First-order Methods Almost Always Avoid Saddle Points:

loannis Panageas!'

Question: Do first-order methods avoid saddle
points with vanishing stepsizes?

» In many applications the stepsize of optimization
algorithm is adaptive or vanishing.

» The choice of stepsize is really crucial. Changing
the stepsize can change the convergence

properties or the rate of convergence.

» In the paper Lee et al. it is proved that first-order
methods avoid saddle points almost always with
constant stepsize. The case of vanishing stepsize
left as an open question.

Gradient Descent

» Intuitive Example Let f(x) = 3x'Ax,
A = diag(\1, ..., \,), gradient descent has the form of
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For ay being Q (3), limy_, - xx = 0, the stable
manifold is spanned by eigenvectors with positive
eigenvalues so has measure 0.

General Case If f is general C? function, the Taylor
expansion of gradient descent at saddle x* is

e = (I = Vo (x) (a — x7) + n(k, x)
where n(k,x*) = x* and n(k, x) is of order o(||x — x*||)

around x*.

The stable manifold is the graph of certain
differentiable function ¢ : E* — E*, where E* and E*
are the stable-unstable subspaces w.r.t the

eigenvalues of V4f(x*).

» The stepsize cannot converge too fast, i.e.
ay € Q (3). If ax < 1, see Figure.
» In the contrast to the stochastic approximation, the

condition >, a7 < oo is NOt necessary in
deterministic methods.
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The Case of Vanishing Stepsizes
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Stable Manifolds: GD and Manifold GD

If f € C? is non-convex, the stable manifold of
a saddle point has co-dimension at least 1, so
has Lebesgue measure 0.
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Main Results

Theorem
Gradient Descent, Mirror Descent, Proximal Point and

Manifold Gradient Descent with vanishing stepsize o
of order 2 (;) avoid the set of strict saddle points
(Isolated and non-isolated) almost surely under
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Let f(x1,x2) = 5(x] — x3), O is the saddle and x;-
axis Is the stable manifold of Gradient Descent.

J
-

Nf

> = and , GD converges to critical point and

av0|ds saddle
» o = %, GD converges to a non-critical point.

Thtl = Tk — QO - 2T
Yk+1 = Yk + Q- 2yp

r,y) = 2% —y? —)

Saddle point (0,0)

random initialization.

Technical Overview

» Lyapunov-Perron Method The dynamical systems
from variant first-order methods can be reduced to

xer1 = A(k,0)xo + Y A(k,i+ D)ni,x) (1)

)

and the integral operator 7 written as (7x),,, =
( B (k,0)x5 + > ¢ oB(k,i+ 1)n" (i,x)
(2)

S0 Clk+1+ik+ 1)y~ (k4 1+ i, x0140)
has unique fixed point (a sequence) as the
solution of (1) with initial condition xy, where

B(m,n) and C(m,n) are stable and unstable

integral operators.

» Banach Fixed Point Theorem Let (X, d) be a
complete metric space, then each contraction map
T : X — X has unique fixed point.

The metric space X of sequences converging to 0 Is
complete. The operator T Is a contraction map on X.
Then from Banach Fixed Point Theorem, there exists
unigue function ¢ : £ — E* whose graph contains all
initial conditions that converge to saddle point.

References

1. Lee et al. First-order methods almost always avoid
saddle points, Math. Programming 2019.

2. Perko, Differential Equations and Dynamical Sys-
tems, 2001, Springer.

ARXIV
» https://arxiv.org/abs/1906.07772



https://arxiv.org/abs/1906.07772

