First-order Methods Almost Always Avoid Saddle Points:
The Case of Vanishing Stepsizes

Ioannis Panageas\(^1\) Georgios Piliouras\(^1\) Xiao Wang\(^1\)
\(^1\)Singapore University of Technology and Design

Question: Do first-order methods avoid saddle points with vanishing stepsizes?

Motivation
- In many applications the stepsize of optimization algorithm is adaptive or vanishing.
- The choice of stepsize is really crucial. Changing the stepsize can change the convergence properties or the rate of convergence.
- In the paper Lee et al. it is proved that first-order methods avoid saddle points almost always with constant stepsize. The case of vanishing stepsize left as an open question.

Gradient Descent
- **Intuitive Example** Let \(f(x) = \frac{1}{2}x^TAx \), \(A = \text{diag}(\lambda_1, \ldots, \lambda_n) \), gradient descent has the form of

\[
x_{k+1} = \text{diag} \left(\prod_{i=0}^k (1 - \alpha_i \lambda_i), \ldots, \prod_{i=0}^k (1 - \alpha_i \lambda_n) \right) x_0
\]

For \(\alpha_k \) being \(\Omega \left(\frac{1}{k} \right) \), \(\lim_{k \to \infty} x_k = 0 \), the stable manifold is spanned by eigenvectors with positive eigenvalues so has measure 0.

- **General Case** If \(f \) is general \(C^2 \) function, the Taylor expansion of gradient descent at saddle point is

\[
x_{k+1} = (I - \alpha_k \nabla^2 f(x^*))(x_k - x^*) + \eta(k, x_k)
\]

where \(\eta(k, x^*) = x^* \) and \(\eta(k, x) \) is of order \(o(||x - x^*||) \) around \(x^* \).

The stable manifold is the graph of certain differentiable function \(\varphi : E^u \to E^s \), where \(E^s \) and \(E^u \) are the stable-unstable subspaces w.r.t the eigenvalues of \(\nabla^2 f(x^*) \).

Stepsizes
- The stepsize cannot converge too fast, i.e.

\(\alpha_k \in \Omega \left(\frac{1}{k} \right) \). If \(\alpha_k < \frac{1}{k} \), see Figure.
- In the contrast to the stochastic approximation, the condition \(\sum_k \alpha_k^2 < \infty \) is not necessary in deterministic methods.

Technical Overview
- **Lyapunov-Perron Method** The dynamical systems from variant first-order methods can be reduced to

\[
x_{k+1} = A(k, 0)x_0 + \sum_{i=0}^k A(k, i + 1)\eta(i, x_i)
\]

and the integral operator \(T \) written as

\[
(Tx)_{k+1} = \left(B(k, 0)x_k^* + \sum_{i=0}^k B(k, i + 1)\eta^+(i, x_i) - \sum_{i=0}^\infty C(k + 1 + i, k + 1)^{-1}\eta^-(k + 1 + i, x_{k+1+i}) \right)
\]

has unique fixed point (a sequence) as the solution of (1) with initial condition \(x_0 \), where \(B(m, n) \) and \(C(m, n) \) are stable and unstable integral operators.

- **Banach Fixed Point Theorem** Let \((X, d)\) be a complete metric space, then each contraction map \(T : X \to X \) has unique fixed point.

The metric space \(X \) of sequences converging to 0 is complete. The operator \(T \) is a contraction map on \(X \).

Then from Banach Fixed Point Theorem, there exists unique function \(\varphi : E^s \to E^u \) whose graph contains all initial conditions that converge to saddle point.

Main Results
- **Theorem** Gradient Descent, Mirror Descent, Proximal Point and Manifold Gradient Descent with vanishing stepsize \(\alpha_k \) of order \(\Omega \left(\frac{1}{k} \right) \) avoid the set of strict saddle points (isolated and non-isolated) almost surely under random initialization.

Example
- Let \(f(x_1, x_2) = \frac{1}{2}(x_1^2 - x_2^2) \), 0 is the saddle and \(x_1 \)-axis is the stable manifold of Gradient Descent.

Stepsizes
- \(\alpha_k = \frac{1}{k} \) and \(\frac{1}{k^2} \), GD converges to critical point and avoids saddle,
- \(\alpha_k = \frac{1}{2^k} \), GD converges to a non-critical point.

References

ARXIV

\(\text{https://arxiv.org/abs/1906.07772} \)