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Min-max Optimization

min ma .
lin E;gf( , )

- Zero-sum: f(x,y) represents the payment of the ) player to the X.

+ Classic def: f(x,y) = x' Ay (bilinear), X, are simplex.
* Applications: Generative Adversarial networks (GANs), Game Theory, etc.
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Min-max Optimization

min ma .
lin E;gf( , )

[Daskalakis et al, ICLR18]: Show last iterate convergence of
Optimistic Gradient Descent (OGD) for bilinear functions in the
unconstrained case!




Min-max Optimization (cont.)

o, )

« Captures linear programming.

« Daskalakis et al does not apply!
 The analogue of OGD is optimistic multiplicative weights update.
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Last-Iterate vs Time Average

Last-Iterate convergence: limp_, . 27 exists!

: : ZT—1 27 :
Time Average: limy_, ., =%— exists!

Last-iterate implies time average (converse not true).
Convergence rate) () for time average if sequence is
positive, last-iterate potentially faster!

Last-iterate gives better predictions!

Example (2 slides later).




Multiplicative Weights Update

MWU = with regularizer,
boils down to:
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Multiplicative Weights Update (cont.)

Example: [Bailey et. al., EC18]
Matching pennies game, classic MWU.

a=( 4 )
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Prob. X chooses Heads



Multiplicative Weights Update (cont.)

Example: [Bailey et. al., EC18]
Matching pennies game, classic MWU.

a=( 4 )

» QOscillates towards the boundary!
» Time average converges to Nash eq.
(MWU Is no-regret):
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Prob. X chooses Heads




Optimistic Multiplicative Weights Update

with regularizer boils down to:

2n(A );—n(A P71, .
bl — gt e for all i € [n],
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AR for all i € [m].
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Optimistic Multiplicative Weights Update

with regularizer boils down to:
t t—1
t1 ¢ p2n(A ") —n(A )i .
i = liTe A T, A T for all ¢ € [n),
t+H1 ¢ " 1—'~’Jn<AT Batnal<t=1),
=i BT AT for all i € [m).




In this talk

Theorem. Let A be a n X m matrix and assume that

min maxx ' Ay
YA, x€EAy

has a unique solution (x*,y™*). For stepsize 11 sufficiently small (depends on n,m, A),
starting from a point (x°,y") in the interior of Ay, X Ay, it holds

lim (', y') = (x",y"),

[—00

under OMWU dynamics. The stepsize 1 is constant, i.e., does not scale with time.




About the proof

STEP 1. OMWU dynamics reaches
a small neighborhoof’ around the
NE (x*,y") .

We show:
KL divergence from (x*,¥°) to(x*,y*)
decreases with time unless

(x",y") eU.
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About the proof

STEP 2: OMWU dynamics is a
contraction mapping inside U.

OMWAU is a dynamical system of
the form

t+1 t+1 t t—1 t—1
(x" Ty T,

Lyh) =Gy, x Ty h.

We show:
The Jacobian of the map= has
spectral radius less than one inU




Take away messages

* Optimism helps the trajectories of learning dynamics stabilize.

* Proof of convergence for the last iterate needs fundamentally
different techniques! Dynamical systems to the rescue!




Take away messages — Questions

Optimism helps the trajectories of learning dynamics stabilize.
Proof of convergence for the last iterate needs fundamentally
different techniques! Dynamical systems to the rescue!

Rate of convergence (is it polynomial in n, m )?
Generalize the result for convex-concave objectives.
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Thank youl ©



