Last-Iterate Convergence: Zero-Sum Games and Constrained Min-Max Optimization

Ioannis Panageas Singapore University of Technology and Design (SUTD)

> Constantinos Daskalakis MIT

Min-max Optimization

 $\min_{\mathbf{y}\in\mathcal{Y}}\max_{\mathbf{x}\in\mathcal{X}}f(\mathbf{x},\mathbf{y}).$

- Zero-sum: f(x, y) represents the payment of the Y player to the X.
 Classic def: f(x, y) = x^TAy (bilinear), X, Y are simplex.
- Applications: Generative Adversarial networks (GANs), Game Theory, etc.

Min-max Optimization

 $\min_{\mathbf{y}\in\mathcal{Y}}\max_{\mathbf{x}\in\mathcal{X}}f(\mathbf{x},\mathbf{y}).$

•	Zero-	1.	GANs: Objective non-convex non-concave!	ne \mathcal{X} .
•	Class	2.	NE not guaranteed to exist!	
•	Applic	3.	Gradient Descent Oscillates for unconstrained case.	y, etc.

Min-max Optimization

 $\min_{\mathbf{y}\in\mathcal{Y}}\max_{\mathbf{x}\in\mathcal{X}}f(\mathbf{x},\mathbf{y}).$

•	Zero-	1.	GANs: Objective non-convex non-concave!	ne \mathcal{X} .
•	Class	2.	NE not guaranteed to exist!	
•	Applic	3.	Gradient Descent Oscillates for unconstrained case.	y, etc.

[Daskalakis et al, ICLR18]: Show last iterate convergence of Optimistic Gradient Descent (OGD) for bilinear functions in the unconstrained case!

Min-max Optimization (cont.)

$$\min_{\mathbf{y}\in\Delta_m}\max_{\mathbf{x}\in\Delta_n}f(\mathbf{x},\mathbf{y}).$$

- Captures linear programming.
- Daskalakis et al does not apply!
- The analogue of OGD is optimistic multiplicative weights update.

Last-Iterate convergence: $\lim_{T\to\infty} z^T$ exists!

Last-Iterate convergence: $\lim_{T\to\infty} z^T$ exists!

Time Average: $\lim_{T\to\infty} \frac{\sum_{j=1}^T z^j}{T}$ exists!

• Last-iterate implies time average (converse not true).

Last-Iterate convergence: $\lim_{T\to\infty} z^T$ exists!

- Last-iterate implies time average (converse not true).
- Convergence rate $\Omega\left(\frac{1}{T}\right)$ for time average if sequence is positive, last-iterate potentially faster!

Last-Iterate convergence: $\lim_{T\to\infty} z^T$ exists!

- Last-iterate implies time average (converse not true).
- Convergence rate $\Omega\left(\frac{1}{T}\right)$ for time average if sequence is positive, last-iterate potentially faster!
- Last-iterate gives better predictions!

Last-Iterate convergence: $\lim_{T\to\infty} z^T$ exists!

- Last-iterate implies time average (converse not true).
- Convergence rate $\Omega\left(\frac{1}{T}\right)$ for time average if sequence is positive, last-iterate potentially faster!
- Last-iterate gives better predictions!
- Example (2 slides later).

Multiplicative Weights Update

MWU \equiv **FTRL** with **entropy** regularizer,

boils down to:

$$\begin{aligned} \boldsymbol{x}_{i}^{t+1} &= \boldsymbol{x}_{i}^{t} \frac{e^{\eta(A\mathbf{y}^{t})_{i}}}{\sum_{j=1}^{n} \boldsymbol{x}_{j}^{t} e^{\eta(A\mathbf{y}^{t})_{j}}} \text{ for all } i \in [n], \\ \boldsymbol{y}_{i}^{t+1} &= \boldsymbol{y}_{i}^{t} \frac{e^{-\eta(A^{\top}\mathbf{x}^{t})_{i}}}{\sum_{j=1}^{m} \boldsymbol{y}_{j}^{t} e^{-\eta(A^{\top}\mathbf{x}^{t})_{j}}} \text{ for all } i \in [m]. \end{aligned}$$

Multiplicative Weights Update (cont.)

Example: [Bailey et. al., EC18]

Matching pennies game, classic MWU.

$$A = \left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right)$$

Multiplicative Weights Update (cont.)

Example: [Bailey et. al., EC18]

Matching pennies game, classic MWU. $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$

- Oscillates towards the boundary!
- Time average converges to Nash eq. (MWU is no-regret):

$$\lim_{T \to \infty} \frac{\sum_{j=1}^{T} x_{\text{Heads}}^{j}}{T} = \frac{1}{2}$$
$$\lim_{T \to \infty} \frac{\sum_{j=1}^{T} y_{\text{Heads}}^{j}}{T} = \frac{1}{2}$$

Optimistic Multiplicative Weights Update

Optimistic FTRL with entropy regularizer boils down to:

$$\begin{aligned} \boldsymbol{x}_{i}^{t+1} &= \boldsymbol{x}_{i}^{t} \frac{e^{2\eta(A\mathbf{y}^{t})_{i} - \eta(A\mathbf{y}^{t-1})_{i}}}{\sum_{j=1}^{n} \boldsymbol{x}_{j}^{t} e^{2\eta(A\mathbf{y}^{t})_{j} - \eta(A\mathbf{y}^{t-1})_{j}}} \text{ for all } i \in [n], \\ \boldsymbol{y}_{i}^{t+1} &= \boldsymbol{y}_{i}^{t} \frac{e^{-2\eta(A^{\top}\mathbf{x}^{t})_{i} + \eta(A^{\top}\mathbf{x}^{t-1})_{i}}}{\sum_{j=1}^{m} y_{j}^{t} e^{-2\eta(A^{\top}\mathbf{x}^{t})_{j} + \eta(A^{\top}\mathbf{x}^{t-1})_{j}}} \text{ for all } i \in [m]. \end{aligned}$$

Optimistic Multiplicative Weights Update

Optimistic FTRL with entropy regularizer boils down to:

$$\begin{aligned} \mathbf{x}_{i}^{t+1} &= \mathbf{x}_{i}^{t} \frac{e^{2\eta(A\mathbf{y}^{t})_{i} - \eta(A\mathbf{y}^{t-1})_{i}}}{\sum_{j=1}^{n} \mathbf{x}_{j}^{t} e^{2\eta(A\mathbf{y}^{t})_{j} - \eta(A\mathbf{y}^{t-1})_{j}}} \text{ for all } i \in [n], \\ y_{i}^{t+1} &= y_{i}^{t} \frac{e^{-2\eta(A^{\top}\mathbf{x}^{t})_{i} + \eta(A^{\top}\mathbf{x}^{t-1})_{i}}}{\sum_{j=1}^{m} y_{j}^{t} e^{-2\eta(A^{\top}\mathbf{x}^{t})_{j} + \eta(A^{\top}\mathbf{x}^{t-1})_{j}}} \text{ for all } i \in [m]. \end{aligned}$$

$$\begin{array}{l} \text{Recall!} \quad x_i^{t+1} = x_i^t \frac{e^{\eta(A \mathbf{y}^t)_i}}{\sum_{j=1}^n x_j^t e^{\eta(A \mathbf{y}^t)_j}}, \\ y_i^{t+1} = y_i^t \frac{e^{-\eta(A^\top \mathbf{x}^t)_i}}{\sum_{j=1}^m y_j^t e^{-\eta(A^\top \mathbf{x}^t)_j}}. \end{array}$$

In this talk

Theorem. Let A be a $n \times m$ matrix and assume that

 $\min_{\boldsymbol{y}\in\Delta_m}\max_{\boldsymbol{x}\in\Delta_n}\boldsymbol{x}^\top A\boldsymbol{y}$

has a unique solution (x^*, y^*) . For stepsize η sufficiently small (depends on n, m, A), starting from a point (x^0, y^0) in the interior of $\Delta_m \times \Delta_n$, it holds

 $\lim_{t\to\infty}(\boldsymbol{x}^t,\boldsymbol{y}^t)=(\boldsymbol{x}^*,\boldsymbol{y}^*),$

under OMWU dynamics. The stepsize η is constant, i.e., does not scale with time.

About the proof

STEP 1: OMWU dynamics reaches a small neighborhood around the NE (x^*, y^*) .

We show:

KL divergence from $(\mathbf{x}^t, \mathbf{y}^t)$ to $(\mathbf{x}^*, \mathbf{y}^*)$ decreases with time *unless*

$$(\mathbf{x}^t, \mathbf{y}^t) \in U.$$

About the proof

STEP 1: OMWU dynamics reaches a small neighborhood around the NE (x^*, y^*) .

We show:

 $\sum_{i=1}^{n} x_i^* \ln(x_i^*/x_i^t) + \sum_{i=1}^{m} y_i^* \ln(y_i^*/y_i^t)$

decreases with time unless $(\mathbf{x}^t, \mathbf{y}^t) \in U.$

About the proof

STEP 2: OMWU dynamics is a contraction mapping inside U.

OMWU is a dynamical system of the form

 $(\mathbf{x}^{t+1}, \mathbf{y}^{t+1}, \mathbf{x}^t, \mathbf{y}^t) = \mathbf{G}(\mathbf{x}^t, \mathbf{y}^t, \mathbf{x}^{t-1}, \mathbf{y}^{t-1}).$

We show:

The Jacobian of the map G has spectral radius less than one in U

Take away messages

- Optimism helps the trajectories of learning dynamics stabilize.
- Proof of convergence for the last iterate needs fundamentally different techniques! Dynamical systems to the rescue!

Take away messages – Questions

- Optimism helps the trajectories of learning dynamics stabilize.
- Proof of convergence for the last iterate needs fundamentally different techniques! Dynamical systems to the rescue!
- Rate of convergence (is it polynomial in n, m)?
 Generalize the result for convex-concave objectives.

Take away messages – Questions

- Optimism helps the trajectories of learning dynamics stabilize.
- Proof of convergence for the last iterate needs fundamentally different techniques! Dynamical systems to the rescue!
- Rate of convergence (is it polynomial in n, m)?
 Generalize the result for convex-concave objectives.

Thank you! 😊