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Abstract. In this paper we prove that the rate of convergence, or mixing time, of a broad class of evolutionary
dynamics in finite populations is roughly logarithmic in the size of the state space. An important special case of
such a stochastic process is the Wright-Fisher model from evolutionary biology (with selection and mutation) on
a population of size N over m genotypes. Our main result implies that the mixing time of this process is O(logN)
for all mutation rates and fitness landscapes, and solves the main open problem from [DSV12]. In particular, it
significantly extends the main result in [Vis15] who proved this for m = 2. Biologically, such models have been
used to study the evolution of viral populations with applications to drug design strategies countering them. Here
the time it takes for the population to reach a steady state is important both for the estimation of the steady-state
structure of the population as well in the modeling of the treatment strength and duration. Our result, that such
populations exhibit rapid mixing, makes both of these approaches sound.

Technically, we make a novel connection between Markov chains arising in evolutionary dynamics and
dynamical systems on the probability simplex. This allows us to use the local and global stability properties of the
fixed points of such dynamical systems to construct a contractive coupling in a fairly general setting. We expect
that our mixing time result would be useful beyond the evolutionary biology setting, and the techniques used
here would find applications in bounding the mixing times of Markov chains which have a natural underlying
dynamical system.
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1. Introduction

Evolutionary dynamical systems are central to the sciences due to their versatility in modeling a wide
variety of biological, social and cultural phenomena, see [Now06]. Such dynamics are often used to capture
the deterministic, infinite population setting, and are typically the first step in our understanding of seemingly
complex processes. However, real populations are finite and often lend themselves to substantial stochastic
effects (such as random drift) and it is often important to understand these effects as the population size varies.
Hence, stochastic or finite population versions of evolutionary dynamical systems are appealed to in order
to study such phenomena. While there are many ways to translate a deterministic dynamical system into a
stochastic one, one thing remains common: the mathematical analysis becomes much harder as differential
equations are easier to analyze and understand than stochastic processes.

Consider the example of the error-prone evolution of an asexual haploid population in evolutionary biology;
this is also the main motivation for this work. Each individual in the population could be one of m types. An
individual of type i has a fitness (that translates to the ability to reproduce) which is specified by a positive
integer ai, and captured as a whole by a diagonal m×m matrix A whose (i, i)th entry is ai. The reproduction is
error-prone and this is captured by an m×m stochastic matrix Q whose (i, j)th entry captures the probability
that the jth type will mutate to the ith type during reproduction.1 If the population is assumed to be infinite
and its evolution deterministic, then one can track the fraction of each type at step t of the evolution by a
vector xxx(t) ∈ ∆m (the probability simplex of dimension m) whose evolution is then governed by the difference
equation xxx(t+1) = QAxxx(t)

‖QAxxx(t)‖1
. This was studied in the pioneering work of Eigen and co-authors [Eig71,ES77].

Of interest is the steady state2 or the limiting distribution of this process and how it changes as one changes
the evolutionary parameters Q and A. Importantly, this particular dynamical system has found use in modeling
rapidly evolving viral populations (such as HIV), which in turn has guided drug and vaccine design strategies.
As a result, these dynamics are well-studied; see [DSV12,Vis] for an in depth discussion.

However, viral populations are generally not infinite and show stochastic effects: e.g., the effective popula-
tion size of HIV-1 in infected individuals is approximately 103−106 [KAB06,BSSD11], which is believed to
be responsible for the strongly stochastic nature of its evolution. Several researchers have studied stochastic
versions of Eigen’s deterministic evolution equations [NS89,CF98,AF98,vNCM99,Wil05,RPM08,SRA08,
Mus11,TBVD12]. One such stochastic version, motivated by the Wright-Fisher model in population genetics,
was studied by Dixit et al. [DSV12]. Here, the population is fixed to a size N and, after normalization, is a
random point in ∆m; say XXX (t) at time t. How does one generate XXX (t+1) in this model when the parameters are
still described by the matrices Q and A as in the infinite population case? To do this, in the replication (R)
stage, one first replaces an individual of type i in the current population by ai individuals of type i: the total
number of individuals of type i in the intermediate population is therefore aiNX (t)

i . In the selection (S) stage,
the population is culled back to size N by sampling without replacement N individuals from this intermediate
population. Finally, since the evolution is error prone, in the mutation (M) stage, one then mutates each
individual in this intermediate population independently and stochastically according to the matrix Q. The
vector XXX (t+1) then is the normalized frequency vector of the resulting population.

While this stochastic (RSM) model captures the effect of population size, it is useful only if the mixing
time, or the time it takes for the population to reach (close to) its steady state, is much smaller than the size of
the state space. For example, in simulations, samples from close to steady state are needed and this is only
computationally feasible when the mixing time is small. Moreover, the efficacy of drug design strategies
depends on the time it takes the population to evolve to steady state – the mixing time therefore models the
minimum required duration of treatment. Further, predictions about the real world, stochastic, version of the
population are often made by studying the fixed point of the deterministic evolution. In order to argue that
these predictions are valid for observed populations, one must show that the finite population reaches close to

1We follow the convention that a matrix if stochastic if its columns sum up to 1.
2Note that there is a unique steady state, called the quasispecies, when QA > 0.
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the steady state predicted by the deterministic infinite population dynamics in a reasonable amount of time.
However, the number of states in the RSM process is roughly Nm, and this can be prohibitively large. For
example, even for a small constant m = 30 and a population of size 10,000, the number of states can grow to
more than 2300! While the only way to know that the population is from a distribution close to the steady
state is to prove an upper bound on the mixing time of the RSM process, in practice, specific statistics of the
population are tracked until they seem to stabilize. This, however, can be misleading and there are well known
examples of stochastic processes that appear to get stuck before going to the true steady state.3

The importance of obtaining rigorous bounds for mixing time of RSM model was first pointed out
in [DSV12]. Rigorous mixing time results are far and few; they have either ignored mutation, assumed
that the model is neutral (i.e., types have the same fitness), or moved to the diffusion limit which requires both
mutation and selection pressure to be weak. Recently, the mixing time problem when m = 2 for all Q and A
was solved [Vis15]. The author proved that the mixing time for the two type case is roughly logN when all
other parameters of the model are constants when compared to N. As discussed in the technical overview,
there are significant hurdles to extend this result to m > 2 and this problem has remained open since it was
raised in [DSV12].

1.1. Our contribution. In this paper we prove that the mixing time of any RSM model parametrized by
m×m matrices Q and A which has a unique stationary distribution is O(logN) (recall that N is the population
size). Thus, we resolve the main problem concerning the RSM model.

Perhaps more interestingly this result turns out to be a corollary of a rapid mixing result for a fairly general
class of evolutionary dynamics in finite populations which should have applicability beyond evolutionary
biology. Before we describe the result we present the setup: consider an infinite population whose evolution is
described by a function f : ∆m 7→ ∆m where the population at time t, captured by the vector xxx(t) ∈ ∆m, evolves
according to the rule xxx(t+1) = f (xxx(t)). Inspired by the Wright-Fisher model, we convert an infinite population
dynamics to a finite one, say of size N, as follows: imagine that now the fraction of each type is captured by a
random vector XXX (t) ∈ ∆m and the population at time t +1 is obtained by sampling N times independently from
the distribution f (XXX (t)). Our main result is that, under mild assumptions on f , the mixing time is bounded by
O(logN).

Theorem 1.1 (Informal statement - see Theorem 3.6). Let f : ∆m 7→ ∆m be an evolution function which
satisfies certain mild conditions explained below, and consider the stochastic evolution guided by f on a
population of size N. Then, the stochastic evolution converges to its stationary distribution in time O(logN).

We first explain the conditions on f required by the theorem; see Definition 3.3 for a formal description. The
key conditions are 1) that f has a “unique fixed point” τττ which lies in the interior of ∆m, 2) that the unique
fixed point of f shows “contraction near the fixed point” and 3) that f shows “convergence to fixed point”.
While it is clear what (1) and (3) mean, the second condition roughly means that there is a k > 0 such that
if J(xxx) denotes the Jacobian of f at xxx, then for all xxx which are near τττ, ‖Jk(xxx)‖1 < 1. For technical reasons,
we also need that f is twice differentiable in the interior of ∆m.While we would have liked the contractive
condition to hold for k = 1, unfortunately, there are simple examples where this is false. As we shall see later,
the fact that we cannot take k = 1 is the main source of all the technical difficulties that arise in our work.

While we do not prove that these assumptions on f are necessary for the theorem to hold, there is strong
justification for them as we discuss below. Although the case of f having multiple fixed points is interesting
in its own right as a model for populations with several distinct “phases”, we would expect the stochastic
population in this setting to exhibit slow mixing, since it can get stuck close to one of the fixed points and not
get the chance to explore the part of the state space near the other fixed points. We therefore concentrate on
the case where there is a unique fixed point. The assumption that this fixed point be located in the interior is
motivated by the fact that this is the case in most applications, e.g. Eigen’s model has this property when
Q > 0 and A > 0, entry-wise. The “contraction near the fixed point” condition ensures that the fixed point

3In fact, there are striking examples of this, see for instance [MV05,SV07].
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is indeed a steady state of the deterministic evolution in the sense of being asymptotically stable: once the
evolution reaches close enough to the fixed point, it converges to the latter. Together with the “convergence to
fixed point” condition (which, again, is satisfied by models such as Eigen’s model), this condition also ensures
that the behavior of the deterministic system is free of exotic features, e.g. the presence of cycles, which may
present a barrier to the fast mixing of the stochastic evolution The smoothness condition is of a more technical
nature, but models our expectation that any evolutionary dynamics should not be too susceptible to small
changes in the population profile.

Several other remarks are in order. 1) We treat m, a bound on the derivatives of f , and the rate of contraction
as constants and, hence, we do not optimize the dependence on these parameters in this paper. We leave it as
an open problem to determine to what extent our results can be generalized when m is a growing function of
N. In this paper, our emphasis instead is on circumventing the obstacles that arose in previous attempts to
prove a mixing time of close to O(logN) for general models: earlier works in this direction either put stringent
conditions on the parameters of the model (e.g., Dixit et al. had to place very strong conditions on the matrices
Q and A for their mixing time result to hold), or were valid only when the number of genotypes was very small
(e.g. Vishnoi [Vis15] required the condition m = 2). 2) It is not obvious that the desired mixing time result for
the RSM model is a corollary of the main theorem and we give a proof in Section 3.2. This result should be
of independent interest in population genetics. 3) If one wishes, one can obtain a version of our result for the
RSM model in the sampling without replacement setting. We omit the details from this version of the paper.
Note however that, for the main theorem, it makes little sense to talk about sampling without replacement.

Finally, we give a quick comparison of our techniques with that of [Vis15] who proved a similar result
for m = 2. (See the technical overview below for a more detailed discussion.) While [Vis15] also used the
underlying deterministic process, it was only to bring two copies of the Markov chain close enough (about a
distance

√
1/N). Subsequently, his argument involved the construction of an ad-hoc coupling which contracts

when m = 2. However, there appear to be serious hurdles when one tries to generalize this coupling for m > 2.
We bypass these obstacles by again resorting to the properties of f listed above, however, in novel ways. We
now move on to illustrating our key techniques.

2. Technical overview

We analyze the mixing time of our stochastic process by studying the time required for evolutions started
at two arbitrary starting states XXX (0) and YYY (0) to collide. More precisely, let C be any Markovian coupling of
two stochastic evolutions XXX and YYY , both guided by a smooth contractive evolution f , which are started at XXX (0)

and YYY (0). Let T be the first (random) time such that XXX (T ) = YYY (T ). It is well known that if it can be shown that
P [T > t]≤ 1/4 for every pair of starting states XXX (0) and YYY (0) then tmix(1/4)≤ t. We show that such a bound
on P [T > t] holds if we couple the chains using the optimal coupling of two multinomial distributions (see
Section 3 for a definition of this coupling).

Our starting point is the observation that the optimal coupling and the definition of the evolutions implies
that for any time t,

E
[∥∥∥XXX (t+1)−YYY (t+1)

∥∥∥
1
||| XXX (t),YYY (t)

]
=
∥∥∥ f (XXX (t))− f (YYY (t))

∥∥∥
1
. (1)

Now, if f were globally contractive, so that the right hand side of eq. (1) was always bounded above by
ρ ′
∥∥∥XXX (t)−YYY (t)

∥∥∥
1
for some constant ρ ′ < 1, then we would get that the expected distance between the two

copies of the chains contracts at a constant rate. Since the minimum possible positive `1 distance between
two copies of the chain is 1/N, this would have implied an O(logN) mixing time using standard arguments.
However, such a global assumption on f , which is equivalent to requiring that the Jacobian J of f satisfies
‖J(xxx)‖1 < 1 for all xxx ∈ ∆m, is far too strong. In particular, it is not satisfied by standard systems such as
Eigen’s dynamics discussed above.

Nevertheless, these dynamics do satisfy a more local version of the above condition. That is, they have
a unique fixed point τττ to which they converge quickly, and in the vicinity of this fixed point, some form of
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contraction holds. These conditions motivate the “unique fixed point”, “contraction near the fixed point”,
and the “convergence to fixed point” conditions in our definition of a smooth contractive evolution (Defini-
tion 3.3). However, crucially, the “contraction near the fixed point” condition, inspired from the definition of
“asymptotically stable” fixed points in dynamical systems, is weaker than the stepwise contraction condition
described in the last paragraph, even in the vicinity of the fixed point. As we shall see shortly, this weakening
is essential for generalizing the earlier results of [Vis15] to the m > 2 case, but comes at the cost of making
the analysis more challenging.

However, we first describe how the “convergence to fixed point” condition is used to argue that the chains
come close to the fixed point in O(logN) time. This step of our argument is the only one technically quite
similar to the development in [Vis15]; our later arguments need to diverge widely from that paper. Although
this step is essentially an iterated application of appropriate concentration results along with the fact that the
“convergence to fixed point” condition implies that the deterministic evolution f comes close to the fixed point
τττ at an exponential rate, complications arise because f can amplify the effect of the random perturbations
that arise at each step. In particular, if L > 1 is the maximum of ‖J(xxx)‖1 over ∆m, then after ` steps, a random
perturbation can become amplified by a factor of L`. As such, if ` is taken to be too large, these accumulated
errors can swamp the progress made due to the fast convergence of the deterministic evolution to the fixed
point. These considerations imply that the argument can only be used for `= `0 logN steps for some small
constant `0, and hence we are only able to get the chains within Θ(N−γ) distance of the fixed point, where
γ < 1/3 is a small constant. In particular, the argument cannot be carried out all the way down to distance
O(1/N), which, if possible, would have been sufficient to show that the coupling time is small with high
probability. Nevertheless, it does allow us to argue that both copies of the chain enter an O(N−γ) neighborhood
of the fixed point in O(logN) steps.

At this point, [Vis15] showed that in the m = 2 case, one could take advantage of the contractive behavior
near the fixed point to construct a coupling obeying eq. (1) in which the right hand side was indeed contractive:
in essence, this amounted to a proof that ‖J‖1 < 1 was indeed satisfied in the small O(N−γ) neighborhood
reached at the end of the last step. This allowed [Vis15] to complete the proof using standard arguments, after
some technicalities about ensuring that the chains remained for a sufficiently long time in the neighborhood
of the fixed point had been taken care of.

The situation however changes completely in the m > 2 case. It is no longer possible to argue in general
that ‖J(xxx)‖1 < 1 when xxx is in the vicinity of the fixed point, even when there is fast convergence to the fixed
point. Instead, we have to work with a weaker condition (the “contraction to the fixed point” condition alluded
to earlier) which only implies that there is a positive integer k, possibly larger than 1, such that in some vicinity
of the fixed point,

∥∥Jk
∥∥

1 < 1. In the setting used by [Vis15], k could be taken to be 1, and hence it could be
argued via eq. (1) that the distance between the two coupled copies of the chains contracts in each step. This
argument however does not go through when only a kth power of J is guaranteed to be contractive while J
itself could have 1→ 1 norm larger than 1. This inability to argue stepwise contraction is the major technical
obstacle in our work when compared to the work of [Vis15], and the source of all the new difficulties that
arise in this more general setting.

As a first step toward getting around the difficulty of not having stepwise contraction, we prove Theorem 4.1,
which shows that the eventual contraction after k steps can be used to ensure that the distance between two
evolutions xxx(t) and yyy(t) close to the fixed point contracts by a factor ρk < 1 over an epoch of k steps (where k
is as described in the last paragraph), even when the evolutions undergo arbitrary perturbations uuu(t) and vvv(t)

at each step, provided that the difference uuu(t)− vvv(t) between the two perturbations is small compared to the
difference xxx(t−1)− yyy(t−1) between the evolutions at the previous step. The last condition actually asks for a
relative notion of smallness, i.e., it requires that

∥∥∥ξξξ
(t)
∥∥∥

1
··=
∥∥∥uuu(t)− vvv(t)

∥∥∥
1
≤ δ

∥∥∥xxx(t−1)− yyy(t−1)
∥∥∥

1
, (2)
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where δ is a constant specified in the theorem. Note that the theorem is a statement about deterministic
evolutions against possibly adversarial perturbations, and does not require uuu(t) and vvv(t) to be stochastic, but
only that they follow the required conditions on the difference of the norm (in addition to the implied condition
that the evolution xxx(t) and yyy(t) remain close to the fixed point during the epoch).

Thus, in order to use Theorem 4.1 for showing that the distance
∥∥∥XXX (t)−YYY (t)

∥∥∥
1
between the two coupled

chains contracts after every k iterations of eq. (1), we need to argue that the required condition on the
perturbations in eq. (2) holds with high probability over a given epoch during the coupled stochastic evolution
of XXX (t) and YYY (t). (In fact, we also need to argue that the two chains individually remain close to the fixed point,
but this is easier to handle and we ignore this technicality in this proof overview; the details appear in the
formal proofs in Section 5.)

However, at this point, a complication arises from the fact that Theorem 4.1 requires the difference ξξξ
(t)

between the perturbations at time t to be bounded relative to the difference
∥∥∥XXX (t−1)−YYY (t−1)

∥∥∥
1
at time t−1.

In other words, the upper bounds required on the ξξξ
(t) become more stringent as the two chains come closer to

each other. This fact creates a trade-off between the probability with which the condition in eq. (2) can be
enforced in an epoch, and the required lower bound on the distance between the chains required during the
epoch so as to ensure that probability (this trade-off is technically based on Lemma 3.5). To take a couple of
concrete examples, when

∥∥∥XXX (t)−YYY (t)
∥∥∥

1
is Ω(logN/N) in an epoch, we can ensure that eq. (2) remains valid

with probability at least 1−N−Θ(1) (see the discussion following Theorem 4.4), so that with high probability
Ω(logN) consecutive epochs admit a contraction allowing the distance between the chains to come down
from Θ(N−γ) at the end of the first step to Θ(logN/N) at the end of this set of epochs.

Ideally, we would have liked to continue this argument till the distance between the chains is Θ(1/N)
and (due to the properties of the optimal coupling) they have a constant probability of colliding in a single
step. However, due to the trade-off referred to earlier, when we know only that

∥∥∥XXX (t)−YYY (t)
∥∥∥

1
is Ω(1/N)

during the epoch, we can only guarantee the condition of eq. (2) with probability Θ(1) (see the discussion
following the proof of Theorem 4.4). Thus, we cannot claim directly that once the distance between the
chains is O(logN/N), the next Ω(log logN) epochs will exhibit contraction in distance leading the chain to
come as close as O(1/N) with a high enough positive probability. To get around this difficulty, we consider
O(log logN) epochs with successively weaker guaranteed upper bounds on

∥∥∥XXX (t)−YYY (t)
∥∥∥

1
. Although the

weaker lower bounds on the distances lead in turn to weaker concentration results when Theorem 4.4 is
applied, we show that this trade-off is such that we can choose these progressively decreasing guarantees so
that after this set of epochs, the distance between the chains is O(1/N) with probability that it is small but
at least a constant. Since the previous steps, i.e., those involving making both chains come within distance
O(N−γ) of the fixed point (for some small constant γ < 1), and then making sure that the distance between
them drops to O(logN/N), take time O(logN) with probability 1− o(1), we can conclude that under the
optimal coupling, the collision or coupling time T satisfies

P [T > O(logN)]≤ 1−q, (3)

for some small enough constant q, irrespective of the starting states XXX (0) and YYY (0) (note that here we are also
using the fact that once the chains are within distance O(1/N), the optimal coupling has a constant probability
of causing a collision in a single step). The lack of dependence on the starting states allows us to iterate eq. (3)
for Θ(1) consecutive “blocks” of time O(logN) each to get

P [T > O(logN)]≤ 1
4
,

which gives us the claimed mixing time.
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3. Preliminaries and formal statement of results

In preparation for formally stating our main result, we now discuss some preliminary notation, definitions
and technical tools that will be used later on. We then formally state our main theorem in Sections 3.1 and 3.2.
Notation. We denote the probability simplex on a set of size m as ∆m. Vectors in Rm, and probability
distributions in ∆m are both denoted in boldface, and x j denotes the jth co-ordinate of a given vector xxx. Time
indices are denoted by superscripts. Thus, a time indexed scalar s at time t is denoted as s(t), while a time
indexed vector xxx at time t is denotes as xxx(t). The letters XXX and YYY (with time superscripts and co-ordinate
subscripts, as appropriate) will be used to denote random vectors. Scalar random vectors and matrices are
denoted by other capital letters. Boldface 111 denotes a vector all whose entries are 1.
Operators and norms. For any squarematrixM, we denote by ‖M‖1 its 1→ 1 norm defined asmax‖v‖1=1 ‖Mv‖1,
by ‖M‖2 its operator norm defined as max‖v‖2=1 ‖Mv‖2, and by sp(M) its spectral radius defined as the
maximum of the absolute values of its eigenvalues. The following theorem, stated here only in the special
case of the 1→ 1 norm, relates the spectral radius with other matrix norms.
Theorem 3.1 (Gelfand’s formula, specialized to the 1→ 1 norm). For any square matrix M, we have

sp(M) = lim
l→∞

∥∥Ml
∥∥1/l

1 .

Derivatives. Let g : Rm→ Rm be any differentiable function, whose co-ordinates are denoted as gi : Rm→ R.
The Jacobian J(xxx) of g at a point xxx ∈ Rm is the m×m matrix whose (i, j) entry is ∂gi(xxx)

∂x j
. The Hessian of a

twice differentiable function h : Rm→ R at a given point xxx is the m×m symmetric matrix whose (i, j) entry
is ∂ 2h(xxx)

∂xi∂x j
. We use the following special case of Taylor’s theorem.

Theorem 3.2 (Taylor’s theorem, truncated). Let g : Rm→ Rm be a twice differentiable function, and let
J(zzz) denote the Jacobian of g at zzz. Let xxx,yyy ∈ Rm be two points, and suppose there exists a positive constant B
such that at every point on the line segment joining xxx to yyy, the Hessians of each of the m co-ordinates gi of g
have operator norm at most 2B. Then, there exists a vvv ∈ Rm such that

g(xxx) = g(yyy)+ J(yyy)(xxx− yyy)+ vvv,

and |vi| ≤ B‖xxx− yyy‖2
2 for each i ∈ [m].

Couplings and mixing times. Let ppp,qqq ∈ ∆m be two probability distributions on m objects. A coupling C of
ppp and qqq is a distribution on ordered pairs in [m]× [m], such that its marginal distribution on the first co-ordinate
is equal to ppp and that on the second co-ordinate is equal to qqq. A simple, if trivial, example of a coupling is the
joint distribution obtained by sampling the two co-ordinates independently, one from ppp and the other from qqq.

Couplings allow a very useful dual characterization of the total variation distance, as stated in the following
well known lemma.
Lemma 3.3 (Coupling lemma). Let ppp,qqq ∈ ∆m be two probability distributions on m objects. Then,

‖ppp−qqq‖TV =
1
2
‖ppp−qqq‖1 = min

C
P(A,B)∼C [A 6= B] ,

where the minimum is taken over all valid couplings C of ppp and qqq.
Moreover, the coupling in the lemma can be explicitly described. We use this coupling extensively in our

arguments, and hence we record some of its useful properties here.
Definition 3.1 (Optimal coupling). Let ppp,qqq ∈ ∆m be two probability distributions on m objects. For each
i ∈ [m], let si ··= min(pi,qi), and s ··= ∑

m
i=1 si. Sample U,V,W independently at random as follows:

P [U = i] =
si

s
, P [V = i] =

pi− si

1− s
, and P [W = i] =

qi− si

1− s
, for all i ∈ [m].

We then sample (independent of U,V,W ) a Bernoulli random variable H with mean s. The sample (A,B)
given by the coupling is (U,U) if H = 1 and (V,W ) otherwise.

6



It is easy to verify that A ∼ ppp, B ∼ qqq and P [A = B] = s = 1−‖ppp−qqq‖TV. Another easily verified but
important property is that for any i ∈ [m]

P [A = i,B 6= i] =

{
0 if pi < qi,
pi−qi if pi ≥ qi.

Definition 3.2 (Mixing time). Let M be an ergodic Markov chain on a finite state space Ω with stationary
distribution πππ . Then, the mixing time tmix(ε) is defined as the smallest time such that for any starting state
S(0), the distribution of the state S(t) at time t is within total variation distance ε of πππ . The term mixing time
is also used for tmix(ε) for a fixed values of ε < 1/2. For concreteness, in the rest of this paper, we use tmix to
refer to tmix(1/e) (though any other constant smaller than 1/2 could be chosen as well in place of 1/e without
changing any of the claims).

A standard technique for obtaining upper bounds on mixing times is to use the Coupling Lemma above.
Suppose S(t)1 and S(t)2 are two evolutions of an ergodic chain M such that their evolutions are coupled according
to some coupling C . Let T be the stopping time such that S(T )1 = S(T )2 . Then, if it can be shown that
P [T > t]≤ 1/e for every pair of starting states (S(0)1 ,S(0)2 ), then it follows that tmix ··= tmix(1/e)≤ t.
Concentration. We now discuss some concentration results that are used extensively in our later arguments.
We begin with some standard Chernoff-Hoeffding type bounds.

Theorem 3.4 (Chernoff-Hoeffding bounds [DP09]). Let Z1,Z2, . . . ,ZN be i.i.d Bernoulli random variables
with mean µ . We then have

(1) When 0 < δ ≤ 1,

P

[∣∣∣∣∣ 1
N

N

∑
i=1

Zi−µ

∣∣∣∣∣> µδ

]
≤ 2exp

(
−Nµδ

2/3
)
.

(2) When δ ≥ 1,

P

[∣∣∣∣∣ 1
N

N

∑
i=1

Zi−µ

∣∣∣∣∣> µδ

]
≤ exp(−Nµδ/3) .

An important tool in our later development is the following lemma, which bounds additional “discrepancies”
that can arise when one samples from two distribution ppp and qqq using an optimal coupling. The important
feature for us is the fact that the additional discrepancy (denoted as eee in the lemma) is bounded as a fraction of
the “initial discrepancy” ‖ppp−qqq‖1. However, such relative bounds on the discrepancy are less likely to hold
when the initial discrepancy itself is very small, and hence, there is a trade-off between the lower bound that
needs to be imposed on the initial discrepancy ‖ppp−qqq‖1, and the desired probability with which the claimed
relative bound on the additional discrepancy eee is to hold. The lemma makes this delicate trade-off precise.

Lemma 3.5. Let ppp and qqq be probability distributions on a universe of size m, so that ppp,qqq ∈ ∆m. Consider an
optimal coupling of the two distributions, and let xxx and yyy be random frequency vectors with m co-ordinates
(normalized to sum to 1) obtained by taking N independent samples from the coupled distributions, so that
E [xxx] = ppp and E [yyy] = qqq. Define the random error vector eee as

eee ··= (xxx− yyy)− (ppp−qqq).

Suppose c > 1 and t (possibly dependent upon N) are such that ‖ppp−qqq‖1 ≥ ctm
N . We then have

‖eee‖1 ≤
(

2√
c

)
‖ppp−qqq‖1

with probability at least 1−2mexp(−t/3).

Proof. The properties of the optimal coupling of the distributions ppp and qqq imply that since the N coupled
samples are taken independently,
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(1) |xi− yi|= 1
N ∑

N
j=1 R j, where R j are i.i.d. Bernoulli random variables with mean |pi−qi|, and

(2) xi− yi has the same sign as pi−qi.
The second fact implies that |ei|= ||xi− yi|− |(pi−qi)||. By applying the concentration bounds from Theo-
rem 3.4 to the first fact, we then get (for any arbitrary i ∈ [m])

P
[
|ei|>

√
t

N |pi−qi|
· |pi−qi|

]
≤ 2exp(−t/3) , if

t
N |pi−qi|

≤ 1, and

P
[
|ei|>

t
N |pi−qi|

· |pi−qi|
]
≤ exp(−t/3) , if

t
N |pi−qi|

> 1.

One of the two bounds applies to every i ∈ [m] (except those i for which |pi−qi|= 0, but in those cases, we
have |ei|= 0, so the bounds below will apply nonetheless). Thus, taking a union bound over all the indices,
we see that with probability at least 1−2mexp(−t/3), we have

‖eee‖1 =
m

∑
i=1
|ei| ≤

√
t
N

m

∑
i=1

√
|pi−qi|+

tm
N

≤
√

tm
N

√
‖ppp−qqq‖1 +

tm
M

(4)

≤
(

1√
c
+

1
c

)
‖ppp−qqq‖1 . (5)

Here, eq. (4) uses the Cauchy-Schwarz inequality to bound the first term while eq. (5) uses the hypothesis in
the lemma that ctm

N ≤ ‖ppp−qqq‖1. The claim of the lemma follows since c > 1. �

3.1. Main theorem. We are now ready to state our main theorem. We begin by formally defining the
conditions on the evolution function required by the theorem.

Definition 3.3 (Smooth contractive evolution). A function f : ∆m → ∆m is said to be a (L,B,ρ) smooth
contractive evolution if it has the following properties:

Smoothness: f is twice differentiable in the interior of ∆m. Further, the Jacobian J of f satisfies
‖J(x)‖1 ≤ L for every xxx in the interior of ∆m, and the operator norms of the Hessians of its co-
ordinates are uniformly bounded above by 2B at all points in the interior of ∆m.

Unique fixed point: f has a unique fixed point τττ in ∆m which lies in the interior of ∆m.
Contraction near the fixed point: At the fixed point τττ , the Jacobian J(τττ) of f satisfies

sp(J(τττ))< ρ < 1.

Convergence to fixed point: For every ε > 0, there exists an ` such that for any xxx ∈ ∆m,∥∥ f `(xxx)− τττ
∥∥

1 < ε.

Remark 3.1. Note that the last condition implies that ‖ f t(xxx)− τττ‖1 = O(ρ t) in the light of the previous
condition and the smoothness condition (see Lemma A.1). Also, it is easy to see that the last two conditions
imply the uniqueness of the fixed point, i.e., the second condition. However, the last condition on global
convergence does not by itself imply the third condition on contraction near the fixed point. Consider,
e.g., g : [−1,1]→ [−1,1] defined as g(x) = x− x3. The unique fixed point of g in its domain is 0, and
we have g′(0) = 1, so that the third condition is not satisfied. On the other hand, the last condition is
satisfied, since for x ∈ [−1,1] satisfying |x| ≥ ε , we have |g(x)| ≤ |x|(1−ε2). In order to construct a function
f : [0,1]→ [0,1] with the same properties, we note that the range of g is [−x0,x0] where x0 = 2/(3

√
3), and

consider f : [0,1]→ [0,1] defined as f (x) = x0 +g(x− x0). Then, the unique fixed point of f in [0,1] is x0,
f ′(x0) = g′(0) = 1, the range of f is contained in [0,2x0]⊆ [0,1], and f satisfies the fourth condition in the
definition but does not satisfy the third condition.
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Given an f which is a smooth contractive evolution, and a population parameter N, we can define a
stochastic evolution guided by f as follows. The state at time t is a probability vector xxx(t) ∈ ∆m. The state
xxx(t+1) is then obtained in the following manner. Define yyy(t) = f (xxx(t)). Obtain N independent samples from
the probability distribution yyy(t), and denote by zzz(t) the resulting frequency vector over [m]. Then

xxx(t+1) ··=
1
N

zzz(t).

Theorem 3.6 (Main Theorem). Let f be a (L,B,ρ) smooth contractive evolution, and consider the stochastic
evolution guided by f on a population of size N. Then, there exists c0 and N0 depending upon L,B and ρ and
f such that for any N > N0, the mixing time tmix(1/e) of the stochastic evolution is at most c0 ((logN)).

3.2. The RSM model as a special case. We now show that the Eigen or RSM model discussed in the
introduction is a special case of the abstract model defined in the last section, and hence satisfies the mixing
time bound in Theorem 3.6. Our first step is to show that the RSM model can be seen as a stochastic evolution
guided by the function f defined by f (ppp) = (QAppp)t

‖QAppp‖1
, where Q and A are matrices with positive entries, with Q

stochastic (i.e., columns summing up to 1), as described in the introduction. We will then show that this f is a
smooth contractive evolution, which implies that Theorem 3.6 applies to the RSM process.

We begin by recalling the definition of the RSM process. Given a starting population of size N on m
types represented by a 1/N-integral probability vector ppp = (p1, p2, . . . , pm), the RSM process produces the
population at the next step by independently sampling N times from the following process:

(1) Sample a type T from the probability distribution Appp
‖Appp‖1

.
(2) Mutate T to the result type S with probability QST .

We now show that sampling from this process is exactly the same as sampling from the multinomial distribution
f (ppp) = QAppp

‖QAppp‖1
. To do this, we only need to establish the following claim:

Claim 3.7. For any type t ∈ [m], P [S = t] = ∑ j Qt jA j j p j

∑ j A j j p j
= (QAppp)t
‖QAppp‖1

.

Proof. We first note that ‖QAppp‖1 = ∑i j Qi jA j j p j = (∑i Qi j) · (∑ j A j j p j) = ∑ j A j j p j = ‖Appp‖1, where in the
last equality we used the fact that the columns of Q sum up to 1. Now, we have

P [S = t] :=
m

∑
i

Qti ·
(Appp)i

‖Appp‖1
=

∑i=1 QtiAii pi

∑ j A j j p j
=

(QAppp)t

‖QAppp‖1
. �

From Claim 3.7, we see that producing N independent samples from the process described above (which
corresponds exactly to the RSM model) produces the same distribution as producing N independent samples
from the distribution (QAppp)

‖QAppp‖1
. Thus, the RSM process is a stochastic evolution guided by f (xxx) := QAxxx

‖QAxxx‖1
.

We now proceed to verify that this f is a smooth contractive evolution. We first note that the “smoothness”
condition is directly implied by the definition of f . For the “uniqueness of fixed point” condition, we observe
that every fixed point of QAxxx

‖QAxxx‖1
in the simplex ∆m must be an eigenvector of QA. Since QA is a matrix with

positive entries, the Perron-Frobenius theorem implies that it has a unique positive eigenvector vvv (for which
we can assume without loss of generality that ‖vvv‖1 = 1) with a positive eigenvalue λ1. Therefore f (xxx) has
a unique fixed point τττ = vvv in the simplex ∆m which is in its interior. The Perron-Frobenius theorem also
implies that for every xxx ∈ ∆m, limt→∞(QA)txxx/λ t

1→ vvv. In fact, this convergence can be made uniform over ∆m
(meaning that given an ε > 0 we can choose t0 such that for all t > t0, ‖(QA)txxx/λ t

1− vvv‖1 < ε for all xxx ∈ ∆m)
since each point xxx ∈ ∆m is a convex combination of the extreme points of ∆m and the left hand side is a
linear function of xxx. From this uniform convergence, it then follows easily that limt→∞ f t(xxx) = vvv, and that the
convergence in this limit is also uniform. The “convergence to fixed point” condition follows directly from
this observation.

Finally, we need to establish that the spectral radius of the Jacobian J ··= J(vvv) of f at its fixed point is less
than 1. A simple computation shows that the Jacobian at vvv is J = 1

λ1
(I−V )QA where V is the matrix each of
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whose columns is the vector vvv. Since QA has positive entries, we know from the Perron-Frobenius theorem
that λ1 as defined above is real, positive, and strictly larger in magnitude than any other eigenvalue of QA. Let
λ2,λ3, . . . ,λm be the other, possibly complex, eigenvalues arranged in decreasing order of magnitude (so that
λ1 > |λ2|). We now establish the following claim from which it immediately follows that sp(J) = |λ2|

λ1
< 1 as

required.

Claim 3.8. The eigenvalues of M ··= (I−V )QA are λ2,λ3, . . . ,λm,0.

Proof. Let D be the Jordan canonical form of QA, so that D =U−1QAU for some invertible matrix U . Note
that D is an upper triangular matrix with λ1,λ2, . . . ,λm on the diagonal. Further, the Perron-Frobenius theorem
applied to QA implies that λ1 is an eigenvalue of both algebraic and geometric multiplicity 1, so that we
can assume that the topmost Jordan block in D is of size 1 and is equal to λ1. Further, we can assume the
corresponding first column of U is equal to the corresponding positive eigenvector vvv satisfying ‖vvv‖1 = 1. It
therefore follows that U−1V =U−1vvv111T is the matrix eee1111T , where eee1 is the first standard basis vector.

Now, sinceU is invertible, M has the same eigenvalues asU−1MU = (U−1−U−1V )QAU = (I−eee1111TU)D,
where in the last line we useUD = QAU . Now, note that all rows except the first of the matrix eee1111TU are zero,
and its (1,1) entry is 1 since the first column of U is vvv, which in turn is chosen so that 111T vvv = 1. Thus, we
get that (I− eee1111TU)D is an upper triangular matrix with the same diagonal entries as D except that its (1,1)
entry is 0. Since the (1,1) entry of D was λ1 while its other diagonal entries were λ2,λ3, . . . ,λm, it follows
that the eigenvalues of (I− eee1111TU)D (and hence those of M) are λ2,λ2, . . . ,λm,0, as claimed. �

We thus see that the RSM process satisfies the condition of being guided by a smooth contractive evolution
and hence has the mixing time implied by Theorem 3.6.

4. Perturbed evolution near the fixed point

As discussed in Section 2, the crux of the proof of our main theorem is analyzing how the distance between
two copies of a stochastic evolution guided by a smooth contractive evolution evolves in the presence of small
perturbations at every step. In this section, we present our main tool, Theorem 4.1, to study this phenomenon.
We then describe how the theorem, which itself is presented in a completely deterministic setting, applies to
stochastic evolutions.

Fix any (L,B,ρ)-smooth contractive evolution f on ∆m, with fixed point τττ . As we noted in Section 2, since
the Jacobian of f does not necessarily have operator (or 1→ 1) norm less than 1, we cannot argue that the
effect of perturbations shrinks in every step. Instead, we need to argue that the condition on the spectral radius
of the Jacobian of f at its fixed point implies that there is eventual contraction of distance between the two
evolutions, even though this distance might increase in any given step. Indeed, the fact that the spectral radius
sp(J) of the Jacobian at the fixed point τττ of f is less than ρ < 1 implies that a suitable iterate of f has a
Jacobian with operator (and 1→ 1) norm less than 1 at τττ . This is because Gelfand’s formula (Theorem 3.1)
implies that for all large enough positive integers k′,∥∥Jk(τττ)

∥∥
1 < ρ

k.

We now use the above condition to argue that after k steps in the vicinity of the fixed point, there is indeed
a contraction of the distance between two evolutions guided by f , even in the presence of adversarial
perturbations, as long as those perturbations are small. The precise statement is given below; the vectors ξξξ

(i)

in the theorem model the small perturbations.

Theorem 4.1 (Perturbed evolution). Let f be a (L,B,ρ)-smooth contractive evolution, and let τττ be its fixed
point. For all positive integers k > k0 (where k0 is a constant that depends upon f ) there exist ε,δ ∈ (0,1]

depending upon f and k for which the following is true. Let
(
xxx(i)
)k

i=0 ,
(
yyy(i)
)k

i=0, and
(

ξξξ
(i)
)k

i=1
be sequences

of vectors with xxx(i),yyy(i) ∈ ∆m and ξξξ
(i) orthogonal to 111, which satisfy the following conditions:
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(1) (Definition). For 1≤ i≤ k, there exist vectors uuu(i) and vvv(i) such that

xxx(i) = f (xxx(i−1))+uuu(i), yyy(i) = f (yyy(i−1))+ vvv(i), and ξξξ
(i)

= uuu(i)− vvv(i).

(2) (Closeness to fixed point). For 0≤ i≤ k,
∥∥xxx(i)− τττ

∥∥
1 ≤ ε and

∥∥yyy(i)− τττ
∥∥

1 ≤ ε .
(3) (Small perturbations). For 1≤ i≤ k,

∥∥∥ξξξ
(i)
∥∥∥

1
≤ δ

∥∥xxx(i−1)− yyy(i−1)
∥∥

1.

Then, we have ∥∥∥xxx(k)− yyy(k)
∥∥∥

1
≤ ρ

k
∥∥∥xxx(0)− yyy(0)

∥∥∥
1
.

In the theorem, the vectors xxx(i) and yyy(i) model the two chains, while the vectors uuu(i) and vvv(i) model the
individual perturbations from the evolution dictated by f . The theorem says that if the perturbations ξξξ

(i) to
the distance are not too large, then the distance between the two chains indeed contracts after every k steps.

Proof. As observed above, we can use Gelfand’s formula to conclude that there exists a positive integer k0
(depending upon f ) such that we have

∥∥J(τ)k
∥∥

1 < ρk for all k > k0. This k0 will be the sought k0 in the
theorem, and we fix some appropriate k > k0 for the rest of the paper.

Since f is twice differentiable, J is continuous on ∆m. This implies that the function on ∆k
m defined

by zzz1,zzz2, . . . ,zzzk 7→ ∏
k
i=1 J(zzzi) is also continuous. Hence, there exist ε1,ε2 > 0 smaller than 1 such that if

‖zzzi− τττ‖ ≤ ε1 for 1≤ i≤ k then ∥∥∥∥∥ k

∏
i=1

J(zzzi)

∥∥∥∥∥
1

≤ ρ
k− ε2. (6)

Further, since ∆m is compact and f is continuously differentiable, ‖J‖1 is bounded above on ∆m by some
positive constant L, which we assume without loss of generality to be greater than 1. Similarly, since f has
bounded second derivatives, it follows from the multivariate Taylor’s theorem that there exists a positive
constant B (which we can again assume to be greater than 1) such that for any xxx,yyy ∈ ∆m, we can find a vector
ννν such that ‖ννν‖1 ≤ Bm‖xxx− yyy‖2

2 ≤ Bm‖xxx− yyy‖2
1 such that

f (xxx) = f (yyy)+ J(yyy)(xxx− yyy)+ννν . (7)

We can now choose

ε = min
{

ε1,
ε2

4Bmk(L+1)k−1

}
≤ 1, and δ = 2Bmε ≤ 1.

With this setup, we are now ready to proceed with the proof. Our starting point is the use of a first order
Taylor expansion to control the error xxx(i)− yyy(i) in terms of xxx(i−1)− yyy(i−1). Indeed, eq. (7) when applied to this
situation (along with the hypotheses of the theorem) yields for any 1≤ i≤ k that

xxx(i)− yyy(i) = f (xxx(i−1))− f (yyy(i−1))+ξξξ
(i) (8)

= J(yyy(i−1))(xxx(i−1)− yyy(i−1))+(ννν(i)+ξξξ
(i)
), (9)

where ννν(i) satisfies
∥∥ννν(i)

∥∥
1 ≤ Bm

∥∥xxx(i−1)− yyy(i−1)
∥∥2

1. Before proceeding, we first take note of a simple conse-
quence of eq. (9). Taking the `1 norm of both sides, and using the conditions on the norms of ννν(i) and ξξξ

(i),
we have ∥∥∥xxx(i)− yyy(i)

∥∥∥
1
≤
∥∥∥xxx(i−1)− yyy(i−1)

∥∥∥
1

(
L+δ +Bm

∥∥∥xxx(i−1)− yyy(i−1)
∥∥∥

1

)
.

Since both xxx(i−1) and yyy(i−1) are within distance ε of τ by the hypothesis of the theorem, the above calculation
and the definition of ε and δ imply that∥∥∥xxx(i)− yyy(i)

∥∥∥
1
≤ (L+4Bmε)

∥∥∥xxx(i−1)− yyy(i−1)
∥∥∥

1
≤ (L+1)

∥∥∥xxx(i−1)− yyy(i−1)
∥∥∥

1
,
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where in the last inequality we use 4Bmε ≤ ε2 ≤ 1. This, in turn, implies via induction that for every 1≤ i≤ k,∥∥∥xxx(i)− yyy(i)
∥∥∥

1
≤ (L+1)i

∥∥∥xxx(0)− yyy(0)
∥∥∥

1
. (10)

We now return to the proof. By iterating eq. (9), we can control xxx(k)−yyy(k) in terms of a product of k Jacobians,
as follows:

xxx(k)− yyy(k) =

(
i=k

∏
i=1

J(yyy(k−i))

)(
xxx(0)− yyy(0)

)
+

k

∑
i=1

(
j=k−i−1

∏
j=0

J(yyy(k− j))

)(
ξξξ
(i)
+ννν

(i)
)
.

Since
∥∥yyy(i)− τττ

∥∥
1 ≤ ε by the hypothesis of the theorem, we get from eq. (6) that the leftmost term in the above

sum has `1 norm less than (ρk− ε2)
∥∥xxx(0)− yyy(0)

∥∥
1.

We now proceed to estimate the terms in the summation. Our first step to use the conditions on the norms
of ννν(i) and ξξξ

(i) and the fact that ‖J‖1 ≤ L uniformly to obtain the upper bound
k

∑
i=1

Lk−i
∥∥∥xxx(i−1)− yyy(i−1)

∥∥∥
1
(Bm

∥∥∥xxx(i−1)− yyy(i−1)
∥∥∥

1
+δ ).

Now, recalling that xxx(i) and yyy(i) are both within an ε `1-neighborhood of τττ so that
∥∥xxx(i)− yyy(i)

∥∥
1 ≤ 2ε , we can

estimate the above upper bound as follows:
k

∑
i=1

Lk−i
∥∥∥xxx(i−1)− yyy(i−1)

∥∥∥
1
(Bm

∥∥∥xxx(i−1)− yyy(i−1)
∥∥∥

1
+δ )≤ (L+1)k−1

∥∥∥xxx(0)− yyy(0)
∥∥∥

1

k

∑
i=1

(Bm
∥∥∥xxx(i−1)− yyy(i−1)

∥∥∥
1
+δ )

≤ k(L+1)k−1(2Bmε +δ )
∥∥∥xxx(0)− yyy(0)

∥∥∥
1

≤ ε2

∥∥∥xxx(0)− yyy(0)
∥∥∥

1
,

where the first inequality is an application of eq. (10), and the last uses the definitions of ε and δ . Combining
with the upper bound of (ρk− ε2)

∥∥xxx(0)− yyy(0)
∥∥

1 obtained above for the first term, this yields the result. �

Remark 4.1. Note that k in the theorem can be chosen as large as we want. However, for simplicity, we fix
some k > k0 in the rest of the discussion, and revisit the freedom of choice of k only toward the end of the
proof of the main theorem (Theorem 3.6) on page 17.

4.1. Evolution under random perturbations. We now explore some consequences of the above theorem
for stochastic evolutions. Our main goal in this subsection is to highlight the subtleties that arise in ensuring
that the third “small perturbations” condition during a random evolution, and strategies that can be used to
avoid them. However, we first begin by showing the second condition, that of “closeness to the fixed point”
is actually quite simple to maintain. It will be convenient to define for this purpose the notion of an epoch,
which is simply the set of (k+1) initial and final states of k consecutive steps of a stochastic evolution.

Definition 4.1 (Epoch). Let f be a smooth contractive evolution and let k be as in the statement of Theorem 4.1
when applied to f . An epoch is a set of k+1 consecutive states in a stochastic evolution guided by f . By a
slight abuse of terminology we also use the same term to refer to a set of k+1 consecutive states in a pair of
stochastic evolutions guided by f that have been coupled using the optimal coupling.

Suppose we want to apply Theorem 4.1 to a pair of stochastic evolutions guided by f . Recall the parameter
ε in the statement of Theorem 4.1. Ideally, we would likely to show that if both the states in the pair at the
beginning of an epoch are within some distance ε ′ < ε of the fixed point τ , then (1) all the consequent steps in
the epoch are within distance ε of the fixed point (so that the closeness condition in the theorem is satisfied),
and more importantly (2) that the states at the last step of the epoch are again within the same distance ε ′ of
the fixed point, so that we have the ability to apply the theorem to the next epoch. Of course, we also need to
ensure that the condition on the perturbations being true also holds during the epoch, but as stated above,
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this is somewhat more tricky to maintain than the closeness condition, so we defer its discussion to later in
the section. Here, we state the following lemma which shows that the closeness condition can indeed be
maintained at the end of the epoch.

Lemma 4.2 (Remaining close to the fixed point). Letw<w′< 1/3 be fixed constants. Consider a stochastic
evolution XXX (0),XXX (1), . . . on a population of size N guided by a (L,B,ρ)-smooth contractive evolution f : ∆m→
∆m with fixed point τττ . Suppose α > 1 is such that

∥∥∥XXX (0)− τττ

∥∥∥
1
≤ α

Nw . If N is chosen large enough (as a

function of L,α,m,k,w,w′ and ρ), then with probability at least 1−2mk exp
(
−Nw′/2

)
we have

•
∥∥∥XXX (i)− τττ

∥∥∥
1
≤ (α+m)(L+1)i

Nw , for 1≤ i≤ k−1.

•
∥∥∥XXX (k)− τττ

∥∥∥
1
≤ α

Nw .

To prove the lemma, we need the following simple concentration result the proof of which is deferred to
Appendix B.

Lemma 4.3. Let XXX (0),XXX (1), . . . be a stochastic evolution on a population of size N which is guided by a
(L,B,ρ)-smooth contractive evolution f : ∆m→ ∆m with fixed point τττ . For any t > 0 and γ ≤ 1/3, it holds
with probability at least 1−2mt exp(−Nγ/2) that∥∥∥XXX (i)− f i(XXX (0))

∥∥∥
1
≤ (L+1)im

Nγ
for all 1≤ i≤ t.

Proof of Lemma 4.2. Lemma 4.3 implies that with probability at least 1−2mk exp
(
−Nw′/2

)
we have∥∥∥XXX (i)− f i(XXX (0))

∥∥∥
1
≤ (L+1)im

Nw′ , for 1≤ i≤ k. (11)

On the other hand, the fact that max‖J(xxx)‖1 ≤ L implies that∥∥∥ f i+1(XXX (0))− τττ

∥∥∥
1
=
∥∥∥ f i+1(XXX (0))− f (τττ)

∥∥∥
1
≤ L

∥∥∥ f i(XXX (0))− τττ

∥∥∥
1
,

so that ∥∥∥ f i(XXX (0))− τττ

∥∥∥
1
≤ Li

∥∥∥XXX (0)− τττ

∥∥∥
1
≤ αLi

Nw , for 1≤ i≤ k. (12)

Combining eqs. (11) and (12), we already get the first item in the lemma. However, for i = k, we can do much
better than the above estimate (and indeed, this is the most important part of the lemma). Recall the parameter
ε in Theorem 4.1. If we choose N large enough so that

(α +m)(L+1)k

Nw ≤ ε, (13)

then the above argument shows that with probability at least 1−2mk exp
(
−Nw′

)
, the sequences yyy(i) = f i(XXX (0))

and zzz(i) = τττ (for 0≤ i≤ k) satisfy the hypotheses of Theorem 4.1: the perturbations in this case are simply 0.
Hence, we get that ∥∥∥ f k(XXX (0))− τ

∥∥∥
1
≤ ρ

k
∥∥∥XXX (0)− τ

∥∥∥
1
≤ αρk

Nw . (14)

Using eq. (14) with the i = k case of eq. (11), we then have∥∥∥XXX (k)− τ

∥∥∥
1
≤ (L+1)km

Nw′ +
ρkα

Nw .

Thus, (since ρ < 1) we only need to choose N so that

Nw′−w ≥ (L+1)km
α(1−ρk)

(15)
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in order to get the second item in the lemma. Since w > 0 and w′ > w, it follows that all large enough N will
satisfy the conditions in both eqs. (13) and (15), and this completes the proof. �

4.2. Controlling the size of random perturbations. We now address the “small perturbations” condition
of Theorem 4.1. For a given smooth contractive evolution f , let α,w,w′ be any constants satisfying the
hypotheses of Lemma 4.2 (the precise values of these constants will specified in the next section). For some
N as large as required by the lemma, consider a pair XXX (t),YYY (t) of stochastic evolutions guided by f on a
population of size N, which are coupled according to the optimal coupling. Now, let us call an epoch decent
if the first states XXX (0) and YYY (0) in the epoch satisfy

∥∥∥XXX (0)− τττ

∥∥∥
1
,
∥∥∥YYY (0)− τττ

∥∥∥
1
≤ αN−w. The lemma (because

of the choice of N made in eq. (13)) shows that if an epoch is decent, then except with probability that is
sub-exponentially small in N,

(1) the current epoch satisfies the “closeness to fixed point” condition in Theorem 4.1, and
(2) the next epoch is decent as well.

Thus, the lemma implies that if a certain epoch is decent, then with all but sub-exponential (in N) probability, a
polynomial (in N) number of subsequent epochs are also decent, and hence satisfy the “closeness to fixed point”
condition of Theorem 4.1. Hypothetically, if these epochs also satisfied the “small perturbation” condition,
then we would be done, since in such a situation, the distance between the two chains will drop to less than
1/N within O(logN) time, implying that they would collide. This would in turn imply a O(logN) mixing
time.

However, as alluded to above, ensuring the “small perturbations” condition turns out to be more subtle. In
particular, the fact that the perturbations ξξξ

(i) need to be multiplicatively smaller than the actual differences∥∥xxx(i)− yyy(i)
∥∥

1 pose a problem in achieving adequate concentration, and we cannot hope to prove that the
“small perturbations” condition holds with very high probability over an epoch when the staring difference∥∥∥XXX (0)−YYY (0)

∥∥∥
1
is very small. As such, we need to break the arguments into two stages based on the starting

differences at the start of the epochs lying in the two stages.
To make this more precise (and to state a result which provides examples of the above phenomenon and

will also be a building block in the coupling proof), we define the notion of an epoch being good with a
goal g. As before let XXX (t) and YYY (t) be two stochastic evolutions guided by f which are coupled according
to the optimal coupling, and let ξξξ

(i) be the perturbations as defined in Theorem 4.1. Then, we say that a
decent epoch (which we can assume, without loss of generality, to start at t = 0) is good with goal g if one of
following two conditions holds. Either (1) there is a j, 0≤ j ≤ k−1 such that

∥∥∥ f (XXX ( j))− f (YYY ( j))
∥∥∥

1
≤ g, or

otherwise, (2) it holds that the next epoch is also decent, and, further∥∥∥ξξξ
(i)
∥∥∥

1
≤ δ

∥∥∥XXX (i)−YYY (i)
∥∥∥

1
for 0≤ i≤ k,

where δ again is as defined in Theorem 4.1. Note that if an epoch is good with goal g, then either the
expected difference between the two chains drops below g sometime during the epoch, or else, all conditions
of Theorem 4.1 are satisfied during the epoch, and the distance between the chains drops by a factor of
ρk while the next epoch is also decent. Further, in terms of this notion, the preceding discussion can be
summarized as “the probability of an epoch being good depends upon the goal g, and can be small if g is too
small”. To make this concrete, we prove the following theorem which quantifies this trade-off between the
size of the goal g and the probability with which an epoch is good with that goal.

Theorem 4.4 (Goodness with a given goal). Let the chains XXX (t), YYY (t), and the quantities N,m,w,w′,k,L,ε
and δ be as defined above, and let β < (logN)2. If N is large enough, then a decent epoch is good with goal
g ··= 4L2mβ

δ 2N with probability at least 1−2mk
(

exp(−β/3)+ exp(−Nw′/2)
)
.

Proof. Let XXX (0) and YYY (0) denote the first states in the epoch. Since the current epoch is assumed to be
decent, Lemma 4.2 implies that with probability at least 1−2mk exp(−N−w′/2), the “closeness to fixed point”
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condition of Theorem 4.1 holds throughout the epoch, and the next epoch is also decent. If there is a j ≤ k−1
such that

∥∥∥ f (XXX ( j))− f (YYY ( j))
∥∥∥

1
≤ g, then the current epoch is already good with goal g. So let us assume that∥∥∥ f (XXX (i−1))− f (YYY (i−1))

∥∥∥
1
≥ g =

4L
δ 2 ·

βm
N

for 1≤ i≤ k.

However, in this case, we can apply the concentration result in Lemma 3.5 with c = 4L2/δ 2 and t = β to get
that with probability at least 1−2mk exp(−β/3),∥∥∥ξξξ

(i)
∥∥∥

1
≤ δ

L

∥∥∥ f (XXX (i−1))− f (YYY (i−1))
∥∥∥

1
≤ δ

∥∥∥XXX (i−1)−YYY (i−1)
∥∥∥

1
for 1≤ i≤ k.

Hence, both conditions (“closeness to fixed point” and “small perturbations”) for being good with goal g hold
with the claimed probability. �

Note that we need to take β to a large constant, at least Ω(log(mk)) even to make the result non-trivial.
In particular, if we take β = 3log(4mk), then if N is large enough, the probability of success is at least 1/e.
However, with a slightly larger goal g, it is possible to reduce the probability of an epoch not being good to
oN(1): if we choose β = logN, then a decent epoch is good with the corresponding goal with probability
at least 1−N−1/4, for N large enough. In the next section, we use both these settings of parameters in the
above theorem to complete the proof of the mixing time result. As described in Section 2, the two settings
above will be used in different stages of the evolution of two coupled chains in order to argue that the time to
collision of the chains is indeed small.

5. Proof of the main theorem: Analyzing the coupling time

Our goal is now to show that if we couple two stochastic evolutions guided by the same smooth contractive
evolution f using the optimal coupling, then irrespective of their starting positions, they reach the same state
in a small number of steps, with reasonably high probability. More precisely, our proof would be structured as
follows. Fix any starting states XXX (0) and YYY (0) of the two chains, and couple their evolutions according to the
optimal coupling. Let T be the first time such that XXX (T ) = YYY (T ). Suppose that we establish that P [T < t]≥ q,
where t and p do not depend upon the starting states (XXX (0),YYY (0)). Then, we can dovetail this argument for `
“windows” of time t each to see that P [T > ` · t]≤ (1−q)`: this is possible because the probability bounds
for T did not depend upon the starting positions (XXX (0),YYY (0)) and hence can be applied again to the starting
positions (XXX (t),YYY (t)) if XXX (t) 6= YYY (t). By choosing ` large enough so that (1−q)` is at most 1/e (or any other
constant less than 1/2), we obtain a mixing time of `t. We therefore proceed to obtain an upper bound on
P [T < t] for some t = Θ(logN).

As discussed earlier, we need to split the evolution of the chains into several stages in order to complete
the argument outlined above. We now describe these four different stages. Recall that f is assumed to be a
(L,B,ρ)-smooth contractive evolution. Without loss of generality we assume that L > 1. The parameter r
appearing below is a function of these parameters and k and is defined in Lemma A.1. Further, as we noted
after the proof of Theorem 4.1, k can be chosen to be as large as desired. We now exercise this choice by
choosing k to be large enough so that

ρ
k ≤ e−1. (16)

The other parameters below are chosen to ease the application of the framework developed in the previous
section.

(1) Approaching the fixed point. We define Tstart to be the first time such that∥∥∥XXX (Tstart+i)− τττ

∥∥∥
1
,
∥∥∥YYY (Tstart+i)− τττ

∥∥∥
1
≤ α

Nw for 0≤ i≤ k−1,
15



where α ··= m+ r and w = min
(

1
6 ,

log(1/ρ)
6log(L+1)

)
. We show below that

P [Tstart > tstart logN]≤ 4mkto logN exp
(
−N1/3

)
, (17)

where tstart ··= 1
6log(L+1) . The probability itself is upper bounded by exp

(
−N1/4

)
for N large enough.

(2) Coming within distance Θ

(
logN

N

)
. Let β0 ··= (8/ρk) log(17mk) and h = 4L2m

δ 2 . Then, we define T0

to be the smallest number of steps needed after Tstart such that

either
∥∥∥XXX (Tstart+T0)−YYY (Tstart+T0)

∥∥∥
1
≤ hβ0 logN

N
or
∥∥∥ f (XXX (Tstart+T0))− f (YYY (Tstart+T0))

∥∥∥
1
≤ hβ0 logN

N(1+δ )
.

We prove below that when N is large enough

P [T0 > kt0 logN]≤ 1
Nβ0/7 , (18)

where t0 ··= 1
k log(1/ρ) .

(3) Coming within distance Θ(1/N). Let β0 and h be as defined in the last item. We now define a
sequence of `1 ··=

⌈
log logn

k log(1/ρ)

⌉
random variables T1,T2, . . .T`. We begin by defining the stopping time

S0 ··= Tstart +T0. For i ≥ 1, Ti is defined to be the smallest number of steps after Si−1 such that the
corresponding stopping time Si ··= Si−1 +Ti satisfies

either
∥∥∥XXX (Si)−YYY (Si)

∥∥∥
1
≤ h

N
or
∥∥∥ f (XXX (Si))− f (YYY (Si))

∥∥∥
1
≤ h

N
.

Note that Ti is defined to be 0 if setting Si = Si−1 already satisfies the above conditions. Define
βi = ρ ikβ0. We prove below that when N is large enough

P [Ti > k+1]≤ 4mk exp(−(βi logN)/8) , for 1≤ i≤ `1. (19)

(4) Collision. Let β0 and h be as defined in the last two items. Note that after time S`1 , we have∥∥∥ f (XXX(S`1))− f (YYY (S`1))
∥∥∥

1
≤ Lhβ`1 logN

N
=

Lhβ0ρk`1 logN
N

≤ Lhβ0

N
.

Then, from the properties of the optimal coupling we have that XXX(S`1+1) = YYY (S`1+1) with probability

at least
(

1− Lhβ0
2N

)N
which is at least exp(−Lβ0h) when N is so large that N > hL.

Assuming eqs. (17) to (19), we can complete the proof of Theorem 3.6 as follows.

Proof of Theorem 3.6. Let XXX (0), YYY (0) be the arbitrary starting states of two stochastic evolutions guided by f ,
whose evolution is coupled using the optimal coupling. Let T be the minimum time t satisfying XXX (t) = YYY (t).
By the Markovian property and the probability bounds in items 1 to 4 above, we have (for large enough N)

P [T ≤ tstart logN + kt0 logN +(k+1)`1]≥ P [Tstart ≤ tstart logN] ·P [T0 ≤ kt0 logN]

·

(
`1

∏
i=1

P [Ti ≤ k+1]

)
· e−Lβ0h

≥ e−Lβ0h
(

1− exp(−N1/4)
)
(1−N−β/7)

·
`1

∏
i=1

(
1−4mk exp(−(ρ ik

β0 logN)/8)
)

≥ exp(−Lβ0h−1)

(
1−4mk

`1

∑
i=1

exp(−(ρ ik
β0 logN)/8)

)
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where the last inequality is true for large enough N. Applying Lemma C.1 to the above sum (with the
parameters x and α in the lemma defined as x = exp(−(β0 logN)/8) and α = ρk ≤ 1/e by the assumption in
eq. (16)), we can put a upper bound on it as follows:

`1

∑
i=1

exp(−(ρ ik
β0 logN)/8)≤ 1

exp(ρkβ0/8)−1

=
1

17mk−1
≤ 1

16mk
,

where the first inequality follows from the lemma and the fact that log logN
k log(1/ρ) ≤ `1 ≤ 1+ log logN

k log(1/ρ) , and the last
inequality uses the definition of β0 and m,k ≥ 1. Thus, for large enough N, we have

P [T ≤ c logN]≥ q,

where c ··= 2(tstart + kt0) and q ··= (3/4)exp(−Lβ0h−1). Since this estimate does not depend upon the
starting states, we can bootstrap the estimate after every c logN steps to get

P [T > c` logN]< (1−q)` ≤ e−q`,

which shows that
c
q
· logN

is the mixing time of the chain for total variation distance 1/e, when N is large enough. �

We now proceed to prove the claimed equations, starting with eq. (17). Let t ··= tstart logN for convenience
of notation. From Lemma A.1 we have ∥∥∥ f t(XXX (0))− τττ

∥∥∥
1
≤ rρ

t .

On the other hand, applying Lemma 4.3 to the chain XXX (0),XXX (1), . . . with γ = 1/3, we have∥∥∥ f t(XXX (0))−XXX (t)
∥∥∥

1
≤ (L+1)tm

N1/3 with probability at least 1−2mt exp(−N1/3).

From the triangle inequality and the definition of t, we then see that with probability at least 1−2mt exp
(
−N1/3

)
,

we have ∥∥∥XXX (t)− τττ

∥∥∥
1
≤ m

N1/6 +
r

Ntstart log(1/ρ)
≤ m+ r

Nw =
α

Nw ,

where α,w are as defined in item 1 above. Now, if we instead looked at the chain starting at some i < k, the
same result would hold for XXX (t+i). Further, the same analysis applies also to YYY (t+i). Taking an union bound
over these 2k events, we get the required result.

Before proceeding with the proof of the other two equations, we record an important consequences of
eq. (17). Let w,α be as defined above, and let w′ > w be such that w′ < 1/3. Recall that an epoch starting at
time 0 is decent if both XXX (t) and YYY (t) are within distance α/Nw of τ .

Observation 5.1. For large enough N, it holds with probability at least 1−exp(−Nw′/4) that for 1≤ i≤ kN,
XXX (Tstart+i),YYY (Tstart+i) are within `1 distance α/Nw of τττ .

Proof. We know from item 1 that the epochs starting at times Tstart + i for 0≤ i < k are all decent. For large
enough N, Lemma 4.2 followed by a union bound implies that the N consecutive epochs starting at T + j+k`
where `≤ N and 0≤ j ≤ N are also all decent with probability at least 1−2mk2N exp(−Nw′/2), which upper
bounds the claimed probability for large enough N. �
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We denote by E the event that the epochs starting at Tstart + i for 1 ≤ i ≤ kN are all decent. The above
observation says that P(E)≥ 1− exp(−N−w′/4) for N large enough.

We now consider T0. Let g0 ··= hβ0 logN
N(1+δ ) , where h is as defined in items 2 and 3 above. From Theorem 4.4 fol-

lowed by an union bound, we see that the first t1 logN consecutive epochs starting at Tstart,Tstart + k,Tstart +2k, . . .
are good with goal g0 (they are already known to be decent with probability at least P(E) from the above
observation) with probability at least

1−2mkt1
(

N−β0/(3(1+δ ))+ exp(−Nw′/4)
)

logN−P(¬E),

which is larger than 1−N−β0/7 for N large enough (since δ < 1). Now, if we have
∥∥∥ f (XXX (i))− f (YYY (i))

∥∥∥
1
≤ g

for some time i during these t1 logN good epochs then T0 ≤ kt1 logN follows immediately. Otherwise, the
goodness condition implies that the hypotheses of Theorem 4.1 are satisfied across all these epochs, and we
get ∥∥∥XXX (Tstart+kt1 logN)−YYY (Tstart+kt1 logN)

∥∥∥
1
≤ ρ

kt1 logN
∥∥∥XXX (Tstart)−YYY (Tstart)

∥∥∥
1
≤ ρ

kt1 logN α

Nw ≤ g0 ≤
hβ0 logN

N
,

where the second last inequality is true for large enough N.
Finally, we analyze Ti for i≥ 1. For this, we need to consider cases according to the state of the chain at

time Si−1. However, we first observe that plugging our choice of h into Theorem 4.4 shows that any decent
epoch is good with goal gi ··= hβi logN

N(1+δ ) with probability at least

1−2mk
(

exp(−(βi logN)/(3(1+δ )))+ exp(−Nw′/4)
)
,

which is at least 1−2mk exp(−(βi logN)/7) for N large enough (since δ < 1). Further, since we can assume
via the above observation that all the epochs we consider are decent with probability at least P(E), it follows
that the epoch starting at Si−1 (and also the one starting at Si−1 +1) is good with goal gi with probability at
least

p ··= 1−2mk exp(−(βi logN)/7)−P(¬E)≥ 1−2mk exp(−(βi logN)/8),

where the last inequality holds whenever βi ≤ logN and N is large enough (we will use at most one of these
two epochs in each of the exhaustive cases we consider below). Note that if at any time Si−1 + j (where
j ≤ k+ 1) during one of these two good epochs it happens that

∥∥∥ f (XXX (Si−1+ j))− f (YYY (Si−1+ j))
∥∥∥

1
≤ gi, then

we immediately get Ti ≤ k+1 as required. We can therefore assume that this does not happen, so that the
hypotheses of Theorem 4.1 are satisfied across these epochs.

Now, the first case to consider is
∥∥∥XXX (Si−1)−YYY (Si−1)

∥∥∥
1
≤ hβi−1 logN

N . Since we are assuming that Theorem 4.1
is satisfied across the epoch starting at Si−1, we get∥∥∥XXX (S+i−1+k)−YYY (Si−1+k)

∥∥∥
1
≤ ρ

k
∥∥∥XXX (Si−1)−YYY (Si−1)

∥∥∥
1
≤ ρ

k hβi−1 logN
N

=
hβi logN

N
. (20)

Thus, in this case, we have Ti ≤ k with probability at least p as defined in the last paragraph.
Even simpler is the case

∥∥∥ f (XXX (Si−1))− f (YYY (Si−1))
∥∥∥

1
≤ hβi logN

N in which case Ti is zero by definition. Thus
the only remaining case left to consider is

hβi logN
N

<
∥∥∥ f (XXX (Si−1))− f (YYY (Si−1))

∥∥∥
1
≤ hβi−1 logN

N(1+δ )
.

Since h = 4L2m
δ 2 , the first inequality allows us to use Lemma 3.5 with the parameters c and t in that lemma set

to c = 4/δ 2 and t = βiL2 logN, and we obtain∥∥∥XXX (Si−1+1)−YYY (Si−1+1)
∥∥∥

1
≤ (1+δ )

∥∥∥ f (XXX (Si−1))− f (YYY (Si−1))
∥∥∥

1
≤ hβi−1 logN

N
,
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with probability at least 1−2mexp
(
−(βiL2 logN)/3

)
. Using the same analysis as the first case from this

point onward (the only difference being that we need to use the epoch starting at Si−1 +1 instead of the epoch
starting at Si−1 used in that case), we get that

P [Ti ≤ 1+ kt]≥ p−2mexp
(
−(βiL2 logN)/3

)
≥ 1−4mk exp(−(βi logN)/8) .

since L,k > 1. Together with eq. (20), this completes the proof of eq. (19).
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Appendix A. Proofs omitted from Section 3.1

Lemma A.1 (Exponential convergence). Let f be a smooth contractive evolution, and let τττ and ρ be as in
the conditions described in Section 3.1. Then, there exist a positive r such that for every zzz ∈ ∆m, and every
positive integer t, ∥∥ f t(zzz)− τττ

∥∥
1 ≤ rρ

t .

Proof. Let ε and k be as defined in Theorem 4.1. From the “convergence to the fixed point” condition, we
know that there exists an ` such that for all zzz ∈ ∆m,∥∥ f `(zzz)− τττ

∥∥
1 ≤

ε

Lk . (21)
19



Note that this implies that f `+i(zzz) is within distance εεε of τττ for i= 0,1, . . . ,k, so that Theorem 4.1 can be applied
to the sequence of vectors f `(zzz), f `+1 (zzz) , . . . , f `+k(zzz) and τττ, f (τττ) = τττ, . . . , f k(τττ) = τττ (the perturbations are
simply 0). Thus, we get ∥∥ f `+k(zzz)− τττ

∥∥
1 ≤ ρ

k
∥∥ f `(zzz)− τττ

∥∥
1 ≤

ρkε

Lk .

Since ρ < 1, we see that the epoch starting at `+k also satisfies eq. (21) and hence we can iterate this process.
Using also the fact that the 1→ 1 norm of the Jacobian of f is at most L (which we can assume without loss
of generality to be at least 1), we therefore get for every zzz ∈ ∆m, and every i≥ 0 and 0≤ j < k∥∥ f `+ik+ j(zzz)− τττ

∥∥
1 ≤ ρ

ki+ j L j

ρ j

∥∥ f `(zzz)− τττ
∥∥

1

≤ ρ
ki+ j+` L j+`

ρ j+`
‖zzz− τττ‖1 ≤ ρ

ki+ j+` Lk+`

ρk+`
‖zzz− τττ‖1

where in the last line we use the facts that L > 1, ρ < 1 and j < k. Noting that any t ≥ ` is of the form
`+ ki+ j for some i and j as above, we have shown that for every t ≥ ` and every zzz ∈ ∆m∥∥ f t(zzz)− τττ

∥∥
1 ≤

(
L
ρ

)k+`

ρ
t ‖zzz− τττ‖1 . (22)

Similarly, for t < `, we have, for any zzz ∈ ∆m∥∥ f t(zzz)− τττ
∥∥

1 ≤ Lt ‖zzz− τττ‖1

≤
(

L
ρ

)t

ρ
t ‖zzz− τττ‖1 ≤

(
L
ρ

)`

ρ
t ‖zzz− τττ‖1 , (23)

where in the last line we have again used L > 1,ρ < 1 and t < `. From eqs. (22) and (23), we get the claimed

result with r ··=
(

L
ρ

)k+`
. �

Appendix B. Proofs omitted from Section 4

Proof of Lemma 4.3. Fix a co-ordinate j ∈ [m]. Since XXX (i) is the normalized frequency vector obtained by
taking N independent samples from the distribution f (XXX (i−1)), Hoeffding’s inequality yields that

P
[∣∣∣X (i)

j − f (XXX (i−1)) j

∣∣∣> N−γ

]
≤ 2exp

(
−N1−2γ

)
≤ 2exp(−Nγ) ,

where the last inequality holds because γ ≤ 1/3. Taking a union bound over all j ∈ [m], we therefore have
that for any fixed i≤ t,

P
[∥∥∥XXX (i)− f (XXX (i−1))

∥∥∥
1
>

m
Nγ

]
≤ 2mexp(−Nγ) . (24)

For ease of notation let us define the quantities s(i) ··=
∥∥∥XXX (i)− f i(XXX (0))

∥∥∥
1
for 0≤ i≤ t. Our goal then is to

show that it holds with high probability that s(i) ≤ (L+1)im
Nγ for all i such that 0≤ i≤ t.

Now, by taking an union bound over all values of i in eq. (24), we see that the following holds for all i with
probability at least 1−2mt exp(−Nγ):

s(i) =
∥∥∥XXX (i)− f i(XXX (0))

∥∥∥
1
≤
∥∥∥XXX (i)− f (XXX (i−1))

∥∥∥
1
+
∥∥∥ f (XXX (i−1))− f i(XXX (0))

∥∥∥
1
≤ m

Nγ
+Ls(i−1), (25)

where the first term is estimated using the probabilistic guarantee from eq. (24) and the second using the
upper bound on the 1→ 1 norm of the Jacobian of f . However, eq. (25) implies that s(i) ≤ m(L+1)i

Nγ for all
0≤ i≤ t, which is what we wanted to prove. To see the former claim, we proceed by induction. Since s0 = 0,
the claim is trivially true in the base case. Assuming the claim is true for s(i), we then apply eq. (25) to get

s(i+1) ≤ m
Nγ

+Ls(i) ≤ m
Nγ

(
1+L(L+1)i)≤ m

Nγ
· (L+1)i+1. �
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Appendix C. Sums with exponentially decreasing exponents

The following technical lemma is used in the proof of Theorem 3.6.

Lemma C.1. Let x,α be positive real numbers less than 1 such that α < 1
e . Let ` be a positive integer, and

define y ··= xα` . Then
`

∑
i=0

xα i ≤ y
1− y

.

Proof. Note that since both x and α are positive and less than 1, so is y. We now have
`

∑
i=0

xα i
=

`

∑
i=0

xα`−i
= y

`

∑
i=0

yα−i−1

≤ y
`

∑
i=0

yi log(1/α), since 0 < y≤ 1 and α
−i ≥ 1+ i log(1/α),

≤ y
`

∑
i=0

yi, since 0 < y≤ 1 and α < 1/e,

≤ y
1− y

. �
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