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Question: Do first-order methods avoid saddle
points with vanishing stepsizes?

I In many applications the stepsize of optimization
algorithm is adaptive or vanishing.

I The choice of stepsize is really crucial. Changing
the stepsize can change the convergence
properties or the rate of convergence.

I In the paper Lee et al. it is proved that first-order
methods avoid saddle points almost always with
constant stepsize. The case of vanishing stepsize
left as an open question.

Motivation

I Intuitive Example Let f (x) = 1
2x>Ax,

A = diag(λ1, ..., λn), gradient descent has the form of

xk+1 = diag

 k∏
t=0

(1− αtλ1), ...,
k∏

t=0

(1− αtλn)

 x0

For αk being Ω
(1

k

)
, limk→∞ xk = 0, the stable

manifold is spanned by eigenvectors with positive
eigenvalues so has measure 0.

I General Case If f is general C2 function, the Taylor
expansion of gradient descent at saddle x∗ is

xk+1 = (I − αk∇2f (x∗))(xk − x∗) + η(k, xk)

where η(k, x∗) = x∗ and η(k, x) is of order o(||x− x∗||)
around x∗.
The stable manifold is the graph of certain
differentiable function ϕ : Es→ Eu, where Es and Eu

are the stable-unstable subspaces w.r.t the
eigenvalues of ∇2f (x∗).

Gradient Descent

I The stepsize cannot converge too fast, i.e.
αk ∈ Ω

(1
k

)
. If αk <

1
k, see Figure.

I In the contrast to the stochastic approximation, the
condition

∑
k α

2
k <∞ is not necessary in

deterministic methods.

Stepsizes

If f ∈ C2 is non-convex, the stable manifold of
a saddle point has co-dimension at least 1, so
has Lebesgue measure 0.

Stable Manifolds: GD and Manifold GD

Let f (x1, x2) = 1
2(x2

1 − x2
2), 0 is the saddle and x1-

axis is the stable manifold of Gradient Descent.

Example

I αk = 1
k and 1√

k
, GD converges to critical point and

avoids saddle,
I αk = 1

k4, GD converges to a non-critical point.

Stepsizes

Theorem
Gradient Descent, Mirror Descent, Proximal Point and
Manifold Gradient Descent with vanishing stepsize αk

of order Ω
(1

k

)
avoid the set of strict saddle points

(isolated and non-isolated) almost surely under
random initialization.

Main Results

I Lyapunov-Perron Method The dynamical systems
from variant first-order methods can be reduced to

xk+1 = A(k, 0)x0 +
k∑

i=0

A(k, i + 1)η(i, xi) (1)

and the integral operator T written as (Tx)k+1 =(
B (k, 0) x+

0 +
∑k

i=0 B (k, i + 1) η+ (i, xi)
−
∑∞

i=0 C(k + 1 + i, k + 1)−1η− (k + 1 + i, xk+1+i) .

)
(2)

has unique fixed point (a sequence) as the
solution of (1) with initial condition x0, where
B(m, n) and C(m, n) are stable and unstable
integral operators.

I Banach Fixed Point Theorem Let (X, d) be a
complete metric space, then each contraction map
T : X → X has unique fixed point.

The metric space X of sequences converging to 0 is
complete. The operator T is a contraction map on X.
Then from Banach Fixed Point Theorem, there exists
unique function ϕ : Es → Eu whose graph contains all
initial conditions that converge to saddle point.
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