Multiplicative Weights Update with Constant Step-Size in Congestion Games Convergence, Limit Cycles & Chaos

Question: How does MWU behave in **Congestion Games?**

Georgios Piliouras¹

	Convergence of MWU to Nash Equilibria
es ion) lin-	Theorem Function $\Psi \stackrel{\text{def}}{=} \mathbb{E}_{s \sim p} [\Phi(s)]$ is decreasing w.r.t. tin $\Psi(\mathbf{p}(t+1)) \leq \Psi(\mathbf{p}(t))$ where equality $\Psi(\mathbf{p}(t+1)) = \Psi(\mathbf{p}(t))$ holds only at fixed points Theorem Assume that the fixed points of MWU_{ℓ} are isola MWU_{ℓ} dynamics converges to Nash equilibrium
	Theorem [Li & Yorke, '75]: Period three implie
	Let <i>J</i> be an interval and let $F : J \rightarrow J$ be con Assume there is a point $a \in J$ for which the point $F(a), c = F^2(a)$ and $d = F^3(a)$, satisfy
1.0	$d \le a < b < c \text{ (or } d \ge a > b > c).$
st,	Then
,	1. For every $k = 1, 2,$ there is a periodic point in J k
1	period k.
	2. There is an uncountable "scrambled" set $S \subset J$ (cor
	no periodic points), which satisfies the following column f
	For every $p, q \in S$ with $p \neq q$, 1 : $ T^n(x) = T^n(x) = 0$, $1 = 1$: $ C = T^n(x) = T$
	$\lim_{n\to\infty} \sup F^n(p) - F^n(q) > 0 \text{ and } \lim_{n\to\infty} \inf F^n(p) - F^n(q) > 0$
1.0	For every point $p \in S$ and periodic point $q \in J$,
nth	$\lim_{n\to\infty}\sup F^n(p)-F^n(q) >0.$
	$n \rightarrow \infty$
	Non-Convergence of MWU _e : Limit Cycle and
of ra-	Theorem There exist two player two strategy symmetric congestion games such that MWU_e exhibits Li- chaos. There also exist such games where MV an uncountably infinite set of initial conditions converging to a limit cycle. Corollary For any $1 > \epsilon > 0$ and n , there exists a n -player congestion game $G(\epsilon)$ (depending on ϵ) so that dynamics exhibits Li-Yorke chaos.

https://arxiv.org/abs/1703.01138

