Q: How does vanilla Gradient Descent/Ascent behave in min-max problems?

Min-max problem and GANs

Motivated by GANs:

\[\inf_{x \in X} \sup_{y \in Y} f(x, y). \]

- \(x \) parameters of the generator deep neural net,
- \(y \) parameters of the discriminator neural net,
- \(f(x, y) \) some measure of how close the distribution generated by the generator appears to the true distribution from the perspective of the discriminator.

Gradient Descent/Ascent (GDA)

Most natural approach to solve (1) is by doing gradient descent on \(x \) and gradient ascent on \(y \), i.e.,

\[
\begin{align*}
x_{t+1} &= x_t - \alpha \nabla_x f(x_t, y_t), \\
y_{t+1} &= y_t + \alpha \nabla_y f(x_t, y_t),
\end{align*}
\]

where \(\alpha > 0 \) is a small constant (stepsize).

Optimistic Gradient Descent/Ascent (OGDA)

The update rule of OGDA (“negative momentum”) is:

\[
\begin{align*}
x_{t+1} &= x_t - 2\alpha \nabla_x f(x_t, y_t) + \alpha \nabla_x f(x_{t-1}, y_{t-1}), \\
y_{t+1} &= y_t + 2\alpha \nabla_y f(x_t, y_t) - \alpha \nabla_y f(x_{t-1}, y_{t-1}).
\end{align*}
\]

where \(\alpha > 0 \) is a small constant (stepsize).

Local min-max (Local saddles)

- **Critical point** if \(\nabla f(x^*, y^*) = 0 \).
- **Local min-max point or local saddle** if there exists a neighborhood \(U \) around critical point \((x^*, y^*)\) so that for all \((x, y) \in U \) we have that \(f(x, y) \leq f(x^*, y^*) \).
- **Strongly local min-max point** if \(\lambda_{\text{min}}(\nabla^2 f(x^*, y^*)) > 0 \) and \(\lambda_{\text{max}}(\nabla^2 f(x^*, y^*)) < 0 \).
- **Linearly stable** or just **stable** if, for the Jacobian \(J \) of the update rule of the dynamics (GDA or OGDA) computed at \((x^*, y^*)\) holds that its spectral radius \(\rho(J) < 1 \).
- **Remark**: There are other notions of stability, this is the most convenient for us.

Critical point	GDA-stable	OGDA-stable	Local min-max
(0, 0) | NO | YES | NO
(0, 1) | NO | NO | NO
(1, 0) | YES | NO | NO
(1, 1) | YES | YES | YES
(0.33, 0.336) | NO | NO | NO

Table: Summary of critical points.

Q: Are the stable limit points of GDA and OGDA locally min-max solutions?

Stable under GDA, Not local min-max

We plot the "vector field" of GDA for the quadratic function:

\[f(x, y) = -\frac{1}{8}x^2 - \frac{1}{2}y^2 + \frac{6}{10}xy. \]

An example with all possible scenarios

Q: How do the stable limit points of GDA and OGDA relate to each other?

Inclusion results

Local min-max \(\subset \) GDA-stable \(\subset \) OGDA-stable

Theorem

Assume \(f \) is twice differentiable and \(\nabla f \) is Lipschitz with constant \(L \).

1. **Let** \((x^*, y^*)\) be a local min max critical point that satisfies some genericity assumption\(^a\). For \(\alpha > 0 \) sufficiently small it holds that \((x^*, y^*)\) is GDA-stable. Moreover, there is a function with a critical point \((x^*, y^*)\) which is not local min-max but it is GDA-stable (for sufficiently small \(\alpha > 0 \)).

2. **Let** \((x^*, y^*)\) be a GDA-stable. For \(0 < \alpha < \frac{1}{L} \) it holds that \((x^*, y^*)\) is OGDA-stable. Similarly the inclusion is strict.

\(^a\)The hessian with opposite the \(x \)-rows has no eigenvalue with real part 0.

\(^b\)No assumption needed if strong local min-max.

Diffeomorphism and avoiding unstable points

Theorem

Let \(f \) be twice differentiable and \(\nabla f \) is Lipschitz with constant \(L \). **Assume** that \(0 < \alpha < \frac{1}{L} \).

- **The update rule of the GDA dynamics is a local diffeomorphism**\(^a\).
- **If** \(\nabla^2 f \) is invertible, then the update rule of OGDA is a local diffeomorphism.

Corollary

Using the center-stable manifold theorem it can be shown that the set of initial conditions so that GDA (respectively OGDA) converges to unstable points is of measure zero.

\(^a\)A local diffeomorphism is a function that locally is invertible, smooth and its (local) inverse is also smooth.

Questions

- Optimism makes critical points "more stable".
- GDA, OGDA do not converge ONLY to local saddles (robust solutions). Another method?
- What about vanishing stepsizes?
- What is a good solution concept?

Take away messages and questions