to take a projec-

tion of the domain space and accordingly redefine the map of the dynamical system.

We note that the projection we take will be fixed-point dependent; this is to keep

of the proof that every stable fixed point is a weakly stable Nash proved in [70] rel-

atively less involved later. Let q be a point of our state space ∆ and Σ = | ∪i Si|.

Let hq : [N ] → [Σ] be a function such that hq(i) = γ if qiγ > 0 for some γ ∈ Si

(same definition with discrete case). Let M =
∑ |Si| and g a fixed projection where

you exclude the first coordinate of every player’s distribution vector. We consider the

mapping zq : RM → RM−N so that we exclude from each player i the variable pi,hq(i)

(zq plays the same role as g but we drop variables with specific property this time).

We substitute the variables pi,hq(i) with 1−∑ γ 6=hq(i)
γ∈Si

piγ.

For t = 1 and an unstable fixed point p we consider the function ψ1,p(x) =

zp ◦φ1 ◦ z−1
p (x) which is C1 diffeomorphism, where φ1 is the time one map of the flow

of the dynamical system in ∆ (we assume we do the renormalization trick described

in Section 1.1.1). Let Bzp(p) be the ball that is derived from 1.3 and we consider the

union of these balls (transformed in RM)

A = ∪pAzp(p),

where Azp(p) = g ◦ z−1
p (Bzp(p)) (z−1

p ”returns” the set Bzp(p) back to RM). Due

to the Lindelőf’s Lemma A.1, we can find a countable subcover for A = ∪pAzp(p),

i.e., A = ∪∞m=1Azpm (pm).

Let ψn,p(x) = zp ◦ φn ◦ z−1
p (x). If a point x ∈ g(∆) (which corresponds to g−1(x)

in our original ∆) has as unstable fixed point as a limit, there must exist a n0 and

m so that ψn,pm ◦ zpm ◦ g−1(x) ∈ Bzpm (pm) for all n ≥ n0 and therefore again from

1.3 and the fact that ∆ is invariant we get that we get that ψn0,pm ◦ zpm ◦ g−1(x) ∈

(W sc
loc zpm (pm) ∩ zpm(∆)), hence x ∈ g ◦ z−1

pm ◦ ψ−1
n0,pm

(W sc
loc zpm (pm) ∩ zpm(∆)).
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Hence, the set of points in g(∆) whose ω-limit has an unstable equilibrium, is a

subset of

C = ∪∞m=1 ∪∞n=1 g ◦ z−1
pm ◦ ψ−1

n,pm(W sc
loc zpm (pm) ∩ zpm(∆)) (76)

Observe that the dimension of W sc
loc zpm (pm) is at most M − N − 1 since we as-

sume that pm is unstable (Jpm has an eigenvalue with positive real part) 9 and thus

dimEu ≥ 1, hence the set (W sc
loc zpm (pm) ∩ zpm(∆)) has Lebesgue measure zero in

RM−N . Finally since g ◦ z−1
pm ◦ ψ−1

n,pm : RM−N → RM−N) is continuously differen-

tiable in an open neighborhood of g(∆), ψn,pm is C1 and hence locally Lipschitz in

that neighborhood (see [110] p.71) and it preserves the null-sets (see Lemma A.2).

Namely, C is a countable union of measure zero sets, i.e., is measure zero as well.

Since the dynamical system after renormalization is topologically equivalent with the

system before renormalization, Theorem 6.4 follows.

This theorem extends to all congestion games for which the replicator dynamics

converges point-wise (e.g., systems with finite equilibria). Combining theorem 6.4

with the weakly stable characterization of [70] which holds for all congestion/potential

games, we get the following:

Corollary 6.5 (Replicator converges to pure NE). For all but measure zero

initial conditions, replicator dynamics converges to weakly stable Nash equilibria for

linear congestion games and network coordination games.

6.4.3 Invariant functions from information theory

We have established that all attracting (⊆ linearly stable) fixed points are weakly

stable Nash equilibria. We still need to characterize and compute the regions of

attraction of these equilibria. The key idea here is to characterize the boundaries of

the regions of attraction. This is due to the following theorem.

9Here we used the fact that the eigenvalues with absolute value less than one, one and greater
than one of eA correspond to eigenvalues with negative real part, zero real part and positive real
part respectively of A
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Theorem 6.6 ([69]). If q is an asymptotically stable equilibrium point for a system

ẋ = f(x) where f ∈ C1, then its region of attraction Rq is an invariant set whose

boundaries are formed by trajectories.

If we identify a (continuous) invariant function f , i.e., a function that remains

constant on any trajectory, and q is a (limit) point of the trajectory then the whole

trajectory lies on the set {x : f(x) = f(q)}. If we identify more invariant functions

f1, f2, . . . , fk then the whole trajectory lies on the set {x : f1(x) = f1(q) ∧ f2(x) =

f2(q)∧· · ·∧fk(x) = fk(q)}. By identifying enough invariant functions, we can derive

an exact algebraic description of the trajectory.

By our point-wise convergence result (Theorems 6.2, A.3) each trajectory con-

verges to an equilibrium. So each point of the state space that does not belong in the

region of attraction of a weakly stable equilibrium, must converge to an unstable equi-

librium. By computing the (union of) regions of attraction of all unstable equilibria

we can understand how they partition the state space into regions of attractions for

the asymptotically stable equilibria10. All points on this stable manifold of unstable

fixed point q lie on the set {x : f1(x) = f1(q) ∧ f2(x) = f2(q) ∧ · · · ∧ fk(x) = fk(q)}

where f1, . . . , fk the invariant functions of the dynamic. Such descriptions can allow

for exact computation of volumes of regions of attraction (Section 6.5.1), approxi-

mate volume computation (Section 6.5.2), designing efficient oracles for testing if an

initial condition belong in the region of attraction of an equilibrium (Section 6.6),

and computing average system performance, amongst other applications.

The following lemma that identifies invariants functions in bipartite coordination

games follows straightforwardly from prior work on identifying invariant functions for

network generalizations of (linear transformations of) zero-sum games [112, 111]). To

prove any such statement it suffices to compute the time derivatives of these functions

10The region of attraction of an unstable equilibrium is referred to as the stable manifold of the
(unstable) fixed point.
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along any trajectory and show them to be equal to zero. For completeness, we provide

the proof below.

Lemma 6.7 (Invariance of KL [112, 111]). Let p(t) = (p1(t), ...,pN(t)) (with

p(0) ∈ ∆) be a trajectory of replicator dynamics when applied to a bipartite network

of coordination games that has a fully mixed Nash equilibrium q = (q1, ...,qN) then∑
i∈Vleft H(qi,pi(t))−

∑
i∈Vright H(qi,pi(t)) is invariant, with H(x,y) = −∑i xi ln yi.

Proof. The derivative of
∑

i∈Vleft

∑
γ∈Si qiγ · ln(piγ) −

∑
i∈Vright

∑
γ∈Si qiγ · ln(piγ) has

as follows:

∑
i∈Vleft

∑
γ∈S

qiγ
d ln(piγ)

dt
−

∑
i∈Vright

∑
γ∈S

qiγ
d ln(piγ)

dt
=
∑
i∈Vleft

∑
γ∈S

qiγ
ṗiγ
piγ
−

∑
i∈Vright

∑
γ∈S

qiγ
ṗiγ
piγ

=
∑
i∈Vleft

∑
(i,j)∈E

(
qi

TAijpj − pi
TAijpj

)
−

∑
i∈Vright

∑
(i,j)∈E

(
qi

TAijpj − pi
TAijpj

)
=

∑
i∈Vleft

∑
(i,j)∈E

(
qi

T − pi
T
)
Aijpj −

∑
i∈Vright

∑
(i,j)∈E

(
qi

T − pi
T
)
Aijpj

=
∑
i∈Vleft

∑
(i,j)∈E

(
qi

T − pi
T
)
Aij(pj − qj)−

∑
i∈Vright

∑
(i,j)∈E

(
qi

T − pi
T
)
Aij(pj − qj)

= −
∑

(i,j)∈E,i∈Vleft,j∈Vright

[(
qi

T − pi
T
)
Aij(qj − pj)−

(
qj

T − pj
T
)
Aji(qi − pi)

]
= 0.

The cross entropy between the Nash q and the state of the system, however is

equal to the summation of the K-L divergence between these two distributions and

the entropy of q. Since the entropy of q is constant, we derive the following corollary

(rephrasing the previous lemma):

Corollary 6.8. Let p(t) with p(0) ∈ ∆ be a trajectory of the replicator dynamic

when applied to a bipartite network of coordination games that has a fully mixed Nash

equilibrium q then the K-L divergence between q and the p(t) is constant, i.e., does

not depend on t.
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Stag Hare
Stag 5, 5 0, 4
Hare 4, 0 2, 2

(a) Stag hunt game.

Stag Hare
Stag 1, 1 0, 0
Hare 0, 0 w, w

(b) w-coordination game

Figure 10: Stag hunt game

6.5 Applications of average case analysis

We use the tools we have developed in the previous section to compute the regions

of attractions and find the average case performance of replicator dynamics for classic

game theoretic settings. The game we examine are: the Stag Hunt game, (parametric)

coordination games, polymatrix coordination games played over a star as well as

symmetric linear load balancing games.

6.5.1 Exact quantitative analysis of risk dominance in stag hunt

The Stag Hunt game (Figure 10(a)) has two pure Nash equilibria, (Stag, Stag)

and (Hare,Hare) and a symmetric mixed Nash equilibrium with each agent choosing

strategy Hare with probability 2/3. Stag Hunt replicator trajectories are equivalent

those of a coordination game11. Coordination games are potential games where the

potential function in each state is equal to the utility of each agent. Since the mixed

Nash is not weakly stable replicator dynamics converges to pure Nash equilibria for all

but a zero measure of initial conditions (Theorem 6.4). When we study the replicator

dynamic here, it suffices to examine its projection in the subspace p1s × p2s ⊂ (0, 1)2

which captures the evolution of the probability that each agent assigns to strategy

Stag (see Figure 11). Using the invariant property of Lemma 6.7, we compute the

size of each region of attraction in this space and thus provide a quantitative analysis

of risk dominance in the classic Stag Hunt game.

11If each agent reduces their payoff in their first column by 4, the replicator trajectories remain
invariant. This results to a w-coordination game with w = 2.
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Figure 11: Vector field of replicator dynamics in Stag Hunt

Theorem 6.9. The region of attraction of (Hare,Hare) is the subset of (0, 1)2 that

satisfies p2s <
1
2
(1−p1s+

√
1 + 2p1s − 3p2

1s) and has Lebesgue measure 1
27

(9+2
√

3π) ≈

0.7364. The region of attraction of (Stag, Stag) is the subset of (0, 1)2 that satisfies

p2s >
1
2
(1 − p1s +

√
1 + 2p1s − 3p2

1s) and has Lebesgue measure 1
27

(18 − 2
√

3π) ≈

0.2636. The stable manifold of the mixed Nash equilibrium satisfies the equation

p2s = 1
2
(1− p1s +

√
1 + 2p1s − 3p2

1s) and has zero Lebesgue measure.

Proof. In the case of stag hunt games, one can verify in a straightforward manner

(via substitution) that
d
(

2
3

ln(φ1s(t,p))+ 1
3

ln(φ1h(t,p))− 2
3

ln(φ2s(t,p))− 1
3

ln(φ2h(t,p))
)

dt
= 0, where

φiγ(t,p), corresponds to the probability that each agent i assigns to strategy γ at

time t given initial condition p. This is a special case of Corollary 6.8. We use this

invariant function to identify the stable and unstable manifold of the interior Nash q.

Given any point p of the stable manifold of q, we have that by definition

lim
t→∞

φ(t,p) = q.

Similarly for the unstable manifold, we have that limt→−∞ φ(t,p) = q. The time-

invariant property implies that for all such points (belonging to the stable or unstable

manifold), 2
3

ln(p1s) + 1
3

ln(1 − p1s)−2
3

ln(p2s) − 1
3

ln(1 − p2s) = 2
3

ln(q1h) + 1
3

ln(1 −

q1h)−2
3

ln(q2h)− 1
3

ln(1−q2h) = 0, since the fully mixed Nash equilibrium is symmetric.

This condition is equivalent to p2
1s(1−p1s) = p2

2s(1−p2s), where 0 < p1s, p2s < 1. It is
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straightforward to verify that this algebraic equation is satisfied by the following two

distinct solutions, the diagonal line (p2s = p1s) and p2s = 1
2
(1−p1s+

√
1 + 2p1s − 3p2

1s).

Below, we show that these manifolds correspond indeed to the state and unstable

manifold of the mixed Nash, by showing that this Nash equilibrium satisfies these

equations and by establishing that the vector field is tangent everywhere along them.

The case of the diagonal is trivial and follows from the symmetric nature of the

game. We verify the claims about p2s = 1
2
(1 − p1s +

√
1 + 2p1s − 3p2

1s). Indeed, the

mixed equilibrium point in which p1s = p2s = 2/3 satisfies the above equation. We

establish that the vector filed is tangent to this manifold by showing in Lemma 6.10

that ∂p2s
∂p1s

=
dp2s
dt
dp1s
dt

··=
p2s

(
u2(s)−(p2su2(s)+(1−p2s)u2(h))

)
p1s

(
u1(s)−(p1su1(s)+(1−p1s)u1(h))

) , where the last equality is derived

by the definition of replicator dynamics.

Lemma 6.10. For any 0 < p1s, p2s < 1, with p2s = 1
2
(1− p1s +

√
1 + 2p1s − 3p2

1s) we

have that:

∂p2s

∂p1s

=
dp2s
dt
dp1s
dt

=
p2s

(
u2(s)− (p2su2(s) + (1− p2s)u2(h))

)
p1s

(
u1(s)− (p1su1(s) + (1− p1s)u1(h))

) .
Proof. By substitution of the stag hunt game utilities, we have that:

ζ2s

ζ1s

=
p2s

(
u2(s)− (p2su2(s) + (1− p2s)u2(h))

)
p1s

(
u1(s)− (p1su1(s) + (1− p1s)u1(h))

) =
p2s(1− p2s)(3p1s − 2)

p1s(1− p1s)(3p2s − 2)
. (77)

However, p2s(1− p2s) = 1
2
p1s(p1s − 1 +

√
1 + 2p1s − 3p2

1s). Combining this with (77),

ζ2s

ζ1s

=
(p1s − 1 +

√
1 + 2p1s − 3p2

1s)(3p1s − 2)

2(1− p1s)(3p2s − 2)
=

1

2

(
√

1 + 3p1s −
√

1− p1s)(3p1s − 2)√
1− p1s · (3p2s − 2)

.

(78)

Similarly, we have that 3p2s − 2 = 1
2

√
1 + 3p1s · (3

√
1− p1s −

√
1 + 3p1s). By

multiplying and dividing equation (78) with (
√

1 + 3p1s + 3
√

1− p1s) we get:

ζ2s

ζ1s

=
1

2

(
√

1 + 3p1s + 3
√

1− p1s)(
√

1 + 3p1s −
√

1− p1s)(3p1s − 2)

2
√

1− p1s ·
√

1 + 3p1s · (2− 3p1s)

= −1

4

(
√

1 + 3p1s + 3
√

1− p1s)(
√

1 + 3p1s −
√

1− p1s)√
1 + 2p1s − 3p2

1s)

=
1

2

(
− 1 +

1− 3p1s√
1 + 2p1s − 3p2

1s

)
=
∂
(

1
2
(1− p1s +

√
1 + 2p1s − 3p2

1s)
)

∂p1s

=
∂p2s

∂p1s

.
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Finally, this manifold is indeed attracting to the equilibrium. Since the function

p2s = y(p1s) = 1
2
(1− p1s +

√
1 + 2p1s − 3p2

1s) is a strictly decreasing function of p1s in

[0,1] and satisfies y(2/3) = 2/3, this implies that its graph is contained in the subspace(
0 < p1s < 2/3 ∩ 2/3 < p2s < 1

)
∪
(

2/3 < p1s < 1 ∩ 0 < p2s < 2/3
)
. In each of these

subsets
(
0 < p1s < 2/3 ∩ 2/3 < p2s < 1

)
,
(

2/3 < p1s < 1 ∩ 0 < p2s < 2/3
)

the replicator

vector field coordinates have fixed signs that “push” p1s, p2s towards their respective

equilibrium values.

The stable manifold partitions the set 0 < p1s, p2s < 1 into two subsets, each of

which is flow invariant since the unstable manifold itself is flow invariant. Our con-

vergence analysis for the generalized replicator flow implies that in each subset all but

a measure zero of initial conditions must converge to its respective pure equilibrium.

The size of the lower region of attraction12 is equal to the following definite integral∫ 1

0
1
2
(1− p1s +

√
1 + 2p1s − 3p2

1s)dx =
[

1/2

(
p1s − p21s

2
+ (−1

6
+ p1s

2
)
√

1 + 2p1s − 3p2
1s −

2arcsin[ 1
2

(1−3p1s)]

3
√

3

)]1

0
= 1

27
(9 + 2

√
3π) = 0.7364 and the theorem follows.

6.5.2 Average price of anarchy analysis in coordination/consensus games
via polytope approximations of regions of attraction

We focus on a parametric family of coordination games, as described in Fig-

ure 10(b). We denote an instance of such a game a w-coordination/consensus game.

We take the w parameter to be greater or equal to 113. This game captures strate-

gic situations where agents must learn to coordinate on a single action and where

one pure equilibrium (consensus outcome) is preferable for both agents. The initial

condition of the replicator dynamics captures each agent’s initial bias. Both agents

12This corresponds to the risk dominant equilibrium (Hare,Hare).
13It is easy to see that for any 0 < w < 1, w-coordination game is isomorphic to 1/w-coordination

game after relabeling of strategies. Also, the replicator trajectories in the 2-coordination game are
equivalent to the standard stag hunt game.
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update their beliefs/distributions by applying the replicator and eventually the sys-

tem converges to an equilibrium. Interestingly, since the mixed Nash is not weakly

stable, Theorem 6.4 implies that the agents will reach a consensus with probability

1 as long as the initial conditions are chosen according to an arbitrary distribution

F admitting a density with respect to the Lebesgue measure. A natural such prior

(distribution) is the uniform one, since it encodes a total ignorance of the agents’

initial biases. We wish to understand what is the expected system performance given

a uniformly random initial condition. Although the inefficient equilibrium will arise

with positive probability hopefully its probability is small enough that no matter the

w efficiency gap between the two pure equilibria the average system performance is

always within an absolute constant of the optimal, independent of w. We will show

that this is indeed the case.

Theorem 6.11. The average price of anarchy of the w-coordination game with w ≥ 1

is at most w2+w
w2+1

and at least w(w+1)2

w(w+1)2−2w+2
.

For any w, a w-coordination game is a potential game and therefore it is payoff

equivalent to a congestion game. The only two weakly stable equilibria are the pure

ones, hence in order to understand the average case system performance it suffices

to understand the size of regions of attraction for each of them. We focus on the

projection of the system to the subspace (p1s, p2s) ⊂ [0, 1]2. We denote by ζ, ψ, the

projected flow and vector field respectively.

Lemma 6.12. All but a zero measure of initial conditions in the polytope (PHare):

p2s ≤ −wp1s + w

p2s ≤ − 1

w
p1s + 1

0 ≤ p1s, p2s ≤ 1

converges to the (Hare,Hare) equilibrium. All but a zero measure of initial conditions
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in the polytope (PStag):

p2s ≥ −p1s +
2w

w + 1

0 ≤ p1s, p2s ≤ 1

converges to the (Stag, Stag) equilibrium.

Proof. First, we will prove the claimed property for polytope (PStag). Since the game

is symmetric, the replicator dynamics are similarly symmetric with p2s = p1s axis

of symmetry. Therefore it suffices to prove the property for the polytope P ′Hare =

PHare∩{p2s ≤ p1s} = {p2s ≤ p1s}∩{p2s ≤ −wp1s+w}∩{0 ≤ p1s ≤ 1}∩{0 ≤ p2s ≤ 1}

We will argue that this polytope is forward flow invariant, i.e., if we start from an

initial condition x ∈ P ′Hare ψ(t,x) ∈ P ′Hare for all t > 0. On the p1s, p2s subspace

P ′Hare defines a triangle with vertices A = (0, 0), B = (1, 0) and C = ( w
w+1

, w
w+1

) (see

Figure 11). The line segments AB, AC are trivially flow invariant. Hence, in order

to argue that the ABC triangle is forward flow invariant, it suffices to show that

everywhere along the line segment BC the vector field does not point “outwards” of

the ABC triangle. Specifically, we need to show that for every point p on the line

segment BC (except the Nash equilibrium C), |ζ1s(p)|
|ζ2s(p)| ≥ 1

w
.

|ζ1s(p)|
|ζ2s(p)| =

p1s|p2s − (p1sp2s + w(1− p1s)(1− p2s))|
p2s|p1s − (p1sp2s + w(1− p1s)(1− p2s))|

=
p1s(1− p1s)(w − (w + 1)p2s)

p2s(1− p2s)(−w + (w + 1)p1s)
.

However, the points of the line passing through B,C satisfy p2s = w(1− p1s).

|ζ1s(p)|
|ζ2s(p)| =

wp1s(1− p1s)(1− (w + 1)(1− p1s))

w(1− p1s)(1− w(1− p1s))(−w + (w + 1)p1s)

=
p1s(−w + (w + 1)p1s)

(1− w + wp1s)(−w + (w + 1)p1s)

=
p1s

1− w + wp1s

≥ p1s

wp1s

=
1

w
.

We have established that the ABC triangle is forward flow invariant. Since the

w-coordination game is a potential game, all but a zero measurable set of initial

conditions converge to one of the two pure equilibria. Since ABC is forward invariant,
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all but a zero measure of initial conditions converge to (Hare,Hare). A symmetric

argument holds for the triangle AB′C with B′ = (0, 1). The union of ABC and AB′C

is equal to the polygon PHare, which implies the first part of the lemma.

Next, we will prove the claimed property for polytope (PStag). Again, due to

symmetry, it suffices to prove the property for the polytope P ′Stag = PStag ∩ {p2s ≤

p1s} = {p2s ≤ p1s} ∩ {p2s ≥ −p1s + 2w
w+1
} ∩ {0 ≤ p1s ≤ 1} ∩ {0 ≤ p2s ≤ 1} We

will argue that this polytope is forward flow invariant. On the p1s, p2s subspace P ′Stag

defines a triangle with vertices D = (1, w−1
w+1

), E = (1, 1) and C = ( w
w+1

, w
w+1

). The

line segments CD, DE are trivially forward flow invariant. Hence, in order to argue

that the CDE triangle is forward flow invariant, it suffices to show that everywhere

along the line segment CD the vector field does not point “outwards” of the CDE

triangle (see Figure 11) . Specifically, we need to show that for every point p on the

line segment CD (except the Nash equilibrium C), |ζ1s(p)|
|ζ2s(p)| ≤ 1.

|ζ1s(p)|
|ζ2s(p)| =

p1s|p2s − (p1sp2s + w(1− p1s)(1− p2s))|
p2s|p1s − (p1sp2s + w(1− p1s)(1− p2s))|

=
p1s(1− p1s)(w − (w + 1)p2s)

p2s(1− p2s)(−w + (w + 1)p1s)
.

However, the points of the line passing through C,D satisfy p2s = −p1s + 2w
w+1

.

|ζ1s(p)|
|ζ2s(p)| =

p1s(1− p1s)(−w + (w + 1)p1s)

(−p1s + 2w
w+1

)(−w−1
w+1

+ p1s)(−w + (w + 1)p1s)

=
p1s(1− p1s)

(−p1s + 2w
w+1

)(−w−1
w+1

+ p1s)
=

p1s(1− p1s)
2(w−1)
w+1

(− w
w+1

+ p1s) + p1s(1− p1s)
≤ 1.

We have established that the CDE triangle is forward flow invariant. Since the

w-coordination is a potential game, all but a zero measurable set of initial conditions

converge to one of the two pure equilibria. Since CDE is forward invariant, all but

a zero measure of initial conditions converge to (Stag, Stag). A symmetric argument

holds for the triangle CD′E with D′ = (w−1
w+1

, 1). The union of CDE and CD′E is

equal to the polygon PStag, which implies the second part of the lemma.
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Proof. The measure/size of µ(PHare) = 2|ABC| = w
w+1

, and similarly the measure

of µ(PStag) = 2|CDE| = 2
(w+1)2

. The average limit performance of the replicator

satisfies
∫
g(∆)

sw(ψ(x))dµ ≥ 2w · µ(PHare) + 2
(
1− µ(PHare)

)
= 2w

2+1
w+1

. Furthermore,∫
g(∆)

sw(ψ(x))dµ ≤ 2w
(
1 − µ(PStag)

)
+ 2 · µ(PStag) = 2w(1 − 2

(w+1)2
) + 2 · 2

(w+1)2
=

2w − 4 w−1
(w+1)2

. This implies that w(w+1)2

w(w+1)2−2w+2
≤ APoA ≤ w2+w

w2+1
.

By combining the exact analysis of the standard Stag Hunt game (Theorem 6.9),

Theorem 6.11 and optimizing over w we derive that:

Corollary 6.13. The average price of anarchy of the class of w-coordination games

with w > 0 is at least 2

1+ 9+2
√
3π

27

≈ 1.15 and at most 4+3
√

2
4+2
√

2
≈ 1.21. In comparison, the

price of anarchy for this class of games is unbounded.

6.6 Coordination/consensus games on a N-star graph

In this section we show how to estimate the topology of regions of attraction for

star networks of w-coordination games. This corresponds to strategic settings where

some agents again need to reach consensus but where there is an agent who works as

a center communicating with all agents at once. The price of anarchy and stability of

these games remain unchanged as we increase the size of the star. Specifically the price

of stability is equal to 1 whereas the price of anarchy can become unbounded large

for large w. We will argue that the average performance is approximately optimal.

This game has two pure Nash equilibria where all agents either play the first

strategy i.e., Stag, or the second i.e., Hare. For simplicity in notation sometimes we

denote the first strategy, i.e., Stag, as strategy A and the other strategy, i.e., Hare,

as strategy B. This game has a continuum of mixed Nash equilibria. Our goal is

to produce an oracle which given as input an initial condition outputs the resulting

equilibrium that system converges to.

Example. In order to gain some intuition on the construction of these oracles let’s

focus on the minimal case with a continuum of equilibria (N = 3, center with two
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(a) Examples of stable
manifolds for different
mixed Nash.

(b) Stable manifolds lie
on the intersection of
level sets of invariant
functions.

Figure 12: Star network coordination game with 3 agents

neighbors). Since each agent has two strategies it suffices to depict for each one the

probability with which they choose strategy A (the “bad” Stag strategy). Hence, the

phase space can be depicted in 3 dimensions. Figure 12 depicts this phase space. The

point (0, 0, 0) captures the good pure Nash (all B), whereas the point (1, 1, 1) the

bad pure Nash (all A). There is also a continuum of unstable mixed Nash equilibria.

Specifically, as long as the center player chooses A with probability w/(w + 1) and

the summation of the probabilities that the two other agents assign to A is exactly

2w/(w + 1). In Figure 12, we have chosen w = 2 this continuum of equilibria cor-

responds to the red straight line. These are unstable equilibria and by Theorem 6.4

almost all initial conditions are attracted to the two attracting pure Nash. For any

mixed Nash equilibrium there exists a curve (co-dimension 2) of points that converge

to it. Figure 12(a) depicts several such stable manifolds for sample mixed equilibria

along the equilibrium line. The union of these stable manifolds partitions the state

space into two regions, one attracting to equilibrium (A,A,A) and the other attract-

ing to the equilibrium (B,B,B)). Hence, in order to construct our oracle its suffices

to have a description of these attracting curves for the mixed equilibria. However,

as shown in Figure 12(b), we have identified two distinct invariant functions for the

replicator dynamic in this system. Given any mixed Nash equilibrium, the set of
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points of the state space which agree with the value of each of these invariant func-

tions define a set of co-dimension one (the double hollow cone and the curved plane).

Any points that converge to this equilibrium must lie on the intersection of these sets

(black curve). In fact, due to our point-wise convergence theorem, it immediately fol-

lows that this intersection is exactly the stable manifold of the unstable equilibrium.

The case for general N works analogously, but now we need to identify N − 1 (= n)

invariant functions in an algorithmic, efficient manner.

Here is the high level idea of the analysis: We start the analysis by showing

that the only fixed points with region of attraction with positive measure are when

all players choose strategy Stag or all players choose strategy Hare. After that we

show that the limit point will be either one of the two mentioned, or a fully mixed.

Therefore we need to compute the regions of attraction of the 2 fixed points where

all choose Stag or all choose Hare. To do that, we need to compute the boundary of

these two regions (namely the center/stable manifold of the fully mixed ones). This

happens as follows: Given an initial point (x1, ..., xn, y), we compute the possible fully

mixed limit point (x′1, ..., x
′
n,

w
w+1

) (will be one possible because we have one variable

of freedom due to Lemma 6.14 below) that is on the boundary of the two regions. If

the initial condition is on the upper half space w.r.t to the possible fully mixed limit

point (x′1, ..., x
′
n,

w
w+1

) the dynamics converge to the everyone playing Stag, otherwise

to everyone playing Hare. To simplify notation in the remainder of this section, we

rename strategy Stag as strategy A and strategy Hare as strategy B.

6.6.1 Structure of fixed points

If a “leaf” agent i applies a randomized/mixed strategy at a fixed point, it must

be the case that the strategy of the center agent y = w
w+1

. Otherwise, the “leaf”

agent would strictly prefer either strategy A or strategy B. Hence the fixed points

of the star graph game have the following structure: If the center agent has a pure
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strategy, then all agents must be pure. If the center agent has a mixed strategy, then∑
i xi = w

w+1
n. In that case, if all the “leaf” agents have pure strategies then y can

have any value in [0, 1], otherwise y = w
w+1

.

6.6.2 Invariants and oracle

Lemma 6.14. [ln(xi(t))− ln(1− xi(t))]− [ln(xj(t))− ln(1− xj(t))] is invariant for

all i, j (independent of t).

Proof. By taking the derivative, we get d
dt

[ln(xi(t))− ln(1− xi(t))] = [y−w · (1− y)]

and d
dt

[ln(xj(t))− ln(1− xj(t))] = [y − w · (1− y)] and claim follows.

Next, we will argue that if we start in the interior of ∆, the system can converge

to fixed points, where either all agent play A or B, or to a fully mixed Nash where

y = w
w+1

and
∑
xi = w

w+1
n.

Lemma 6.15. For all initial conditions in the interior of ∆, either the dynamic

converges to all A’s, i.e, (1,. . . ,1), or to all B’s, i.e., (0,. . . , 0), or to some fully

mixed fixed point, i.e, (x1, . . . , xn,
w
w+1

) with 0 < xi < 1 for all i, and
∑

i xi = w
w+1

n.

Proof. We consider the following two cases:

• If xi(t) → 1 for some i, then ln(xi(t)) − ln(1 − xi(t)) → +∞. So from Lemma

6.14 for every j we get that ln(xj(t)) − ln(1 − xj(t)) → +∞, hence xj(t) → 1.

Due the structure of the equilibrium set and point-wise convergence, y(t) must

converge to 0 or 1. Due the fact that the fixed point (1, . . . , 1, 0) is repelling we

get that the system converges to all A’s. The same argument is used if xi(t)→ 0

for some i.

• If the dynamic converges to an equilibrium were all “leaf” agents are mixed,

then y = w
w+1

and
∑

i xi = w
w+1

n because by the analysis of the structure of the

fixed points that is the only possibility.
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Let (x1(0), . . . , xn(0), y(0)) be the initial condition, where xi(0), y(0) are the prob-

abilities agent i, center agent chooses A (1− xi(0), 1− y(0) will be the probability to

choose B) respectively. By Lemma 6.15, we know that the corresponding trajectory

will converge either to the all A’s equilibrium or the all B’s equilibrium or a fully

mixed one. Next, by using Lemma 6.14 we will narrow down the possibilities for this

fully mixed equilibrium to a single one, which we denote by (x1, . . . , xn,
w
w+1

).

For each leaf agent i > 1, we define a positive constant ci such that

ci =
xi(0)/(1− xi(0))

x1(0)/(1− x1(0))
.

Due to Lemma 6.14 the quantity xi(t)/(1−xi(t))
x1(t)/(1−x1(t))

is time invariant. Hence, the limit

point (x1, . . . , xn,
w
w+1

) must satisfy this condition, i.e.,

xi =
cix1

1 + (ci − 1)x1

(79)

Moreover, by Lemma 6.15 it must satisfy
∑
xi = w

w+1
n, which combined with (79)

implies that:

∑
i

cix1

1 + (ci − 1)x1

=
w

w + 1
n (80)

where we have defined c1 = 1.

Observe that the function f(x) = cx
1+(c−1)x

is strictly increasing in [0, 1] (given any

fixed positive c) and f(0) = 0, f(1) = 1. Therefore g(x) =
∑

i
cix

1+(ci−1)x
− w

w+1
n is

strictly increasing in [0, 1] (as sum of strictly increasing functions in [0, 1]) and g(0) =

− w
w+1

n < 0 and g(1) = n− w
w+1

n > 0. Thus, it has always a unique solution in [0, 1]

and equivalently the system of equations (79,80) has a unique solution. Together with

y = w
w+1

, the equilibrium limit point lies in the interior of ∆. Given x1(0), . . . , xn(0)

we can compute (approximate with arbitrary small error ε) x1, . . . , xn via binary

search (using Bolzano’s theorem).
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Lemma 6.16. Since star graph is a bipartite graph from Lemma 6.7 we have that

since (x1, . . . , xn, y) is a fully mixed Nash then along any system trajectory

((x1(t), . . . , xn(t), y(t))) the function

w

w + 1
ln(y(t)) +

1

w + 1
ln(1− y(t))−

∑
i

[xi ln(xi(t)) + (1− xi) ln(1− xi(t))]

is (time) invariant, i.e. independent of t.

Lemma 6.17. If y(t) ≥ w
w+1

and
∑
xi(t) >

w
w+1

n for some t, the trajectory converges

to all A’s and if y(t) ≤ w
w+1

and
∑
xi(t) <

w
w+1

n for some t, the trajectory converges

to all B’s.

Proof. In the first case, y(t) is increasing and xi(t) (for all i) are non-decreasing

and thus y(t′) > w
w+1

and
∑
xi(t

′) > w
w+1

n holds for all t′ > t. In the second case

y(t) is decreasing and xi(t) (for all i) are non-increasing and thus y(t′) < w
w+1

and∑
xi(t

′) < w
w+1

n holds for all for t′ > t. Combining this with Lemma 6.15, concludes

the proof.

Therefore if a trajectory converges to the fully mixed equilibrium (x1, . . . , xn,
w
w+1

)

then at any time t we must have
∑
xi(t) >

w
w+1

n and y(t) < w
w+1

(x1(t), . . . , xn(t) are

decreasing and y(t) increasing) or
∑
xi(t) <

w
w+1

n and y(t) > w
w+1

(x1(t), . . . , xn(t)

are increasing and y(t) decreasing). Combining all the facts together, we get that

the stable manifold of the fixed point (x1, . . . , xn,
w
w+1

) can be described as follows:

(x1(0), . . . , xn(0), y(0)) lies on the stable manifold if
∑

i xi(0) > n w
w+1

and y(0) < w
w+1

or
∑

i xi(0) < n w
w+1

and y(0) > w
w+1

and by Lemma 6.16 we get that

y(0)
w
w+1 (1− y(0))

1
w+1 = c

∏
i

xi(0)xi(1− xi(0))1−xi , (81)

where c =
( w
w+1)

w
w+1 ( 1

w+1)
1

w+1∏
i(xi)

xi (1−xi)1−xi
.

Lemma 6.18. The function xw(1−x) is strictly increasing in [0, w
w+1

] and decreasing

in [ w
w+1

, 1].
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By Lemma 6.18 we have that there exist at most two y(0) that satisfy (81), one which

is ≥ w
w+1

and one that ≤ w
w+1

. If
∑
xi(0) < n w

w+1
, y(0) should be the largest root of

the two so that dynamics converges to the fully mixed, otherwise the smallest root.

If now the initial condition y(0) does not satisfy (81), then the dynamics converges to

all A’s if y(0) is greater that it is supposed (so that dynamics converges to the fully

mixed) and to all B’s otherwise. Therefore we have the oracle below:

Table 3: Oracle algorithm

Oracle

1. Input: (x1, ..., xn, y)

2. Output: A or B or mixed

3. If
∑
xi > (≥) w

w+1
n and y ≥ (>) w

w+1
return A.

4. If
∑
xi < (≤) w

w+1
n and y ≤ (<) w

w+1
return B.

5. Set ci = xi(1−x1)
x1(1−xi) for i ≥ 2 and c1 = 1.

6. Solve equation
∑n

i=1
x′1ci

1+(ci−1)x′1
= w

w+1
n (binary search)

to compute x′1 and set x′i =
cix
′
1

1+(ci−1)x′1
for i ≥ 2.

7. Let f(t) =
(
t(w+1)
w

) w
w+1

[(1− t)(w + 1)]
1

w+1 −∏i

(
xi
x′i

)x′i (1−xi
1−x′i

)1−x′i
.

8. If (
∑

i xi >
w
w+1

n and f(y) < 0) or

(
∑

i xi <
w
w+1

n and f(y) > 0) return B.

9. If (
∑

i xi >
w
w+1

n and f(y) > 0) or

(
∑

i xi <
w
w+1

n and f(y) < 0) return A.

10. return mixed.

Remark 15. Given any point from ∆ uniformly at random, under the assumption of

solving exactly the equations to compute x′1, ..., x
′
n and infinite precision the probability

that the oracle above returns mixed is zero.

Given this oracle it is straightforward to establish an upper bound of 3.6 for the

average price of anarchy, which is independent of w as well as the size of the star.
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Corollary 6.19. The average price of anarchy for the class of star w-coordination

games (with n+ 1 agents) is at most 3.6.

Proof. There are exactly two possible outcomes with positive probability; all the

agents choose strategy A and all choose strategy B. Assume we take one sample

at random (x1, . . . , xn, y) from ×n+1
i=1 ∆2 where n + 1 are the number of agents. It

turns out from the oracle above on the star-graph (see also discussion later) game

that if
∑

i xi < n w
w+1

and y < w
w+1

then the dynamics eventually converge to all

agents choose B. Hence the region of attraction of the outcome all agents choose

B will be at least the probability that a sample at random satisfies
∑

i xi < n w
w+1

and y < w
w+1

. By Chernoff Bounds, this is at least p = w
w+1

(1 − e−n/3·(1/2−
1

w+1
)).

Since the optimal is w(n + 1), we get that the average price of anarchy is at most

w(n+1)
pw(n+1)+(1−p)(n+1)

= w
pw+1−p . It is not hard to see that p is increasing w.r.t n and w.

The average price of anarchy bound w
pw+1−p as a result is a decreasing function of n,

however it is not monotonous as a function of w. We examine the function w
pw+1−p

and visual inspection seems to suggest that it is always less than 3.6.

6.7 APoA in linear, symmetric load balancing games

6.7.1 Linear symmetric load balancing games

In this section, we prove the following bounds on the average price of anarchy of

linear, symmetric load balancing games. In symmetric load balancing games, each

agent14 chooses a distribution over machines selfishly and we assume that the cost of

machine γ is a linear function of γ’s load.

Theorem 6.20 (APoA for linear load balancing). The average price of anar-

chy in terms of makespan of symmetric, linear load balancing games is at most 3/2.

Moreover, generically, the average price of anarchy of symmetric, linear load balanc-

ing games is 1. Specifically, given any number of agents and machines, the set of

14Agents have same cost functions.
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linear latency functions such that the average price of anarchy of the resulting game

is greater than 1 is a zero measure set within the set of all linear latency functions.

We will break down the proof of theorem 6.20 into several technical lemmas. The

next definition encodes Nash equilibria where randomizing agents do not “interact”

with each other.

Definition 24 (Almost pure NE). We call a mixed Nash equilibrium of a load

balancing game to be almost pure, if the intersection of the supports of the strategies of

any two randomizing agents contains only edges whose latency functions are constant

functions.

Lemma 6.21. The average price of anarchy of a symmetric, linear load balancing

games is at most equal to the ratio of the cost of the worst almost pure Nash equilibrium

divided by the cost of the optimal outcome.

Proof. By corollary 6.5 we have that for all but a zero measure of initial conditions

replicator dynamics converges to weakly stable equilibria. By definition, weakly stable

equilibria have the property that given any two agents with mixed strategies if one

agent deviates to one the strategies in his support and plays it with probability

one then the second agent should still stay indifferent between the strategies in his

support. If there exists two agents with mixed strategies such that the intersection of

their supports contains machines with strictly increasing latency functions then if one

agent deviates to playing that machine with probability one, he will strictly increase

the cost experienced by the second agent on that machine, whereas by this deviation

he can only decrease the cost of all other machines in the support of the second agent.

The second agent is no longer indifferent between the strategies in his support and

thus the initial equilibrium was not weakly stable. In the worst case average price

of anarchy places all of the probability mass of initial conditions to the worst almost

pure Nash equilibrium. In this case the average price of anarchy would be equal to
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the ratio of the cost of the worst almost pure Nash equilibrium divided by the cost

of the optimal outcome.

Lemma 6.22 (Pure NE are optimal). In symmetric linear load balancing games

all pure Nash equilibria have optimal makespan.

Proof. Suppose not, that is, suppose that there exists a pure Nash equilibrium whose

makespan, i.e., the load of the most congested machine, is not optimal amongst

all outcomes/configurations. That means that its most loaded machine must be a

machine with a strictly increasing cost function that has higher load than its load at

the optimal outcome15. Hence, there must be another machine whose load is strictly

less than its load at the optimal configuration. If we move one agent from the first

to the second machine we claim that its cost will strictly decrease. Indeed, its new

latency is at most the latency of the second machine in the optimal configuration,

which is less or equal to the optimal makespan, which by hypothesis is strictly less than

the makespan of the first configuration, which was its original cost. Hence, the original

configuration cannot be a Nash equilibrium and we have reached a contradiction.

Lemma 6.23. In any symmetric, linear load balancing games the ratio of the cost of

the worst almost pure Nash equilibrium divided by the cost of the optimal outcome is

at most 3/2. Furthermore, this bound is tight.

Proof. First, we create the lower bound. We have a load balancing game with two

agents and three machines. The latency function for the first machine is 3x whereas

for the other two machines is 2x. It is straightforward to check that the strategy

outcome where the first agent chooses the first machine and the second agent chooses

one of the remaining two machines uniformly at random is a Nash equilibrium and,

in fact, a weakly stable one. The makespan of this equilibrium is 3, whereas the

15If there exist more than one outcomes with minimal makespan, we just arbitrary focus on one
of the optimal configurations.
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optimal state has each of the two agents choosing deterministically one of the last

two machines and using it by themselves. The makespan of that outcome is 2, which

results in a lower bound of 3/2.16

Next, we will show that this bound is tight. First, we will establish that it suffices

to examine Nash equilibria where the intersection between the supports of the mixed

strategies of any two randomizing agents is empty. Indeed, suppose that we have two

randomizing agents where the intersection of their supports contains some machines

with constant latency functions. If we force one of the two agents to deviate and

choose deterministically the strategy of constant latency in his support then the

makespan of the state remains constant and furthermore the outcome is still a weakly

stable Nash. The reason that it remains a Nash is that if an agent wished to deviate

to some strategy used by the deviating agent originally, then when deviating to that

machine he would experience exactly the same cost as when using the machine with

the constant cost function. Thus, he could have profitably deviated in the initial

configuration. This is impossible since that configuration was a Nash equilibrium.

Trivially, this new Nash equilibrium is weakly stable since we have only decreased the

number of randomizing agents and the supports of the remaining randomizing agents

remained the same. We can keep performing these deviations up until there no longer

randomizing agents for which the intersection of the supports contains any machine

(of constant latency function). Hence, in terms of identifying the almost pure Nash

equilibrium with the worst makespan it suffices to focus on the set of almost mixed

NE where the intersection of the supports of any two randomizing agents is empty.

We have established that if suffices to focus on mixed Nash equilibria where each

machine has at most one randomizing agent. We will establish that the makespan of

each such equilibrium is within a 3/2 factor of the makespan of a pure Nash equilibrium,

which by Lemma 6.22 implies that it is within a 3/2 factor of the optimal makespan.

16This construction is due to Bobby Kleinberg,
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The argument is as follows: We will start from the mixed Nash and will proceed by

fixing the randomizing agents to playing strategies in their support with probability

one. We start from the randomizing agent i that experiences minimum cost amongst

all randomizing agents. We fix him to playing the strategy in his support that he

chose with minimal probability in the original mixed Nash. We also fix the rest of

the randomizing agents to arbitrary strategies in their support. Next, we repeatedly

go through all agents in decreasing cost order and we allow each agent to move and

migrate to the least expensive (available) path if it is strictly cheaper than his current

path. Due to symmetry once we find one agent who does not wish deviate all of the

rest of the agents do not wish to deviate either due to symmetry of the available

paths. This process will terminate at equilibrium since this is a potential game.

Furthermore, agent i (nor of any of the other agents in his machine) will ever move

during this process. If he did move then there would exist at some point a profitable

deviating move from him. However, immediately after fixing the randomizing agents

to choosing something in their current support, agent i did not have any improving

deviations since his experienced cost was minimal amongst all randomizing agents and

hence at least as small as the cost of any deviation. In fact, the cheapest available

deviations are exactly the strategies that belonged in his support. As we allow costly

agents to move greedily from their current strategy to the best available strategy the

cost of the best available deviation cannot decrease with time. Thus, agent i will

not deviate. Hence, the makespan at the resulting pure Nash equilibrium will be

at least equal the cost of agent i when his was fixed to the strategy that he played

with minimal probability. If we denote that edge as e and its load (excluding agent

i) as xe then this implies that the makespan at the resulting Nash and thus the

optimal makespan is at least ae(xe + 1) + be. However, the original mixed state was

an equilibrium and if agent i played strategy e with probability p then no agent in the
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original Nash equilibrium would experience cost more than ae(xe + p+ 1) + be.
17 But

since e was chosen to be the strategy played with minimal probability in his original

support p ≤ 1/2 and hence no agent can experience cost more than ae(xe + 3/2) + be.

So, the original makespan is at most ae(xe + 3/2) + be and the optimal makespan is at

least ae(xe+ 1) + be. The ratio between these two terms becomes maximal (and equal

to 3/2) for be = 0 and xe = 0, which is exactly satisfied by our tight lower bound.

Remark 16. If we slightly perturb the above tight example so that the latency function

for the first machine is 3x whereas for the other two machines is 2x + ε then the

continuum of equilibria with the bad makespan will have a non-negligible region of

attraction resulting in an average price of anarchy which is strictly greater than one.

Lemma 6.24. In generic symmetric linear load balancing games the set of almost

pure Nash equilibria coincides with the set of pure Nash equilibria. Specifically, the

set of linear latency functions such the set of almost pure Nash equilibria is a strict

superset of the set of pure Nash equilibria is of measure zero within the set of all linear

latency functions.

Proof. We will show that if a linear symmetric load balancing game has an almost

pure Nash equilibrium that is not pure, i.e., that has at least one agent using a

randomized strategy, then the coefficients of the linear latency functions belong to a

zero measure set. Indeed, let’s focus on one of the randomizing agents. Since this

agent is indifferent between (at least) two machines/edges e, e′ and he is the only

randomizing agent using these machines (or some of these machines have a constant

latency function) then there exist integer numbers k, k′, so that the cost of these two

machines are equal under loads k, k′. This implies that ae · k + be = ae′ · k′ + b′e.

However, for any fixed k, k′ the set of coefficients ae, ae′ , be, be′ that satisfy this linear

equation is a zero measure set. Hence, given any number of agents and machines

17If he did we would strictly prefer to deviate to edge e.
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the set of functions that have almost pure Nash equilibria that are not pure can be

expressed as a countable union of zero-measure sets, which is a zero-measure set.

By combining the lemmas of this section, Theorem 6.20 follows immediately.

6.7.2 Better APoA in N balls N bins

In the classic game of N identical balls, with N identical bins, each ball chooses

a distribution over the bins selfishly and we assume that the cost of bin γ is equal to

γ’s load. We know for this game that the PoA is Ω( logN
log logN

) [35]. We prove that the

Average PoA is 1.

Theorem 6.25 (APoA in N balls N bins). The average price of anarchy in terms

of makespan for the (identical) N-balls N-bins is 1.

This is derived via Corollary 6.5 and by showing that in this case the set of weakly

stable Nash equilibria coincides with the set of pure equilibria.

Claim 6.26 (Every weakly stable NE is pure). In the problem of N identical

balls and N identical bins every weakly stable Nash equilibrium is pure.

Proof. Assume we have a weakly Nash equilibrium p. From corollary 6.5, we have

the following facts:

• Fact 1: For every bin γ, if a player i chooses γ with probability 1 > piγ > 0, he

must be the only player that chooses that bin with nonzero probability. Let i, j

two players that choose bin γ with nonzero probabilities and also piγ, pjγ < 1.

Clearly if player i changes his strategy and chooses bin γ with probability one,

then player j doesn’t stay indifferent (his cost ciγ increases).

• Fact 2: If player i chooses bin γ with probability one, then he is the only player

that chooses bin γ with nonzero probability. This is true because every player

j 6= i can find a bin with load less than 1 to choose.
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From Facts 1,2 and since the number of balls is equal to the number of bins we get

that p must be pure.

Proof of Theorem 6.25. Hence from Lemma 6.26 and 6.5 we get that for all but

measure zero starting points of g(∆), the replicator converges to pure Nash Equilib-

ria. Every pure Nash equilibrium (each ball chooses a distinct bin) has social cost

(makespan) 1 which is also the optimal. Hence the Average PoA is 1.

Remark 17. The lemma below shows how crucial is Lindelőf ’s lemma A.1(essentially

separability of Rm for all m) in the proof of Theorem 6.4. Even simple instances

of games with constant number of agents and strategies may have uncountably many

equilibria. In such games, naive union bound arguments do not suffice since we cannot

argue about the measure of an uncountable union of measure zero sets.

Lemma 6.27. For N ≥ 4 the set of NE of the N balls N bins game is uncountable.

Proof. We will prove it for N = 4 and then the generalization is easy, i.e., if N > 4

then the first 4 players will play as shown below in the first 4 bins and each of the

remaining N − 4 players will choose a distinct remaining bin. Below we give matrix

A where Aiγ = piγ. Observe that for any x ∈ [1
4
, 3

4
] we have a Nash equilibrium.

A =



x 1− x 0 0

1/2 0 1/2 0

0 1/2 0 1/2

0 0 x 1− x


.

6.8 Conclusion and remarks

The results of this chapter appear in [102]. We show that replicator dynamics

converges point-wise to fixed points for linear congestion and network coordination

games. Moreover, we define an average case analysis notion in dynamical systems
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focusing on games and replicator dynamics. We call this notion average price of

anarchy (APoA) and provide upper and lower bounds for APoA in different classes

of games. Several questions arise:

• Other settings/games/mechanisms. In recent followup work, [127] applies

our approach to peer prediction mechanisms where the size of the basin of at-

traction of the truthful equilibrium is used as a proxy for the robustness of

truthful play. The replicator model predicts/confirms the significant improve-

ment in robustness of recent mechanisms over earlier approaches. It would be

interesting to test the robustness of other (approximately) truthful, differen-

tially private mechanisms in a similar manner.

• Other dynamics. Perform average case analysis for other dynamics and com-

pare them against replicator dynamics.

• Generalization of APoA. Generalize the notion of APoA to dynamics that

do not necessarily converge. In particular, it would be intriguing to define an

APoA notion for chain recurrent sets (see [106]).

• Point-wise convergence. Generalize the point-wise convergence result to a

larger class of congestion games, (e.g., for polynomial cost functions).

• Volumes of regions of attraction as a function. Given a prior distribution

over initial conditions (e.g., uniform), every point-wise convergent dynamical

system with isolated fixed points induces a probability distribution over these

fixed points. By approximating this function (from priors over initial conditions

to posteriors over equilibria), we can predict the average case (long-term) be-

havior of the system (without having the equations of the dynamics). Nontrivial

distributions will result to a (unique) distribution/prediction that puts positive

measure on several equilibria. It would be interesting to see a formal theory

along these lines.
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CHAPTER VII

GRADIENT DESCENT AND SADDLE POINTS

7.1 Introduction

The interplay between the structure of saddle points and the performance of gradi-

ent descent dynamics is a critical and not well understood aspect of non-convex opti-

mization. Despite our incomplete theoretical understanding, in practice, the intuitive

nature of the gradient descent method (and more generally gradient-like algorithms)

make it a basic tool for attacking non-convex optimization problems for which we

have very little understanding of the geometry of their saddle points. In fact, these

techniques become particularly useful as the equilibrium structure becomes increas-

ingly complicated, e.g., such as in the cases of nonnegative matrix factorization [73]

or congestion/potential games [122] (see Chapter 6), where symmetries in the nature

of non-convex optimization problems give rise to continuums of saddle points with

complex geometry. In these cases, particularly, the simplistic, greedy attitude of the

gradient descent method, which is by design agnostic towards the global geometry of

the cost function to be minimized, comes rather handy. As we move forward in time,

the cost keeps decreasing and convergence is guaranteed.

This simplicity, however, comes at least seemingly at a significant cost. For ex-

ample, it is well known that there exist instances where bad initialization of gradient

descent converges to saddle points [95]. Despite the existence of such worst case

instances in theory, practitioners have been rather successful at applying these tech-

niques across a wide variety of problems [117]. Lee et al. [74] have given a very clear

justification of the effectiveness of gradient descent methods in terms of circumvent-

ing the saddle equilibrium problem using tools from dynamical systems. At a glance,
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the paper argues the following intuitively clear message: The instability of (locally

unstable) saddle points translates to a global phenomenon and the probability of

converging to such a saddle point given a randomly chosen (random not over a local

neighborhood but over the whole state space) initial condition is zero. We have seen

the analogue of this in Theorems 2.9, 3.15, 3.13.

Formally, Lee et al. define a cost function f as satisfying the “strict saddle”

property if each critical point x of f is either a local minimizer, or a strict saddle,

i.e., ∇2f(x) has at least one strictly negative eigenvalue (for formal definitions see Def-

inition 25). They argue that if f : RN → R is a twice continuously differentiable func-

tion then gradient descent with constant step-size α (defined by xk+1 = xk−α∇f(xk))

with a random initialization and sufficiently small constant step-size converges to a

local minimizer or negative infinity almost surely.

Critically, for this result to apply, f is required to have isolated saddle points, ∇f

is assumed to be globally L-Lipschitz1 and the step-size α is taken to be less than

1/L. These regularity conditions soften somewhat the impact of the statement both

theoretically as well as in practice. First, although the assumption of isolated fixed

points is indeed generic for abstract classes of cost functions, in several special cases

of practical interest where the cost function has some degree of symmetry (e.g., due

to scaling invariance) this assumption is not satisfied. For this reason, the impor-

tant question of whether the assumption of isolated equilibria is indeed necessary was

explicitly raised in [74]. Moreover, the assumption of global Lipschitz continuity for

∇f is not satisfied even by low degree polynomials (e.g., cubic). Finally, a natural

question is how tight is the assumption on the step-size?

Our contribution. In this chapter we provide answers to all the above questions.

We show that the assumption of isolated saddle points is indeed not necessary to

argue generic convergence to local minima. To argue this, we need to combine tools

1That is, f satisfies ‖∇f(x)−∇f(y)‖2 ≤ L ‖x− y‖2.
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that we essentially used in previous chapters when we argued about measure zero

set of initial conditions, e.g., we make use of Center-Stable Manifold Theorem 1.3

(see Theorem 7.1). Moreover, we show that the globally Lipschitz assumption can be

circumvented as long as the domain is convex and forward invariant with respect to

gradient descent (see Theorem 7.2). This technique makes our results easily applicable

to many standard settings. Finally, using linear algebra and eigenvalue analysis we

provide an upper bound on the allowable step-size (see 7.3). Our work shows that

the high level message of [74] is practically always binding. Saddle points are indeed

of little concern for the gradient descent method in practice, but it takes some theory

to argue so.

7.2 Related work

First-order descent methods can indeed escape strict saddle points when assisted

by near isotropic noise. [108] establishes convergence of the Robbins-Monro stochastic

approximation to local minimizers for strict saddle functions, whereas [70] establishes

convergence to local minima for perturbed versions of multiplicative weights algo-

rithm in generic potential games. Recently, [58] quantified the convergence rate of

perturbed stochastic gradient descent to local minima. The addition of isotropic noise

can significantly slow down the convergence rate. Our setting is deterministic and

corresponds to the simplest possible discrete-time implementation of gradient descent.

Numerous curvature-based optimization techniques have been developed in order

to circumvent saddle points (e.g., trust-region methods [33, 130], modified Newton’s

method with curvilinear line search [90], cubic regularized Newton’s method [96],

and saddle-free Newton methods [38]). Unlike gradient descent, these methods have

superlinear per iteration implementation costs, making them impractical for high-

dimensional settings.

Gradient descent with carefully chosen initial conditions can bypass the problem
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of local minima altogether and converge to the global minimum for many practical

non-convex optimization settings (e.g., dictionary learning [6], latent-variable models

[144], matrix completion [68], and phase retrieval [21]). In contrast, we focus on the

performance of gradient descent under generic initial conditions. Finally, some recent

work has been focusing on the connections between stability and efficiency of fixed

points in non-convex optimization (e.g., Gaussian random fields [28]).

7.3 Preliminaries and formal statement of results

Assume a minimization problem of the form minx∈RN f(x) where f : RN → R is a

twice continuously differentiable function. Gradient descent is one of the most well-

known algorithms (discrete dynamical system) to attack this generic optimization

problem. It is defined by the equations below:

xk+1 = xk − α∇f(xk), k ≥ 0

or equivalently xk+1 = g(xk) with g(x) = x− α∇f(x), g : RN → RN and α > 0.

It is easy to see that the fixed points of the dynamical system xk+1 = g(xk) are

exactly the points x so that ∇f(x) = 0, called critical points or equilibria. The set of

local minima of f is a subset of the set of critical points of f . These two sets do not

coincide and this poses a serious obstacle for proving strong theoretical guarantees

for gradient descent, since the dynamics may converge to a critical point which is not

a local minimum, called a saddle point.

Lee et al. [74] argue, under technical conditions which include the assumption

of isolated critical points, that the set of initial conditions that converge to strict

saddle points is a zero measure set (for definition of strict saddle, see Definition 25

below). The paper leaves as an open question whether the condition of isolated

equilibria was necessary. We prove that the set of initial conditions that converge

to a strict saddle point is a zero measure set even in the case of non-isolated critical
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points2. Furthermore, one of the conditions for f is that ∇f is globally Lipschitz,

which implies that the second derivative of f is bounded, i.e., there exists a β > 0

such that for all x we have ‖∇2f(x)‖2 ≤ β. However, even third degree polynomial

functions are not globally Lipschitz. We provide a theorem which can circumvent this

assumption as long as the domain S is forward or positively invariant with respect

to g, i.e., g(S) ⊆ S. Finally, we provide an easy upper bound on the step-size α, via

eigenvalue analysis of the Jacobian of g, i.e., I − α∇2f(x).

Below we give some necessary definitions for the rest of this chapter.

Definition 25.

• A point x∗ is a critical point of f if ∇f(x∗) = 0. We denote by C = {x :

∇f(x) = 0} the set of critical points (can be uncountably many).

• A critical point x∗ is isolated if there is a neighborhood U around x∗ and x∗ is

the only critical point in U 3. Otherwise it is called non-isolated.

• A critical point x∗ of f is a saddle point if for all neighborhoods U around x∗

there are y, z ∈ U such that f(z) ≤ f(x∗) ≤ f(y).

• A critical point x∗ of f is strict saddle if λmin(∇2f(x∗)) < 0 (minimum eigen-

value of matrix ∇2f(x∗) is negative).

• A set S is called forward or positively invariant with respect to some function

h : E → RN with S ⊆ E ⊆ RN if h(S) ⊆ S.

7.3.1 Main theorems

In [74], the steps of the proof of their result are the following: Under the regularity

assumption that ∇f is globally Lipschitz, with some Lipschitz constant L, Lee et

al. are able to show that g(x) = x − α∇f(x) is a diffeomorphism for α < 1/L.

2Our arguments hence allow for cost functions f ’s with uncountably many critical points.
3If the critical points are isolated, then they are countably many or finite.
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Afterwards, using the Center-Stable Manifold Theorem 1.3, they show that the set

of initial conditions so that g converges to saddle points has measure zero, under the

assumption that the critical points are isolated. We generalize their result for non-

isolated critical points, answering one of their open questions (see also the example

in Section 7.5.1, where there is a line of critical points).

Theorem 7.1 (Non-isolated). Let f : RN → R be twice continuously differentiable

and supx∈RN ‖∇2f(x)‖2 ≤ L < ∞. The set of initial conditions x ∈ RN so that

gradient descent with step-size 0 < α < 1/L converges to a strict saddle point is of

measure zero, without the assumption that critical points are isolated.

We can prove a stronger version of the theorem above, circumventing the globally

Lipschitz condition for domains which are forward invariant (see also the example in

Section 7.5.2).

Theorem 7.2 (Non-isolated, forward invariant). Let f : S → R be twice contin-

uously differentiable in an open convex set S ⊆ RN and supx∈S ‖∇2f(x)‖2 ≤ L <∞.

If g(S) ⊆ S (where g(x) = x − α∇f(x)) then the set of initial conditions x ∈ S so

that gradient descent with step-size 0 < α < 1/L converges to a strict saddle point is

of measure zero, without the assumption that critical points are isolated.

Finally, via eigenvalue analysis of I − α∇2f(x), we can find upper bounds on the

step-size of gradient descent. A straightforward theorem is the following:

Theorem 7.3 (Upper bound on step-size). Let f be a twice continuously differ-

entiable function in an open set S ⊆ RN and C∗ be the set of local minima. Assume

also that γ < infx∈C∗ ‖∇2f(x)‖2 <∞. A necessary condition so that gradient descent

converges to local minima for all but (Lebesgue) measure zero initial conditions in S

is that the step-size satisfies α < 2
γ

.
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7.4 Proving the theorems

Before we proceed with the proofs, let us argue that Theorem 7.2 is a generalization

of Theorem 7.1. This can be checked easily by setting S ··= RN and observing that

g(RN) ⊆ RN . We continue with the proofs of Theorems 7.2 and 7.3.

7.4.1 Proof of Theorem 7.2

In this section, we prove Theorem 7.2. We start by showing that the assumptions

of Theorem 7.2 imply that ∇f(x) is Lipschitz in S.

Lemma 7.4 (Bounded second derivative implies Lipschitz condition). Let f :

S → R where S ⊆ RN is an open convex set and f be twice continuously differentiable

in S. Also assume that supx∈S ‖∇2f(x)‖2 ≤ L <∞. Then ∇f satisfies the Lipschitz

condition in S with Lipschitz constant L.

Proof. Let x,y ∈ S (column vectors) and define the function H : [0, 1] → RN as

H(t) = ∇f(x + t(y − x)). By the chain rule we get that H ′(t) ··= dH
dt

= (∇2f(x +

t(y − x))) · (y − x). It holds that

‖∇f(y)−∇f(x)‖2 =

∥∥∥∥∫ 1

0

H ′(t)dt

∥∥∥∥
2

≤
∫ 1

0

‖H ′(t)‖2 dt

=

∫ 1

0

∥∥(∇2f(x + t(y − x)))(y − x)
∥∥

2
dt

≤
∫ 1

0

∥∥∇2f(x + t(y − x))
∥∥

2
‖y − x‖2 dt

≤
∫ 1

0

L ‖y − x‖2 dt = L ‖y − x‖2 .

Remark 18. From Schwarz’s theorem we get that ∇2f(x) is symmetric for x ∈ S,

hence ‖∇2f(x)‖2 = sp (∇2f(x)) (recall sp (A) denotes the spectral radius of matrix

A).
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The assumption that supx∈S ‖∇2f(x)‖2 ≤ L <∞ implies that ∇f(x) is Lipschitz

with constant L in the convex set S, as stated by Lemma 7.4. We show that the

converse holds as well, i.e., the Lipschitz condition for ∇f(x) with constant L in

the main theorem in Lee et al. implies ‖∇2f(x)‖2 ≤ L for all x ∈ S and hence the

assumption in Theorems 7.1, 7.2 that supx∈S ‖∇2f(x)‖2 ≤ L is satisfied.

Lemma 7.5 (Lipschitz condition implies bounded second derivative). Let f :

S → R where S is an open convex set and f is twice continuously differentiable in S.

Assume ∇f(x) is Lipschitz with constant L in S, then it holds supx∈S ‖∇2f(x)‖2 ≤ L.

Proof. Fix an ε > 0. By Taylor’s theorem, since f is twice differentiable with respect

to some point x it holds that

‖∇f(y)−∇f(x)‖2 ≥
∥∥(∇2f(x))(y − x)

∥∥
2
− o(‖y − x‖2)

≥
∥∥(∇2f(x))(y − x)

∥∥
2
− ε ‖y − x‖2 ,

for y sufficiently close to x (depends on ε). Therefore under the Lipschitz assumption

we get that there exists a closed neighborhood U(ε) of x, so that for all y ∈ U we get

∥∥(∇2f(x))(x− y)
∥∥

2
≤ ‖∇f(x)−∇f(y)‖2 + ε ‖y − x‖2 ≤ (L+ ε) ‖x− y‖2 . (82)

We consider a closed ball B subset of U , with center x and radius r (in `2) and set

z = x− y. It is true that ‖∇2f(x)‖2 = sup‖z‖2=r

‖(∇2f(x))z‖
2

‖z‖2
by definition of spectral

norm, scaled so that the length of the vectors are at most r. Using (82) we get that

‖∇2f(x)‖2 ≤ L + ε. Since ε is arbitrary, we get that ‖∇2f(x)‖2 ≤ L. We conclude

that supx∈S ‖∇2f(x)‖2 ≤ L.

Lemmas 7.4 and 7.5 show that the smoothness assumptions in Lee et al. paper

are equivalent to ours. We use the condition on the spectral norm of the matrix

∇2f(x) so that we can work with the eigenvalues in our theorems (e.g., in Remark 18

the spectral norm coincides with spectral radius for ∇2f(x)). Below we prove that
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the update rule of gradient descent, i.e., function g is a diffeomorphism under the

assumptions of Theorem 7.2 (similar approach appeared in [74]).

Lemma 7.6 (Diffeomorphism). Under the assumptions of Theorem 7.2, function

g is a diffeomorphism in S.

Proof. First we prove that g is injective. We follow the same argument as in [74].

Suppose g(y) = g(x), thus y−x = α(∇f(y)−∇f(x)). We assume that x 6= y and we

will reach a contradiction. From Lemma 7.4 we get ‖∇f(y)−∇f(x)‖2 ≤ L ‖y − x‖2

and hence ‖x− y‖2 ≤ αL ‖y − x‖2 < ‖y − x‖2, since αL < 1 (contradiction).

We continue by showing that g is a local diffeomorphism. Observe that the Jaco-

bian of g is I − α∇2f(x). It suffices to show that α∇2f(x) has no eigenvalue which

is 1, because this implies matrix I − α∇2f(x) is invertible. As long as I − α∇2f(x)

is invertible, from Inverse Function Theorem (see [129]), it follows that g is a local

diffeomorphism. Finally, since g is injective, the inverse g−1 is well-defined and since

g is a local diffeomorphism in S, it follows that g−1 is smooth in S. Therefore g is a

diffeomorphism.

Let λ be an eigenvalue of ∇2f(x). Then |λ| ≤ sp (∇2f(x)) = ‖∇2f(x)‖2 ≤ L

where the equality comes from Remark 18 and first and last inequalities are satisfied

by assumption. Therefore α∇2f(x) has as eigenvalue αλ and |αλ| ≤ αL < 1. Thus all

eigenvalues of α∇2f(x) are less than 1 in absolute value and the proof is complete.

To finish the proof of Theorem 7.2, we use the Center-Stable Manifold Theorem 1.3,

since g(x) = x − α∇f(x) is a diffeomorphism, where supx∈S ‖∇2f(x)‖2 ≤ L and

α < 1/L.

Our approach deviates a lot from that of [74] from this point until the end of the

proof. Let r be a critical point of function f(x) and Br be the (open) ball that is

derived from Theorem 1.3. We consider the union of these balls

A = ∪rBr.
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Due to Lindelőf’s Lemma A.1, we can find a countable subcover for A, i.e., there

exist fixed points r1, r2, . . . such that A = ∪∞m=1Brm . If the dynamics of gradient

descent converges to a strict saddle point, starting from a point v ∈ S, there must

exist a t0 and m so that gt(v) ∈ Brm for all t ≥ t0. From Theorem 1.3 we get

that gt(v) ∈ W sc
loc(rm) ∩ S, where we used the fact that g(S) ⊆ S (from assumption

forward invariant), namely the trajectory remains in S for all times 4. By setting

D1(rm) = g−1(W sc
loc(rm)∩S) and Di+1(rm) = g−1(Di(rm)∩S) we get that v ∈ Dt(rm)

for all t ≥ t0.

Hence the set of initial points in S so that gradient descent converges to a strict

saddle point is a subset of

P = ∪∞m=1 ∪∞t=0 Dt(rm). (83)

Since rm is a strict saddle point, the Jacobian I − α∇2f(x) has an eigenvalue

greater than 1, namely the dimension of the unstable eigenspace satisfies dim(Eu) ≥

1, and therefore dimension of W sc
loc(rm) is at most N−1. Thus, the set W sc

loc(rm)∩S has

Lebesgue measure zero in RN and so does D1(rm). Finally since g is a diffeomorphism

(from Lemma 7.6), g−1 is continuously differentiable and thus it is locally Lipschitz

(see [110] p.71). Therefore using Lemma A.2 below, g−1 preserves the null-sets and

hence by induction Di(rm) has measure zero. Thereby we get that P is a countable

union of measure zero sets, i.e., is measure zero and the claim of Theorem 7.2 follows.

A straightforward application of the Theorem 7.2 is the following:

Corollary 7.7 (Gradient descent only converges to minimizers). Assume that

the conditions of Theorem 7.2 are satisfied and all saddle points of f are strict. Addi-

tionally, let ν be a prior measure with support S which is absolutely continuous with

respect to Lebesgue measure, and assume limk→∞ g
k(x) exists5 for all x in S. Then

Pν [lim
k
gk(x) = x∗] = 1,

4W sc
loc(rm) denotes the center-stable manifold of fixed point rm

5gk denotes the composition of g with itself k times.
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where x∗ is a local minimum.

Proof. Since the set of initial conditions whose limit point is a (strict) saddle point is

a measure zero set and we have assumed limk→∞ g
k(x) exists for all initial conditions

in S then the probability of converging to a local minimizer is 1.

Remark 19. Arguing that limk g
k(x) exists follows from standard arguments in sev-

eral settings of interest (e.g., for analytic functions f that satisfy Lojasiewicz Gradient

Inequality), see papers [74], [1] and references therein.

The importance of Theorem 7.2 will become clear in the examples that appear in

Section 7.5. In the example of Section 7.5.2, the function is not globally Lipschitz (we

use the example that appears in [74]), nevertheless Theorem 7.2 applies and thus we

have convergence to local minimizers with probability 1. In the example of Section

7.5.1 we see that the function has non-isolated critical points.

7.4.2 Proof of Theorem 7.3

We proceed by contradiction. Consider any local minimum x∗, and by assumption

we get that sp (∇2f(x∗)) > γ. Let α ≥ 2
γ
. Therefore the Jacobian I−α∇2f(x∗) of g at

x∗ has spectral radius greater than 1 since sp (I − α∇2f(x∗)) ≥ sp (α∇2f(x∗))− 1 >

αγ − 1 ≥ 1. This implies that the fixed point x∗ of g is (Lyapunov) unstable. Since

this is true for every local minimum, it cannot be true that gradient descent converges

with probability 1 to local minima.

7.5 Examples

7.5.1 Example for non-isolated critical points

Consider the simple example of the cost function f : R3 → R with f(x, y, z) =

2xy+ 2xz−2x−y− z. Its gradient is ∇(f) = (2y+ 2z−2, 2x−1, 2x−1). Naturally,

its saddle points correspond exactly to the line (1/2, w, 1 − w) for w ∈ R, and by

computing their (common) eigenvalues we establish that they are all strict saddles
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(their minimum eigenvalue is −2
√

2). As we expect from our analysis effectively no

trajectories converge to them (instead the value of practically all trajectories goes to

−∞). We plot in red some sample trajectories for small enough step sizes, starting

in the local neighborhood of the equilibrium set.

Figure 13: Example that satisfies the assumptions of Theorem 7.1. The black line
represent critical points of f , all of which are strict. The red lines correspond to
diverging trajectories of gradient descent with small step size.

7.5.2 Example for forward invariant set

We use the same function as in Lee et al. f(x, y) = x2

2
+ y4

4
− y2

2
. As argued

in previous sections, f is not globally Lipschitz so the main result in [74] cannot

be applied here. We will use our Theorem 7.2 which talks about forward invariant

domains.

The critical points of f are (0, 0), (0, 1), (0,−1). (0, 0) is a strict saddle point and

the other two are local minima. Observe that the Hessian ∇2f(x, y) is

J =

 1 0

0 3y2 − 1

 .

For S = (−1, 1) × (−2, 2), so we get that sup(x,y)∈S ‖∇2f(x, y)‖2 ≤ 11 (for y = 2

gets the maximum value). We choose α = 1
12
< 1

11
, and we have g(x, y) = ((1 −
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α)x, (1 + α)y − αy3) = (11x
12
, 13y

12
− y3

12
). It is not difficult to see that g(S) ⊆ S (easy

calculations). The assumptions of Theorem 7.2 are satisfied, hence it is true that

the set of initial conditions in S so that gradient descent converges to (0, 0) has

measure zero. Moreover, by Corollary 7.7 it holds that if the initial condition is taken

(say) uniformly at random in S, then gradient descent converges to (0, 1), (0,−1)

with probability 1. The figure below makes the claim clear, i.e., the set of initial

conditions so that gradient descent converges to (0, 0) lie on the axis y = 0, which

is of measure zero in R2. For all other starting points, gradient descent converges to

local minima. Finally, from the figure one can see that S is forward invariant.

-1.0 -0.5 0.0 0.5 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 14: Example that satisfies the assumptions of Theorem 7.2. The three black
dots represent the critical points. Function f is not Lipschitz.

7.5.3 Example for step-size

We use the same function as in the previous example. Observe that for (0, 0),

(0, 1), (0,−1) we have that the spectral radius of ∇2f is 1, 2, 2 respectively (so the

minimum of all is 1). We choose α ≥ 2 and we get that g(x, y) = (−x, 3y − 2y3).

It is not hard to see that gradient descent does not converge (in the first coordinate

function g cycles between x and −x).
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7.6 Conclusion and remarks

The results of this chapter appear in [103]. Our work argues that saddle points

are indeed of little concern for the gradient descent method in practice under rather

weak assumptions for f which allow for non-isolated critical points. In some sense,

this is the strongest positive result possible without making explicit assumptions on

the structure of the cost function f nor using beneficial random noise/well-chosen

initial conditions. Naturally, all these directions are of key interest and are the object

of recent work (see Section 7.2). Keeping up with this simplest, deterministic imple-

mentation of gradient descent a natural hypothesis is that (in settings of practical

interest) it converges not only to local minimizers but moreover the size of the region

of attraction of each local minimizer is in a sense directly proportional to its quality.

Formalizing such statements and analyzing the average case performance of gradient

descent given random initial conditions is a fascinating question that could shed more

light into the surprising efficiency of the gradient descent method in many cases.
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APPENDIX A

MISSING TERMS, LEMMAS AND PROOFS

A.1 Terms Used in Biology

We provide brief non-technical definitions of a few biological terms that we use in

this thesis.

Gene. A unit that determines some characteristic of the organism, and passes traits

to offsprings. All organisms have genes corresponding to various biological traits,

some of which are instantly visible, such as eye color or number of limbs, and some

of which are not, such as blood type.

Allele. Allele is one of a number of alternative forms of the same gene, found at the

same place on a chromosome, Different alleles can result in different observable traits,

such as different pigmentation.

Genotype. The genetic constitution of an individual organism.

Phenotype. The set of observable characteristics of an individual resulting from the

interaction of its genotype with the environment.

Locus. A locus (plural loci) is the specific location of a gene, DNA sequence, or

position on a chromosome. Each chromosome carries many genes; humans’ estimated

‘haploid’ protein coding genes are 20,000-25,000, on the 23 different chromosomes.

Diploid. Diploid means having two copies of each chromosome. Almost all of the

cells in the human body are diploid.

Haploid. A cell or nucleus having a single set of unpaired chromosomes. Our sex

cells (sperm and eggs) are haploid cells that are produced by meiosis. When sex cells

unite during fertilization, the haploid cells become a diploid cell.
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A.1.1 Heterozygote Advantage (Overdominance)

Heterozygote Advantage describes the case when heterozygote genotype has a

higher relative fitness than homozygote genotype. Cases of heterozygote advantage

have been demonstrated in several organisms. The first confirmation of heterozygote

advantage was with a fruit fly, Drosophila melanogaster. Kalmus demonstrated in a

classic paper [64] how polymorphism can persist in a population through heterozygote

advantage. In humans, sickle-cell anemia is a genetic disorder caused by the pres-

ence of two recessive alleles. Where malaria is common, carrying a single sickle-cell

allele (trait) confers a selective advantage, i.e., being a heterozygote is advantageous.

Specifically, humans with one of the two alleles of sickle-cell disease exhibit less severe

symptoms when infected with malaria. Theorems 3.13 and 3.17 are related to that

phenomenon.

A.2 Statements and Proofs

A.2.1 Lindelőf ’s lemma

The following theorem holds for every separable metric space, i.e., every metric

space that contains a countable, dense subset. In particular, we use this theorem for

Rn extensively in this thesis (in Theorems 2.8, 3.6 and 6.4).

Theorem A.1 (Lindelőf ’s lemma [67]). For every open cover there is a countable

subcover.

A.2.2 Locally Lipschitz are null-set preserving

The following lemma is used in Chapters 2, 3, 6, 7 when we argue that the set

of initial conditions so that the dynamics converges to fixed points with an unsta-

ble direction, has measure zero. It roughly states that if a function f is locally

Lipschitz then it preserves the measure zero sets (measure zero sets are mapped to

measure zero sets).
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Lemma A.2 (Null-set preserving). Let h : S → Rm be a locally Lipschitz function

with S ⊆ Rm, then h is null-set preserving, i.e., for E ⊂ S if E has measure zero

then h(E) has also measure zero.

Proof. The lemma is well-known, but we give a proof for completeness. Let Bγ be

an open ball such that ‖h(y)− h(x)‖ ≤ Kγ ‖y − x‖ for all x,y ∈ Bγ. We consider

the union ∪γBγ which cover Rm by the assumption that h is locally Lipschitz. By

Lindelőf’s lemma A.1 we have a countable subcover, i.e., ∪∞i=1Bi. Let Ei = E ∩ Bi.

We will prove that h(Ei) has measure zero. Fix an ε > 0. Since Ei ⊂ E, we have that

Ei has measure zero, hence we can find a countable cover of open balls C1, C2, ... for

Ei, namely Ei ⊂ ∪∞j=1Cj so that Cj ⊂ Bi for all j and also
∑∞

j=1 µ(Cj) <
ε

Km
i

. Since

Ei ⊂ ∪∞j=1Cj we get that h(Ei) ⊂ ∪∞j=1h(Cj), namely h(C1), h(C2), ... cover h(Ei)

and also h(Cj) ⊂ h(Bi) for all j. Assuming that ball Cj ··= B(x, r) (center x and

radius r) then it is clear that h(Cj) ⊂ B(h(x), Kir) (h maps the center x to h(x)

and the radius r to Kir because of Lipschitz assumption). But µ(B(h(x), Kir)) =

Km
i µ(B(x, r)) = Km

i µ(Cj), therefore µ(h(Cj)) ≤ Km
i µ(Cj) and so we conclude that

µ(h(Ei)) ≤
∞∑
j=1

µ(h(Cj)) ≤ Km
i

∞∑
j=1

µ(Cj) < ε

Since ε was arbitrary, it follows that µ(h(Ei)) = 0. To finish the proof, observe that

h(E) = ∪∞i=1h(Ei) therefore µ(h(E)) ≤∑∞i=1 µ(h(Ei)) = 0.

A.2.3 Point-wise convergence for network coordination games

Theorem A.3 (Point-wise convergence in network coordination). Given any

initial condition replicator dynamics converges to a fixed point (point-wise conver-

gence) in all network coordination games.

Proof. We denote by ûi the expected utility of agent i under mixed strategy profile

p and by uiγ his expected utility when he deviates to strategy γ and all other agents
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still play according to p. We observe that

Ψ(p) =
∑
i

ûi =
∑
i,γ

piγ
∑
j∈N(i)

∑
δ

Aγδij pjδ

is a Lyapunov function for our game since (strict increasing along the trajectories)

∂Ψ

∂piγ
= uiγ +

∑
j∈N(i)

∑
δ

Aδγji pjδ = 2uiγ since Aij = ATji

and hence

dΨ

dt
=
∑
i,γ

∂Ψ

∂piγ

dpiγ
dt

=
∑
i,γ,γ′

piγpiγ′(uiγ − uiγ′)2 ≥ 0,

with equality at fixed points. Hence (as in [70]) we have convergence to equilibria

sets (compact connected sets consisting of fixed points). We address the fact that

this doesn’t suffice for point-wise convergence. To be exact it suffices only in the case

the equilibria are isolated (which is not the case for network coordination games - see

Figure 12).

Let q be a limit point of the trajectory p(t) where p(t) is in the interior of ∆

for all t ∈ R (since we started from an initial condition inside ∆) then we have that

Ψ(q) > Ψ(p(t)). We define the relative entropy.

I(p) = −
∑
i

∑
γ:qiγ>0

qiγ ln(piγ/qiγ) ≥ 0 (Jensen’s inequality)
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and I(p) = 0 iff p = q. We get that

dI

dt
= −

∑
i

∑
γ:qiγ>0

qiγ(uiγ − ûi)

=
∑
i

ûi −
∑
i,γ

∑
j∈N(i)

∑
δ

Aγδij pjδqiγ

=
∑
i

ûi −
∑
j,δ

∑
i∈N(j)

∑
γ

Aγδij pjδqiγ (since Aij = ATji)

=
∑
i

ûi −
∑
j,δ

pjδdjδ

=
∑
i

ûi −
∑
i

d̂i −
∑
j,δ

pjδ(djδ − d̂j)

= Ψ(p)−Ψ(q)−
∑
i,γ

piγ(diγ − d̂i),

where diγ, d̂i correspond to the payoff of player i if he chooses strategy γ and his

expected payoff respectively at point q. The rest of the proof follows in a similar way

to Losert and Akin [82].

We break the term
∑

i,γ piγ(diγ − d̂i) to positive and negative terms (we ignore

zero terms), i.e.,
∑

i,γ piγ(diγ − d̂i) =
∑

i,γ:d̂i>diγ
piγ(diγ − d̂i) +

∑
i,γ:d̂i<diγ

piγ(diγ − d̂i).

Claim A.4. There exists an ε > 0 so that the function Z(p) = I(p)+2
∑

i,γ:d̂i>diγ
pi,γ

has dZ
dt
< 0 for ‖p− q‖1 < ε and Ψ(q) > Ψ(p).

Proof of Claim. Assuming that p→ q, we get uiγ − ûi → diγ − d̂i for all i, γ. Hence

for small enough ε > 0 with ‖p− q‖1 < ε, we have that uiγ − ûi ≤ 3
4
(diγ − d̂i) for the

terms which diγ − d̂i < 0. Therefore

dZ

dt
= Ψ(p)−Ψ(q)−

∑
i,γ:d̂i<diγ

piγ(diγ − d̂i)−
∑

i,γ:d̂i>diγ

piγ(diγ − d̂i) + 2
∑

i,γ:d̂i>diγ

piγ(uiγ − ûi)

≤ Ψ(p)−Ψ(q)−
∑

i,γ:d̂i<diγ

piγ(diγ − d̂i)−
∑

i,γ:d̂i>diγ

piγ(diγ − d̂i) + 3/2
∑

i,γ:d̂i>diγ

piγ(diγ − d̂i)

= Ψ(p)−Ψ(q)︸ ︷︷ ︸
<0

+
∑

i,γ:d̂i<diγ

−piγ(diγ − d̂i)

︸ ︷︷ ︸
≤0

+1/2
∑

i,γ:d̂i>diγ

piγ(diγ − d̂i)

︸ ︷︷ ︸
≤0

< 0,
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where we substitute
piγ
dt

= piγ(uiγ − ûi) (replicator), and the claim is proved. Notice

that Z(p) ≥ 0 (sum of positive terms and I(p) ≥ 0) and is zero iff p = q. (i)

To finish the proof of the theorem, if q is a limit point of p(t), there exists an

increasing sequence of times ti, with tn →∞ and p(tn)→ q. We consider ε′ such that

the set C = {p : Z(p) < ε′} is inside B = ‖p− q‖1 < ε where ε is from claim above.

Since p(tn)→ q, consider a time tN where p(tN) is inside C. From claim above we get

that Z(p) is decreasing inside B (and hence inside C), thus Z(p(t)) ≤ Z(p(tN)) < ε′

for all t ≥ tN , hence the orbit will remain in C. By the fact that Z(p(t)) is decreasing

in C (claim above) and also Z(p(tn)) → Z(q) = 0 it follows that Z(p(t)) → 0 as

t→∞. Hence p(t)→ q as t→∞ using (i).

A.3 Mathematica code

A.3.1 Mathematica code for proving Lemma 5.35

Reduce[((1-k*x)/(m - k))/(b + (1 - b)*(x + (1 - k*x)/(m - k)))

<((1 - (k + 1)* x) /(m - k - 1))/(b + (1 - b)*(x + (1 -

(k + 1)*x)/(m - k - 1))) && 1 > b > 0 && 1 > x > 0 &&

1/(k + 1) > x > 1/m && m >= 3 && m >= k + 2 && k >= 1]

False

A.3.2 Mathematica code for proving Lemma 5.38

First inequality in Lemma 5.38:

Reduce[1 > b > 0 && m >= 3 && -(m - 2) (1 - b) s^2 - 2 s (1 + b

(m - 2)) + 1 + b (m - 2) == 0 && 0 < s < x < 1 && y ==

(1 - x)/(m - 1) && t == (x*y*(1 - b))/(b + (1 - b)*

(x + y)) && t <= 1/m && (1 - m*t)*(y + b + (1 - 2*b)*y)/

(b + (1 - b)*x^2 + (1 - b)*(m - 1)*y^2) >= 1]
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False

Second inequality in Lemma 5.38:

Reduce[1 > b > 0 && m >= 3 && -(m - 2) (1 - b) s^2 - 2 s (1 + b

(m - 2)) + 1 + b (m - 2) == 0 && 0 < s < x < 1 && y ==

(1 - x)/(m - 1) && 1/m >= t && t == (x*y*(1 - b))/(b +

(1 - b)*(x + y)) && ((1 - m*t)*((2*(x + y) + b*(2 - x +

(m - 3)*y))/(b + (1 - b)*x^2 + (1 - b)*(m - 1)*y^2) -

(2*x*(b + (1 - b)*x)^2 + 2*(m - 1)*y*(b + (1 - b)*y)^2)/

((b + (1 - b)*x^2 + (1 - b)*(m - 1)*y^2)^2)) >= 1)]

False

A.3.3 Mathematica code for proving τc > τu when m > 2

Reduce[1 > b > 0 && m >= 3 && -(m - 2) (1 - b) s^2 - 2 s (1 + b

(m - 2)) + 1 + b (m - 2) == 0 && 0 < s < 1 && (s*(1 - s)

*(1 - b))/((m - 1)*b + (1 - b)*(1 + (m - 2)*s)) <=

(1 - b)/(m*(2 - 2*b + m*b))]

False
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T., and Roughgarden, T., “The price of stability for network design with
fair cost allocation,” Symposium on Foundations of Computer Science (FOCS),
2004.

[6] Arora, S., Ge, R., Ma, T., and Moitra, A., “Simple, efficient, and neural
algorithms for sparse coding,” Conference on Learning Theory (COLT), 2015.

[7] Arora, S., Hardt, M., and Vishnoi, N. K., “Off the convex path,” 2015.

[8] Arora, S., Hazan, E., and Kale, S., “The multiplicative weights update
method: a meta algorithm and applications,” 2005.

[9] Arora, S., Rabani, Y., and Vazirani, U., “Simulating quadratic dynami-
cal systems is PSPACE-complete (preliminary version),” ACM Symposium on
Theory of Computing (STOC), 1994.

[10] Asadpour, A. and Saberi, A., “On the inefficiency ratio of stable equilibria
in congestion games,” Conference on Web and Internet Economics (WINE),
2009.

[11] Balcan, M.-F., Constantin, F., and Mehta, R., “The weighted majority
algorithm does not converge in nearly zero-sum games,” ICML Workshop on
Markets, Mechanisms and Multi-Agent Models, 2012.

[12] Barton, N. H., Novak, S., and Paixão, T., “Diverse forms of selection
in evolution and computer science,” Proceedings of the National Academy of
Sciences (PNAS), vol. 111, no. 29, 2014.

242



[13] Baum, E. B., Boneh, D., and Garrett, C., “On genetic algorithms,” Con-
ference on Computational Learning Theory (COLT), 1995.

[14] Baum, L. and Eagon, J., “An inequality with applications to statistical es-
timation for probabilistic functions of Markov processes and to a model for
ecology,” Bull. Amer. Math. Soc., vol. 73, 1967.
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