
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 8
Counting sort, Bucket sort, Radix
sort

3-42

Counting sort

I Let A be the input array, B the output array. Assume there
are n items.

I Warning: this algorithm description assumes that the arrays
are indexed starting from 1, not from 0.

I To implement the algorithm in a modern programming
language directly from the algorithm description:

I Allocate each array to be one entry larger than it actually is
I Ignore location 0.

I Main idea of CountingSort: Suppose A contains exactly j
elements ≤ x

I If x only appears once in A, then x should go in in B[j].
I If x appears more than once in A and we want a stable sort:

I Last occurrence of x in A should go in B[j]
I Next-to-last occurrence of x should go in B[j − 1]
I etc.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-42

Counting sort

I Let A be the input array, B the output array. Assume there
are n items.

I Warning: this algorithm description assumes that the arrays
are indexed starting from 1, not from 0.

I To implement the algorithm in a modern programming
language directly from the algorithm description:

I Allocate each array to be one entry larger than it actually is
I Ignore location 0.

I Main idea of CountingSort: Suppose A contains exactly j
elements ≤ x

I If x only appears once in A, then x should go in in B[j].
I If x appears more than once in A and we want a stable sort:

I Last occurrence of x in A should go in B[j]
I Next-to-last occurrence of x should go in B[j − 1]
I etc.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-42

Counting sort

I Let A be the input array, B the output array. Assume there
are n items.

I Warning: this algorithm description assumes that the arrays
are indexed starting from 1, not from 0.

I To implement the algorithm in a modern programming
language directly from the algorithm description:

I Allocate each array to be one entry larger than it actually is
I Ignore location 0.

I Main idea of CountingSort: Suppose A contains exactly j
elements ≤ x

I If x only appears once in A, then x should go in in B[j].
I If x appears more than once in A and we want a stable sort:

I Last occurrence of x in A should go in B[j]
I Next-to-last occurrence of x should go in B[j − 1]
I etc.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-42

Counting sort

I Let A be the input array, B the output array. Assume there
are n items.

I Warning: this algorithm description assumes that the arrays
are indexed starting from 1, not from 0.

I To implement the algorithm in a modern programming
language directly from the algorithm description:

I Allocate each array to be one entry larger than it actually is
I Ignore location 0.

I Main idea of CountingSort: Suppose A contains exactly j
elements ≤ x

I If x only appears once in A, then x should go in in B[j].
I If x appears more than once in A and we want a stable sort:

I Last occurrence of x in A should go in B[j]
I Next-to-last occurrence of x should go in B[j − 1]
I etc.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-42

Counting sort

I Let A be the input array, B the output array. Assume there
are n items.

I Warning: this algorithm description assumes that the arrays
are indexed starting from 1, not from 0.

I To implement the algorithm in a modern programming
language directly from the algorithm description:

I Allocate each array to be one entry larger than it actually is

I Ignore location 0.

I Main idea of CountingSort: Suppose A contains exactly j
elements ≤ x

I If x only appears once in A, then x should go in in B[j].
I If x appears more than once in A and we want a stable sort:

I Last occurrence of x in A should go in B[j]
I Next-to-last occurrence of x should go in B[j − 1]
I etc.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-42

Counting sort

I Let A be the input array, B the output array. Assume there
are n items.

I Warning: this algorithm description assumes that the arrays
are indexed starting from 1, not from 0.

I To implement the algorithm in a modern programming
language directly from the algorithm description:

I Allocate each array to be one entry larger than it actually is
I Ignore location 0.

I Main idea of CountingSort: Suppose A contains exactly j
elements ≤ x

I If x only appears once in A, then x should go in in B[j].
I If x appears more than once in A and we want a stable sort:

I Last occurrence of x in A should go in B[j]
I Next-to-last occurrence of x should go in B[j − 1]
I etc.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-42

Counting sort

I Let A be the input array, B the output array. Assume there
are n items.

I Warning: this algorithm description assumes that the arrays
are indexed starting from 1, not from 0.

I To implement the algorithm in a modern programming
language directly from the algorithm description:

I Allocate each array to be one entry larger than it actually is
I Ignore location 0.

I Main idea of CountingSort: Suppose A contains exactly j
elements ≤ x

I If x only appears once in A, then x should go in in B[j].
I If x appears more than once in A and we want a stable sort:

I Last occurrence of x in A should go in B[j]
I Next-to-last occurrence of x should go in B[j − 1]
I etc.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-42

Counting sort

I Let A be the input array, B the output array. Assume there
are n items.

I Warning: this algorithm description assumes that the arrays
are indexed starting from 1, not from 0.

I To implement the algorithm in a modern programming
language directly from the algorithm description:

I Allocate each array to be one entry larger than it actually is
I Ignore location 0.

I Main idea of CountingSort: Suppose A contains exactly j
elements ≤ x

I If x only appears once in A, then x should go in in B[j].

I If x appears more than once in A and we want a stable sort:
I Last occurrence of x in A should go in B[j]
I Next-to-last occurrence of x should go in B[j − 1]
I etc.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-42

Counting sort

I Let A be the input array, B the output array. Assume there
are n items.

I Warning: this algorithm description assumes that the arrays
are indexed starting from 1, not from 0.

I To implement the algorithm in a modern programming
language directly from the algorithm description:

I Allocate each array to be one entry larger than it actually is
I Ignore location 0.

I Main idea of CountingSort: Suppose A contains exactly j
elements ≤ x

I If x only appears once in A, then x should go in in B[j].
I If x appears more than once in A and we want a stable sort:

I Last occurrence of x in A should go in B[j]
I Next-to-last occurrence of x should go in B[j − 1]
I etc.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-42

Counting sort

I Let A be the input array, B the output array. Assume there
are n items.

I Warning: this algorithm description assumes that the arrays
are indexed starting from 1, not from 0.

I To implement the algorithm in a modern programming
language directly from the algorithm description:

I Allocate each array to be one entry larger than it actually is
I Ignore location 0.

I Main idea of CountingSort: Suppose A contains exactly j
elements ≤ x

I If x only appears once in A, then x should go in in B[j].
I If x appears more than once in A and we want a stable sort:

I Last occurrence of x in A should go in B[j]

I Next-to-last occurrence of x should go in B[j − 1]
I etc.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-42

Counting sort

I Let A be the input array, B the output array. Assume there
are n items.

I Warning: this algorithm description assumes that the arrays
are indexed starting from 1, not from 0.

I To implement the algorithm in a modern programming
language directly from the algorithm description:

I Allocate each array to be one entry larger than it actually is
I Ignore location 0.

I Main idea of CountingSort: Suppose A contains exactly j
elements ≤ x

I If x only appears once in A, then x should go in in B[j].
I If x appears more than once in A and we want a stable sort:

I Last occurrence of x in A should go in B[j]
I Next-to-last occurrence of x should go in B[j − 1]
I etc.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-43

Counting sort

I Assume:
I We are sorting an array A[1..n] of integers
I Each integer is in the range 1..k
I Output array is B[1..n]

I Use an auxiliary array locator[1..k]
I locator[x] contains the index of the position in the output

array B where a key of x should be stored.
I We make several passes over the data to set the values in the

locator array before we do the actual sort.
I At the start of the final (sorting) pass, locator[x] contains

the number of elements ≤ x

I On the final pass:
I Process the input array A from right to left (!). This makes the

counting sort a stable sorting algorithm.
I When a value of x is encountered in the input array A:

I Copy the value into location locator[x] in the output array.
That is, store it in location B[locator[x]]

I Decrement locator[x]

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-43

Counting sort
I Assume:

I We are sorting an array A[1..n] of integers
I Each integer is in the range 1..k
I Output array is B[1..n]

I Use an auxiliary array locator[1..k]
I locator[x] contains the index of the position in the output

array B where a key of x should be stored.
I We make several passes over the data to set the values in the

locator array before we do the actual sort.
I At the start of the final (sorting) pass, locator[x] contains

the number of elements ≤ x

I On the final pass:
I Process the input array A from right to left (!). This makes the

counting sort a stable sorting algorithm.
I When a value of x is encountered in the input array A:

I Copy the value into location locator[x] in the output array.
That is, store it in location B[locator[x]]

I Decrement locator[x]

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-43

Counting sort
I Assume:

I We are sorting an array A[1..n] of integers

I Each integer is in the range 1..k
I Output array is B[1..n]

I Use an auxiliary array locator[1..k]
I locator[x] contains the index of the position in the output

array B where a key of x should be stored.
I We make several passes over the data to set the values in the

locator array before we do the actual sort.
I At the start of the final (sorting) pass, locator[x] contains

the number of elements ≤ x

I On the final pass:
I Process the input array A from right to left (!). This makes the

counting sort a stable sorting algorithm.
I When a value of x is encountered in the input array A:

I Copy the value into location locator[x] in the output array.
That is, store it in location B[locator[x]]

I Decrement locator[x]

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-43

Counting sort
I Assume:

I We are sorting an array A[1..n] of integers
I Each integer is in the range 1..k

I Output array is B[1..n]

I Use an auxiliary array locator[1..k]
I locator[x] contains the index of the position in the output

array B where a key of x should be stored.
I We make several passes over the data to set the values in the

locator array before we do the actual sort.
I At the start of the final (sorting) pass, locator[x] contains

the number of elements ≤ x

I On the final pass:
I Process the input array A from right to left (!). This makes the

counting sort a stable sorting algorithm.
I When a value of x is encountered in the input array A:

I Copy the value into location locator[x] in the output array.
That is, store it in location B[locator[x]]

I Decrement locator[x]

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-43

Counting sort
I Assume:

I We are sorting an array A[1..n] of integers
I Each integer is in the range 1..k
I Output array is B[1..n]

I Use an auxiliary array locator[1..k]
I locator[x] contains the index of the position in the output

array B where a key of x should be stored.
I We make several passes over the data to set the values in the

locator array before we do the actual sort.
I At the start of the final (sorting) pass, locator[x] contains

the number of elements ≤ x

I On the final pass:
I Process the input array A from right to left (!). This makes the

counting sort a stable sorting algorithm.
I When a value of x is encountered in the input array A:

I Copy the value into location locator[x] in the output array.
That is, store it in location B[locator[x]]

I Decrement locator[x]

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-43

Counting sort
I Assume:

I We are sorting an array A[1..n] of integers
I Each integer is in the range 1..k
I Output array is B[1..n]

I Use an auxiliary array locator[1..k]

I locator[x] contains the index of the position in the output
array B where a key of x should be stored.

I We make several passes over the data to set the values in the
locator array before we do the actual sort.

I At the start of the final (sorting) pass, locator[x] contains
the number of elements ≤ x

I On the final pass:
I Process the input array A from right to left (!). This makes the

counting sort a stable sorting algorithm.
I When a value of x is encountered in the input array A:

I Copy the value into location locator[x] in the output array.
That is, store it in location B[locator[x]]

I Decrement locator[x]

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-43

Counting sort
I Assume:

I We are sorting an array A[1..n] of integers
I Each integer is in the range 1..k
I Output array is B[1..n]

I Use an auxiliary array locator[1..k]
I locator[x] contains the index of the position in the output

array B where a key of x should be stored.

I We make several passes over the data to set the values in the
locator array before we do the actual sort.

I At the start of the final (sorting) pass, locator[x] contains
the number of elements ≤ x

I On the final pass:
I Process the input array A from right to left (!). This makes the

counting sort a stable sorting algorithm.
I When a value of x is encountered in the input array A:

I Copy the value into location locator[x] in the output array.
That is, store it in location B[locator[x]]

I Decrement locator[x]

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-43

Counting sort
I Assume:

I We are sorting an array A[1..n] of integers
I Each integer is in the range 1..k
I Output array is B[1..n]

I Use an auxiliary array locator[1..k]
I locator[x] contains the index of the position in the output

array B where a key of x should be stored.
I We make several passes over the data to set the values in the

locator array before we do the actual sort.

I At the start of the final (sorting) pass, locator[x] contains
the number of elements ≤ x

I On the final pass:
I Process the input array A from right to left (!). This makes the

counting sort a stable sorting algorithm.
I When a value of x is encountered in the input array A:

I Copy the value into location locator[x] in the output array.
That is, store it in location B[locator[x]]

I Decrement locator[x]

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-43

Counting sort
I Assume:

I We are sorting an array A[1..n] of integers
I Each integer is in the range 1..k
I Output array is B[1..n]

I Use an auxiliary array locator[1..k]
I locator[x] contains the index of the position in the output

array B where a key of x should be stored.
I We make several passes over the data to set the values in the

locator array before we do the actual sort.
I At the start of the final (sorting) pass, locator[x] contains

the number of elements ≤ x

I On the final pass:
I Process the input array A from right to left (!). This makes the

counting sort a stable sorting algorithm.
I When a value of x is encountered in the input array A:

I Copy the value into location locator[x] in the output array.
That is, store it in location B[locator[x]]

I Decrement locator[x]

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-43

Counting sort
I Assume:

I We are sorting an array A[1..n] of integers
I Each integer is in the range 1..k
I Output array is B[1..n]

I Use an auxiliary array locator[1..k]
I locator[x] contains the index of the position in the output

array B where a key of x should be stored.
I We make several passes over the data to set the values in the

locator array before we do the actual sort.
I At the start of the final (sorting) pass, locator[x] contains

the number of elements ≤ x

I On the final pass:

I Process the input array A from right to left (!). This makes the
counting sort a stable sorting algorithm.

I When a value of x is encountered in the input array A:
I Copy the value into location locator[x] in the output array.

That is, store it in location B[locator[x]]
I Decrement locator[x]

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-43

Counting sort
I Assume:

I We are sorting an array A[1..n] of integers
I Each integer is in the range 1..k
I Output array is B[1..n]

I Use an auxiliary array locator[1..k]
I locator[x] contains the index of the position in the output

array B where a key of x should be stored.
I We make several passes over the data to set the values in the

locator array before we do the actual sort.
I At the start of the final (sorting) pass, locator[x] contains

the number of elements ≤ x

I On the final pass:
I Process the input array A from right to left (!). This makes the

counting sort a stable sorting algorithm.

I When a value of x is encountered in the input array A:
I Copy the value into location locator[x] in the output array.

That is, store it in location B[locator[x]]
I Decrement locator[x]

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-43

Counting sort
I Assume:

I We are sorting an array A[1..n] of integers
I Each integer is in the range 1..k
I Output array is B[1..n]

I Use an auxiliary array locator[1..k]
I locator[x] contains the index of the position in the output

array B where a key of x should be stored.
I We make several passes over the data to set the values in the

locator array before we do the actual sort.
I At the start of the final (sorting) pass, locator[x] contains

the number of elements ≤ x

I On the final pass:
I Process the input array A from right to left (!). This makes the

counting sort a stable sorting algorithm.
I When a value of x is encountered in the input array A:

I Copy the value into location locator[x] in the output array.
That is, store it in location B[locator[x]]

I Decrement locator[x]

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-43

Counting sort
I Assume:

I We are sorting an array A[1..n] of integers
I Each integer is in the range 1..k
I Output array is B[1..n]

I Use an auxiliary array locator[1..k]
I locator[x] contains the index of the position in the output

array B where a key of x should be stored.
I We make several passes over the data to set the values in the

locator array before we do the actual sort.
I At the start of the final (sorting) pass, locator[x] contains

the number of elements ≤ x

I On the final pass:
I Process the input array A from right to left (!). This makes the

counting sort a stable sorting algorithm.
I When a value of x is encountered in the input array A:

I Copy the value into location locator[x] in the output array.
That is, store it in location B[locator[x]]

I Decrement locator[x]

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-43

Counting sort
I Assume:

I We are sorting an array A[1..n] of integers
I Each integer is in the range 1..k
I Output array is B[1..n]

I Use an auxiliary array locator[1..k]
I locator[x] contains the index of the position in the output

array B where a key of x should be stored.
I We make several passes over the data to set the values in the

locator array before we do the actual sort.
I At the start of the final (sorting) pass, locator[x] contains

the number of elements ≤ x

I On the final pass:
I Process the input array A from right to left (!). This makes the

counting sort a stable sorting algorithm.
I When a value of x is encountered in the input array A:

I Copy the value into location locator[x] in the output array.
That is, store it in location B[locator[x]]

I Decrement locator[x]

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-44

Code for Counting sort

def CountingSort(A, B, n , k)

//Initialize: set each locator[x] to

the number of entries ≤ x

for x = 1 to k do locator[x] = 0

for i = 1 to n do locator[A[i]] = locator[A[i]] + 1

for x = 2 to k do

locator[x] = locator[x] + locator[x-1]

//Fill output array, updating locator values

for i = n down to 1 do

B[locator[A[i]]] = A[i]

locator[A[i]] = locator[A[i]] - 1

Analysis: O(n + k) running time.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-44

Code for Counting sort

def CountingSort(A, B, n , k)

//Initialize: set each locator[x] to

the number of entries ≤ x

for x = 1 to k do locator[x] = 0

for i = 1 to n do locator[A[i]] = locator[A[i]] + 1

for x = 2 to k do

locator[x] = locator[x] + locator[x-1]

//Fill output array, updating locator values

for i = n down to 1 do

B[locator[A[i]]] = A[i]

locator[A[i]] = locator[A[i]] - 1

Analysis: O(n + k) running time.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

4

4

6

5

6

6

9

7

10

8

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

4

4

6

5

6

6

9

7

10

8

B:

1 2 3 4 5 6 7 8 9 10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

4

4

6

5

6

6

9

7

10

8

B:

1 2 3 4 5 6 7 8 9 10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

4

4

6

5

6

6

9

7

10

8

B:

1 2 3 4 5 6 7 8 9 10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

4

4

6

5

6

6

9

7

10

8

B:

1 2 3

4

4 5 6 7 8 9 10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

3

4

6

5

6

6

9

7

10

8

B:

1 2 3

4

4 5 6 7 8 9 10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

3

4

6

5

6

6

9

7

10

8

B:

1 2 3

4

4 5 6 7 8 9 10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

3

4

6

5

6

6

9

7

10

8

B:

1 2 3

4

4 5 6 7 8 9 10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

3

4

6

5

6

6

9

7

10

8

B:

1 2 3

4

4 5 6 7 8

7

9 10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

3

4

6

5

6

6

8

7

10

8

B:

1 2 3

4

4 5 6 7 8

7

9 10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

3

4

6

5

6

6

8

7

10

8

B:

1 2 3

4

4 5 6 7 8

7

9 10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

3

4

6

5

6

6

8

7

10

8

B:

1 2 3

4

4 5 6 7 8

7

9 10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

3

4

6

5

6

6

8

7

10

8

B:

1 2 3

4

4 5 6 7 8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

3

4

6

5

6

6

8

7

9

8

B:

1 2 3

4

4 5 6 7 8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

3

4

6

5

6

6

8

7

9

8

B:

1 2 3

4

4 5 6 7 8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

3

4

6

5

6

6

8

7

9

8

B:

1 2 3

4

4 5 6 7 8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

3

4

6

5

6

6

8

7

9

8

B:

1 2

3

3

4

4 5 6 7 8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

3

3

3

4

6

5

6

6

8

7

9

8

B:

1 2

3

3

4

4 5 6 7 8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

6

5

6

6

8

7

9

8

B:

1 2

3

3

4

4 5 6 7 8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

6

5

6

6

8

7

9

8

B:

1 2

3

3

4

4 5 6 7 8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

6

5

6

6

8

7

9

8

B:

1 2

3

3

4

4 5 6 7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

6

5

6

6

7

7

9

8

B:

1 2

3

3

4

4 5 6 7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

6

5

6

6

7

7

9

8

B:

1 2

3

3

4

4 5 6 7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

6

5

6

6

7

7

9

8

B:

1 2

3

3

4

4 5 6 7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

6

5

6

6

7

7

9

8

B:

1 2

3

3

4

4 5

5

6 7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

5

5

6

6

7

7

9

8

B:

1 2

3

3

4

4 5

5

6 7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

5

5

6

6

7

7

9

8

B:

1 2

3

3

4

4 5

5

6 7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

5

5

6

6

7

7

9

8

B:

1 2

3

3

4

4 5

5

6 7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

5

5

6

6

7

7

9

8

B:

1 2

3

3

4

4 5

5

6

7

7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

5

5

6

6

6

7

9

8

B:

1 2

3

3

4

4 5

5

6

7

7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

5

5

6

6

6

7

9

8

B:

1 2

3

3

4

4 5

5

6

7

7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

5

5

6

6

6

7

9

8

B:

1 2

3

3

4

4 5

5

6

7

7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

5

5

6

6

6

7

9

8

B:

1 2

3

3

4

4

5

5

5

6

7

7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

4

5

6

6

6

7

9

8

B:

1 2

3

3

4

4

5

5

5

6

7

7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

4

5

6

6

6

7

9

8

B:

1 2

3

3

4

4

5

5

5

6

7

7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

4

5

6

6

6

7

9

8

B:

1 2

3

3

4

4

5

5

5

6

7

7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

2

3

3

4

4

5

6

6

6

7

9

8

B:

1

3

2

3

3

4

4

5

5

5

6

7

7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

1

3

3

4

4

5

6

6

6

7

9

8

B:

1

3

2

3

3

4

4

5

5

5

6

7

7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

1

3

3

4

4

5

6

6

6

7

9

8

B:

1

3

2

3

3

4

4

5

5

5

6

7

7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

1

3

3

4

4

5

6

6

6

7

9

8

B:

1

3

2

3

3

4

4

5

5

5

6

7

7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 1

1

1

2

1

3

3

4

4

5

6

6

6

7

9

8

B: 1

1

3

2

3

3

4

4

5

5

5

6

7

7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 0

1

1

2

1

3

3

4

4

5

6

6

6

7

9

8

B: 1

1

3

2

3

3

4

4

5

5

5

6

7

7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-45

Counting Sort Example

A: Done! 1

1

3

2

5

3

7

4

5

5

7

6

3

7

8

8

7

9

4

10

locator: 0

1

1

2

1

3

3

4

4

5

6

6

6

7

9

8

B: 1

1

3

2

3

3

4

4

5

5

5

6

7

7

7

8

7

9

8

10

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-46

Bucket Sort

I Divide space of possible keys into contiguous subranges, or
buckets.

I Three phases:

1. Distribute keys into buckets
2. Sort keys in each bucket
3. Combine buckets.

I Simplest approach is to divide the space of possible keys into
equal sized buckets.

I Typically use insertion sort in phase 2.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-46

Bucket Sort

I Divide space of possible keys into contiguous subranges, or
buckets.

I Three phases:

1. Distribute keys into buckets
2. Sort keys in each bucket
3. Combine buckets.

I Simplest approach is to divide the space of possible keys into
equal sized buckets.

I Typically use insertion sort in phase 2.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-46

Bucket Sort

I Divide space of possible keys into contiguous subranges, or
buckets.

I Three phases:

1. Distribute keys into buckets
2. Sort keys in each bucket
3. Combine buckets.

I Simplest approach is to divide the space of possible keys into
equal sized buckets.

I Typically use insertion sort in phase 2.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-46

Bucket Sort

I Divide space of possible keys into contiguous subranges, or
buckets.

I Three phases:

1. Distribute keys into buckets

2. Sort keys in each bucket
3. Combine buckets.

I Simplest approach is to divide the space of possible keys into
equal sized buckets.

I Typically use insertion sort in phase 2.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-46

Bucket Sort

I Divide space of possible keys into contiguous subranges, or
buckets.

I Three phases:

1. Distribute keys into buckets
2. Sort keys in each bucket

3. Combine buckets.

I Simplest approach is to divide the space of possible keys into
equal sized buckets.

I Typically use insertion sort in phase 2.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-46

Bucket Sort

I Divide space of possible keys into contiguous subranges, or
buckets.

I Three phases:

1. Distribute keys into buckets
2. Sort keys in each bucket
3. Combine buckets.

I Simplest approach is to divide the space of possible keys into
equal sized buckets.

I Typically use insertion sort in phase 2.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-46

Bucket Sort

I Divide space of possible keys into contiguous subranges, or
buckets.

I Three phases:

1. Distribute keys into buckets
2. Sort keys in each bucket
3. Combine buckets.

I Simplest approach is to divide the space of possible keys into
equal sized buckets.

I Typically use insertion sort in phase 2.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-46

Bucket Sort

I Divide space of possible keys into contiguous subranges, or
buckets.

I Three phases:

1. Distribute keys into buckets
2. Sort keys in each bucket
3. Combine buckets.

I Simplest approach is to divide the space of possible keys into
equal sized buckets.

I Typically use insertion sort in phase 2.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-47

Bucket Sort Example

Sort the following keys in the range 0-999, using 10 equal-size
buckets:

661 74 835 140 198 923 113 642 467 449

1. Distribute

0: 74
1: 140 198 113
2:
3:
4: 467 449
5:
6: 661 642
7:
8: 835
9: 923

2. Sort

0: 74
1: 113 140 198
2:
3:
4: 449 467
5:
6: 642 661
7:
8: 835
9: 923

3. Combine

74
113
140
198
449
467
642
661
835
923

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-47

Bucket Sort Example

Sort the following keys in the range 0-999, using 10 equal-size
buckets:

661 74 835 140 198 923 113 642 467 449

1. Distribute

0: 74
1: 140 198 113
2:
3:
4: 467 449
5:
6: 661 642
7:
8: 835
9: 923

2. Sort

0: 74
1: 113 140 198
2:
3:
4: 449 467
5:
6: 642 661
7:
8: 835
9: 923

3. Combine

74
113
140
198
449
467
642
661
835
923

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-47

Bucket Sort Example

Sort the following keys in the range 0-999, using 10 equal-size
buckets:

661 74 835 140 198 923 113 642 467 449

1. Distribute

0: 74
1: 140 198 113
2:
3:
4: 467 449
5:
6: 661 642
7:
8: 835
9: 923

2. Sort

0: 74
1: 113 140 198
2:
3:
4: 449 467
5:
6: 642 661
7:
8: 835
9: 923

3. Combine

74
113
140
198
449
467
642
661
835
923

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-47

Bucket Sort Example

Sort the following keys in the range 0-999, using 10 equal-size
buckets:

661 74 835 140 198 923 113 642 467 449

1. Distribute

0: 74
1: 140 198 113
2:
3:
4: 467 449
5:
6: 661 642
7:
8: 835
9: 923

2. Sort

0: 74
1: 113 140 198
2:
3:
4: 449 467
5:
6: 642 661
7:
8: 835
9: 923

3. Combine

74
113
140
198
449
467
642
661
835
923

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-47

Bucket Sort Example

Sort the following keys in the range 0-999, using 10 equal-size
buckets:

661 74 835 140 198 923 113 642 467 449

1. Distribute

0: 74
1: 140 198 113
2:
3:
4: 467 449
5:
6: 661 642
7:
8: 835
9: 923

2. Sort

0: 74
1: 113 140 198
2:
3:
4: 449 467
5:
6: 642 661
7:
8: 835
9: 923

3. Combine

74
113
140
198
449
467
642
661
835
923

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-48

Analysis of Bucket Sort

n = number of items to sort
b = number of buckets
si = number of items in bucket i (i = 0, . . . , b − 1)

Phase Running time

1. Distribution O(n)

2. Sorting each bucket O(b +
∑

i s
2
i)

3. Combining buckets O(b)

Total running time is:

O

(
n + b +

b∑
i=1

s2i

)

I Worst case: O(n2).

I Best case: O(n).

I Average case: O(n) if certain assumptions are satisfied (next slide)

I Storage: is O(n + b).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-48

Analysis of Bucket Sort

n = number of items to sort

b = number of buckets
si = number of items in bucket i (i = 0, . . . , b − 1)

Phase Running time

1. Distribution O(n)

2. Sorting each bucket O(b +
∑

i s
2
i)

3. Combining buckets O(b)

Total running time is:

O

(
n + b +

b∑
i=1

s2i

)

I Worst case: O(n2).

I Best case: O(n).

I Average case: O(n) if certain assumptions are satisfied (next slide)

I Storage: is O(n + b).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-48

Analysis of Bucket Sort

n = number of items to sort
b = number of buckets

si = number of items in bucket i (i = 0, . . . , b − 1)

Phase Running time

1. Distribution O(n)

2. Sorting each bucket O(b +
∑

i s
2
i)

3. Combining buckets O(b)

Total running time is:

O

(
n + b +

b∑
i=1

s2i

)

I Worst case: O(n2).

I Best case: O(n).

I Average case: O(n) if certain assumptions are satisfied (next slide)

I Storage: is O(n + b).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-48

Analysis of Bucket Sort

n = number of items to sort
b = number of buckets
si = number of items in bucket i (i = 0, . . . , b − 1)

Phase Running time

1. Distribution O(n)

2. Sorting each bucket O(b +
∑

i s
2
i)

3. Combining buckets O(b)

Total running time is:

O

(
n + b +

b∑
i=1

s2i

)

I Worst case: O(n2).

I Best case: O(n).

I Average case: O(n) if certain assumptions are satisfied (next slide)

I Storage: is O(n + b).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-48

Analysis of Bucket Sort

n = number of items to sort
b = number of buckets
si = number of items in bucket i (i = 0, . . . , b − 1)

Phase Running time

1. Distribution O(n)

2. Sorting each bucket O(b +
∑

i s
2
i)

3. Combining buckets O(b)

Total running time is:

O

(
n + b +

b∑
i=1

s2i

)

I Worst case: O(n2).

I Best case: O(n).

I Average case: O(n) if certain assumptions are satisfied (next slide)

I Storage: is O(n + b).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-48

Analysis of Bucket Sort

n = number of items to sort
b = number of buckets
si = number of items in bucket i (i = 0, . . . , b − 1)

Phase Running time

1. Distribution O(n)

2. Sorting each bucket O(b +
∑

i s
2
i)

3. Combining buckets O(b)

Total running time is:

O

(
n + b +

b∑
i=1

s2i

)

I Worst case: O(n2).

I Best case: O(n).

I Average case: O(n) if certain assumptions are satisfied (next slide)

I Storage: is O(n + b).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-48

Analysis of Bucket Sort

n = number of items to sort
b = number of buckets
si = number of items in bucket i (i = 0, . . . , b − 1)

Phase Running time

1. Distribution O(n)

2. Sorting each bucket O(b +
∑

i s
2
i)

3. Combining buckets O(b)

Total running time is:

O

(
n + b +

b∑
i=1

s2i

)

I Worst case: O(n2).

I Best case: O(n).

I Average case: O(n) if certain assumptions are satisfied (next slide)

I Storage: is O(n + b).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-48

Analysis of Bucket Sort

n = number of items to sort
b = number of buckets
si = number of items in bucket i (i = 0, . . . , b − 1)

Phase Running time

1. Distribution O(n)

2. Sorting each bucket O(b +
∑

i s
2
i)

3. Combining buckets O(b)

Total running time is:

O

(
n + b +

b∑
i=1

s2i

)

I Worst case: O(n2).

I Best case: O(n).

I Average case: O(n) if certain assumptions are satisfied (next slide)

I Storage: is O(n + b).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-48

Analysis of Bucket Sort

n = number of items to sort
b = number of buckets
si = number of items in bucket i (i = 0, . . . , b − 1)

Phase Running time

1. Distribution O(n)

2. Sorting each bucket O(b +
∑

i s
2
i)

3. Combining buckets O(b)

Total running time is:

O

(
n + b +

b∑
i=1

s2i

)

I Worst case: O(n2).

I Best case: O(n).

I Average case: O(n) if certain assumptions are satisfied (next slide)

I Storage: is O(n + b).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-48

Analysis of Bucket Sort

n = number of items to sort
b = number of buckets
si = number of items in bucket i (i = 0, . . . , b − 1)

Phase Running time

1. Distribution O(n)

2. Sorting each bucket O(b +
∑

i s
2
i)

3. Combining buckets O(b)

Total running time is:

O

(
n + b +

b∑
i=1

s2i

)

I Worst case: O(n2).

I Best case: O(n).

I Average case: O(n) if certain assumptions are satisfied (next slide)

I Storage: is O(n + b).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-48

Analysis of Bucket Sort

n = number of items to sort
b = number of buckets
si = number of items in bucket i (i = 0, . . . , b − 1)

Phase Running time

1. Distribution O(n)

2. Sorting each bucket O(b +
∑

i s
2
i)

3. Combining buckets O(b)

Total running time is:

O

(
n + b +

b∑
i=1

s2i

)

I Worst case: O(n2).

I Best case: O(n).

I Average case: O(n) if certain assumptions are satisfied (next slide)

I Storage: is O(n + b).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-48

Analysis of Bucket Sort

n = number of items to sort
b = number of buckets
si = number of items in bucket i (i = 0, . . . , b − 1)

Phase Running time

1. Distribution O(n)

2. Sorting each bucket O(b +
∑

i s
2
i)

3. Combining buckets O(b)

Total running time is:

O

(
n + b +

b∑
i=1

s2i

)

I Worst case: O(n2).

I Best case: O(n).

I Average case: O(n) if certain assumptions are satisfied (next slide)

I Storage: is O(n + b).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-48

Analysis of Bucket Sort

n = number of items to sort
b = number of buckets
si = number of items in bucket i (i = 0, . . . , b − 1)

Phase Running time

1. Distribution O(n)

2. Sorting each bucket O(b +
∑

i s
2
i)

3. Combining buckets O(b)

Total running time is:

O

(
n + b +

b∑
i=1

s2i

)

I Worst case: O(n2).

I Best case: O(n).

I Average case: O(n) if certain assumptions are satisfied (next slide)

I Storage: is O(n + b).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-49

Average running time of Bucket Sort

The following result is proved in [CLRS]:

Assume:

1. The number of buckets is equal to the number of
keys (i.e., if b = n)

2. The keys are distributed independently and
uniformly over the buckets

Then the expected total cost of the intra-bucket sorts is
O(n).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-50

Radix Sort

I Useful for sorting multi-field keys in lexicographic order

I Lexicographic order means sorted on the most important field,
with ties broken on the next most important field, and so on.
It is also called dictionary order

I Examples:
I Words in dictionaries:

I clown comes before dog
I cat comes before clown
I car comes before cat

I Dates: (year, month, day)
I Multi-digit numbers: (3-digit numbers in this example)

I 293 represented as (2,9,3)
I 71 represented as (0,7,1)

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-50

Radix Sort

I Useful for sorting multi-field keys in lexicographic order

I Lexicographic order means sorted on the most important field,
with ties broken on the next most important field, and so on.
It is also called dictionary order

I Examples:
I Words in dictionaries:

I clown comes before dog
I cat comes before clown
I car comes before cat

I Dates: (year, month, day)
I Multi-digit numbers: (3-digit numbers in this example)

I 293 represented as (2,9,3)
I 71 represented as (0,7,1)

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-50

Radix Sort

I Useful for sorting multi-field keys in lexicographic order

I Lexicographic order means sorted on the most important field,
with ties broken on the next most important field, and so on.

It is also called dictionary order
I Examples:

I Words in dictionaries:
I clown comes before dog
I cat comes before clown
I car comes before cat

I Dates: (year, month, day)
I Multi-digit numbers: (3-digit numbers in this example)

I 293 represented as (2,9,3)
I 71 represented as (0,7,1)

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-50

Radix Sort

I Useful for sorting multi-field keys in lexicographic order

I Lexicographic order means sorted on the most important field,
with ties broken on the next most important field, and so on.
It is also called dictionary order

I Examples:
I Words in dictionaries:

I clown comes before dog
I cat comes before clown
I car comes before cat

I Dates: (year, month, day)
I Multi-digit numbers: (3-digit numbers in this example)

I 293 represented as (2,9,3)
I 71 represented as (0,7,1)

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-50

Radix Sort

I Useful for sorting multi-field keys in lexicographic order

I Lexicographic order means sorted on the most important field,
with ties broken on the next most important field, and so on.
It is also called dictionary order

I Examples:

I Words in dictionaries:
I clown comes before dog
I cat comes before clown
I car comes before cat

I Dates: (year, month, day)
I Multi-digit numbers: (3-digit numbers in this example)

I 293 represented as (2,9,3)
I 71 represented as (0,7,1)

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-50

Radix Sort

I Useful for sorting multi-field keys in lexicographic order

I Lexicographic order means sorted on the most important field,
with ties broken on the next most important field, and so on.
It is also called dictionary order

I Examples:
I Words in dictionaries:

I clown comes before dog
I cat comes before clown
I car comes before cat

I Dates: (year, month, day)
I Multi-digit numbers: (3-digit numbers in this example)

I 293 represented as (2,9,3)
I 71 represented as (0,7,1)

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-50

Radix Sort

I Useful for sorting multi-field keys in lexicographic order

I Lexicographic order means sorted on the most important field,
with ties broken on the next most important field, and so on.
It is also called dictionary order

I Examples:
I Words in dictionaries:

I clown comes before dog

I cat comes before clown
I car comes before cat

I Dates: (year, month, day)
I Multi-digit numbers: (3-digit numbers in this example)

I 293 represented as (2,9,3)
I 71 represented as (0,7,1)

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-50

Radix Sort

I Useful for sorting multi-field keys in lexicographic order

I Lexicographic order means sorted on the most important field,
with ties broken on the next most important field, and so on.
It is also called dictionary order

I Examples:
I Words in dictionaries:

I clown comes before dog
I cat comes before clown

I car comes before cat

I Dates: (year, month, day)
I Multi-digit numbers: (3-digit numbers in this example)

I 293 represented as (2,9,3)
I 71 represented as (0,7,1)

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-50

Radix Sort

I Useful for sorting multi-field keys in lexicographic order

I Lexicographic order means sorted on the most important field,
with ties broken on the next most important field, and so on.
It is also called dictionary order

I Examples:
I Words in dictionaries:

I clown comes before dog
I cat comes before clown
I car comes before cat

I Dates: (year, month, day)
I Multi-digit numbers: (3-digit numbers in this example)

I 293 represented as (2,9,3)
I 71 represented as (0,7,1)

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-50

Radix Sort

I Useful for sorting multi-field keys in lexicographic order

I Lexicographic order means sorted on the most important field,
with ties broken on the next most important field, and so on.
It is also called dictionary order

I Examples:
I Words in dictionaries:

I clown comes before dog
I cat comes before clown
I car comes before cat

I Dates: (year, month, day)

I Multi-digit numbers: (3-digit numbers in this example)
I 293 represented as (2,9,3)
I 71 represented as (0,7,1)

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-50

Radix Sort

I Useful for sorting multi-field keys in lexicographic order

I Lexicographic order means sorted on the most important field,
with ties broken on the next most important field, and so on.
It is also called dictionary order

I Examples:
I Words in dictionaries:

I clown comes before dog
I cat comes before clown
I car comes before cat

I Dates: (year, month, day)
I Multi-digit numbers: (3-digit numbers in this example)

I 293 represented as (2,9,3)
I 71 represented as (0,7,1)

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-50

Radix Sort

I Useful for sorting multi-field keys in lexicographic order

I Lexicographic order means sorted on the most important field,
with ties broken on the next most important field, and so on.
It is also called dictionary order

I Examples:
I Words in dictionaries:

I clown comes before dog
I cat comes before clown
I car comes before cat

I Dates: (year, month, day)
I Multi-digit numbers: (3-digit numbers in this example)

I 293 represented as (2,9,3)

I 71 represented as (0,7,1)

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-50

Radix Sort

I Useful for sorting multi-field keys in lexicographic order

I Lexicographic order means sorted on the most important field,
with ties broken on the next most important field, and so on.
It is also called dictionary order

I Examples:
I Words in dictionaries:

I clown comes before dog
I cat comes before clown
I car comes before cat

I Dates: (year, month, day)
I Multi-digit numbers: (3-digit numbers in this example)

I 293 represented as (2,9,3)
I 71 represented as (0,7,1)

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-50

Radix Sort

I Useful for sorting multi-field keys in lexicographic order

I Lexicographic order means sorted on the most important field,
with ties broken on the next most important field, and so on.
It is also called dictionary order

I Examples:
I Words in dictionaries:

I clown comes before dog
I cat comes before clown
I car comes before cat

I Dates: (year, month, day)
I Multi-digit numbers: (3-digit numbers in this example)

I 293 represented as (2,9,3)
I 71 represented as (0,7,1)

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-51

Radix Sort:

Radix sort:

I Sorts on each field in the key, one at a time

I Sorts on on least-significant field first
I Uses a stable sort

I Recall: A sorting algorithm is stable if whenever two keys are
equal, the algorithm preserves their order (i.e., does not reverse
them.)

def radix sort(A,n);

for field ranging from rightmost (least significant)
to leftmost (most significant):

sort A on field using a stable sort

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-51

Radix Sort:

Radix sort:

I Sorts on each field in the key, one at a time

I Sorts on on least-significant field first
I Uses a stable sort

I Recall: A sorting algorithm is stable if whenever two keys are
equal, the algorithm preserves their order (i.e., does not reverse
them.)

def radix sort(A,n);

for field ranging from rightmost (least significant)
to leftmost (most significant):

sort A on field using a stable sort

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-51

Radix Sort:

Radix sort:

I Sorts on each field in the key, one at a time

I Sorts on on least-significant field first
I Uses a stable sort

I Recall: A sorting algorithm is stable if whenever two keys are
equal, the algorithm preserves their order (i.e., does not reverse
them.)

def radix sort(A,n);

for field ranging from rightmost (least significant)
to leftmost (most significant):

sort A on field using a stable sort

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-51

Radix Sort:

Radix sort:

I Sorts on each field in the key, one at a time

I Sorts on on least-significant field first

I Uses a stable sort
I Recall: A sorting algorithm is stable if whenever two keys are

equal, the algorithm preserves their order (i.e., does not reverse
them.)

def radix sort(A,n);

for field ranging from rightmost (least significant)
to leftmost (most significant):

sort A on field using a stable sort

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-51

Radix Sort:

Radix sort:

I Sorts on each field in the key, one at a time

I Sorts on on least-significant field first
I Uses a stable sort

I Recall: A sorting algorithm is stable if whenever two keys are
equal, the algorithm preserves their order (i.e., does not reverse
them.)

def radix sort(A,n);

for field ranging from rightmost (least significant)
to leftmost (most significant):

sort A on field using a stable sort

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-51

Radix Sort:

Radix sort:

I Sorts on each field in the key, one at a time

I Sorts on on least-significant field first
I Uses a stable sort

I Recall: A sorting algorithm is stable if whenever two keys are
equal, the algorithm preserves their order (i.e., does not reverse
them.)

def radix sort(A,n);

for field ranging from rightmost (least significant)
to leftmost (most significant):

sort A on field using a stable sort

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-51

Radix Sort:

Radix sort:

I Sorts on each field in the key, one at a time

I Sorts on on least-significant field first
I Uses a stable sort

I Recall: A sorting algorithm is stable if whenever two keys are
equal, the algorithm preserves their order (i.e., does not reverse
them.)

def radix sort(A,n);

for field ranging from rightmost (least significant)
to leftmost (most significant):

sort A on field using a stable sort

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-51

Radix Sort:

Radix sort:

I Sorts on each field in the key, one at a time

I Sorts on on least-significant field first
I Uses a stable sort

I Recall: A sorting algorithm is stable if whenever two keys are
equal, the algorithm preserves their order (i.e., does not reverse
them.)

def radix sort(A,n);

for field ranging from rightmost (least significant)
to leftmost (most significant):

sort A on field using a stable sort

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-52

Radix Sort Example:

Sort the following numbers using radix sort (each digit is a field)
661 74 835 140 198 923 113 642 467 449

661
074
835
140
198
923
113
642
467
449

⇒

140
661
642
923
113
074
835
467
198
449

⇒

113
923
835
140
642
449
661
467
074
198

⇒

074
113
140
198
449
467
642
661
835
923

Note the importance of stability.

We break the ties first, and stability makes sure the ties remain
broken correctly.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-52

Radix Sort Example:
Sort the following numbers using radix sort (each digit is a field)

661 74 835 140 198 923 113 642 467 449

661
074
835
140
198
923
113
642
467
449

⇒

140
661
642
923
113
074
835
467
198
449

⇒

113
923
835
140
642
449
661
467
074
198

⇒

074
113
140
198
449
467
642
661
835
923

Note the importance of stability.

We break the ties first, and stability makes sure the ties remain
broken correctly.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-52

Radix Sort Example:
Sort the following numbers using radix sort (each digit is a field)

661 74 835 140 198 923 113 642 467 449

661
074
835
140
198
923
113
642
467
449

⇒

140
661
642
923
113
074
835
467
198
449

⇒

113
923
835
140
642
449
661
467
074
198

⇒

074
113
140
198
449
467
642
661
835
923

Note the importance of stability.

We break the ties first, and stability makes sure the ties remain
broken correctly.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-52

Radix Sort Example:
Sort the following numbers using radix sort (each digit is a field)

661 74 835 140 198 923 113 642 467 449

661
074
835
140
198
923
113
642
467
449

⇒

140
661
642
923
113
074
835
467
198
449

⇒

113
923
835
140
642
449
661
467
074
198

⇒

074
113
140
198
449
467
642
661
835
923

Note the importance of stability.

We break the ties first, and stability makes sure the ties remain
broken correctly.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-52

Radix Sort Example:
Sort the following numbers using radix sort (each digit is a field)

661 74 835 140 198 923 113 642 467 449

661
074
835
140
198
923
113
642
467
449

⇒

140
661
642
923
113
074
835
467
198
449

⇒

113
923
835
140
642
449
661
467
074
198

⇒

074
113
140
198
449
467
642
661
835
923

Note the importance of stability.

We break the ties first, and stability makes sure the ties remain
broken correctly.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-52

Radix Sort Example:
Sort the following numbers using radix sort (each digit is a field)

661 74 835 140 198 923 113 642 467 449

661
074
835
140
198
923
113
642
467
449

⇒

140
661
642
923
113
074
835
467
198
449

⇒

113
923
835
140
642
449
661
467
074
198

⇒

074
113
140
198
449
467
642
661
835
923

Note the importance of stability.

We break the ties first, and stability makes sure the ties remain
broken correctly.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-52

Radix Sort Example:
Sort the following numbers using radix sort (each digit is a field)

661 74 835 140 198 923 113 642 467 449

661
074
835
140
198
923
113
642
467
449

⇒

140
661
642
923
113
074
835
467
198
449

⇒

113
923
835
140
642
449
661
467
074
198

⇒

074
113
140
198
449
467
642
661
835
923

Note the importance of stability.

We break the ties first, and stability makes sure the ties remain
broken correctly.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-52

Radix Sort Example:
Sort the following numbers using radix sort (each digit is a field)

661 74 835 140 198 923 113 642 467 449

661
074
835
140
198
923
113
642
467
449

⇒

140
661
642
923
113
074
835
467
198
449

⇒

113
923
835
140
642
449
661
467
074
198

⇒

074
113
140
198
449
467
642
661
835
923

Note the importance of stability.

We break the ties first, and stability makes sure the ties remain
broken correctly.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-53

Analysis of Radix Sort

Assume

I n is the number of items
I b is the size of each range

I Example:
I Each field of each item is a numbers in the range 0..b-1.
I This is true if the numbers we are sorting are integers

represented in base b.

I d is the number of fields we are sorting
I For example, if each item is a base b number with d digits.

(i.e., between 0 and bd − 1, inclusive).

I Each field is sorted using Bucket Sort or Counting Sort

Then the running time of radix sort is O(d(n + b)).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-53

Analysis of Radix Sort

Assume

I n is the number of items
I b is the size of each range

I Example:
I Each field of each item is a numbers in the range 0..b-1.
I This is true if the numbers we are sorting are integers

represented in base b.

I d is the number of fields we are sorting
I For example, if each item is a base b number with d digits.

(i.e., between 0 and bd − 1, inclusive).

I Each field is sorted using Bucket Sort or Counting Sort

Then the running time of radix sort is O(d(n + b)).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-53

Analysis of Radix Sort

Assume

I n is the number of items

I b is the size of each range
I Example:

I Each field of each item is a numbers in the range 0..b-1.
I This is true if the numbers we are sorting are integers

represented in base b.

I d is the number of fields we are sorting
I For example, if each item is a base b number with d digits.

(i.e., between 0 and bd − 1, inclusive).

I Each field is sorted using Bucket Sort or Counting Sort

Then the running time of radix sort is O(d(n + b)).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-53

Analysis of Radix Sort

Assume

I n is the number of items
I b is the size of each range

I Example:
I Each field of each item is a numbers in the range 0..b-1.
I This is true if the numbers we are sorting are integers

represented in base b.

I d is the number of fields we are sorting
I For example, if each item is a base b number with d digits.

(i.e., between 0 and bd − 1, inclusive).

I Each field is sorted using Bucket Sort or Counting Sort

Then the running time of radix sort is O(d(n + b)).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-53

Analysis of Radix Sort

Assume

I n is the number of items
I b is the size of each range

I Example:
I Each field of each item is a numbers in the range 0..b-1.

I This is true if the numbers we are sorting are integers
represented in base b.

I d is the number of fields we are sorting
I For example, if each item is a base b number with d digits.

(i.e., between 0 and bd − 1, inclusive).

I Each field is sorted using Bucket Sort or Counting Sort

Then the running time of radix sort is O(d(n + b)).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-53

Analysis of Radix Sort

Assume

I n is the number of items
I b is the size of each range

I Example:
I Each field of each item is a numbers in the range 0..b-1.
I This is true if the numbers we are sorting are integers

represented in base b.

I d is the number of fields we are sorting
I For example, if each item is a base b number with d digits.

(i.e., between 0 and bd − 1, inclusive).

I Each field is sorted using Bucket Sort or Counting Sort

Then the running time of radix sort is O(d(n + b)).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-53

Analysis of Radix Sort

Assume

I n is the number of items
I b is the size of each range

I Example:
I Each field of each item is a numbers in the range 0..b-1.
I This is true if the numbers we are sorting are integers

represented in base b.

I d is the number of fields we are sorting

I For example, if each item is a base b number with d digits.
(i.e., between 0 and bd − 1, inclusive).

I Each field is sorted using Bucket Sort or Counting Sort

Then the running time of radix sort is O(d(n + b)).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-53

Analysis of Radix Sort

Assume

I n is the number of items
I b is the size of each range

I Example:
I Each field of each item is a numbers in the range 0..b-1.
I This is true if the numbers we are sorting are integers

represented in base b.

I d is the number of fields we are sorting
I For example, if each item is a base b number with d digits.

(i.e., between 0 and bd − 1, inclusive).

I Each field is sorted using Bucket Sort or Counting Sort

Then the running time of radix sort is O(d(n + b)).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-53

Analysis of Radix Sort

Assume

I n is the number of items
I b is the size of each range

I Example:
I Each field of each item is a numbers in the range 0..b-1.
I This is true if the numbers we are sorting are integers

represented in base b.

I d is the number of fields we are sorting
I For example, if each item is a base b number with d digits.

(i.e., between 0 and bd − 1, inclusive).

I Each field is sorted using Bucket Sort or Counting Sort

Then the running time of radix sort is O(d(n + b)).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

3-53

Analysis of Radix Sort

Assume

I n is the number of items
I b is the size of each range

I Example:
I Each field of each item is a numbers in the range 0..b-1.
I This is true if the numbers we are sorting are integers

represented in base b.

I d is the number of fields we are sorting
I For example, if each item is a base b number with d digits.

(i.e., between 0 and bd − 1, inclusive).

I Each field is sorted using Bucket Sort or Counting Sort

Then the running time of radix sort is O(d(n + b)).

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine

 Deterministic Selection:
Find k-th element

2 Recall QuickSelect

quickSelect(S, k)
If n is small, brute force and return.
Pick a random x ∈ S and put rest into:

L, elements smaller than x
G , elements greater than x

if k ≤ |L| then
quickSelect(L, k)

else if k == |L| + 1 then
return x

else
quickSelect(G , k − (|L| + 1))

3 Deterministic Selection

Instead of picking x at random:
▶ Divide S into g = ⌈n/5⌉ groups
▶ Each group has 5 elements (except maybe g th)
▶ Find median of each group of 5
▶ Find median of those medians
▶ Let x be that median.

We call this the “medians of 5” method.

4 Selecting Median of 5 Example
870 647 845 742 372 882 691 341 461 596
989 151 100 729 101 397 825 587 363 283
595 524 930 259 133 955 620 970 430 280
839 139 735 590 782 913 378 474 255 739
875 150 791 779 792

5 Deterministic Select

DeterministicSelect(S, k)
If n is small, brute force and return.
Pick x ∈ S via medians-of-5 and put rest into:

L, elements smaller than x
G , elements greater than x

if k ≤ |L| then
DeterministicSelect(L, k)

else if k == |L| + 1 then
return x

else
DeterministicSelect(G , k − (|L| + 1))

6 Deterministic Selection

Let’s visualize: how does pivot compare to list?

7 Demo Re-visualized

▶ Each column was a group of five.
▶ Each column is sorted
▶ Columns are ordered based on median-of-5
▶ Which cells are in L? G? Either?

100 283 255 133 341
101 363 378 259 461
151 397 474 524 596 620 735 742 791

691 955 782 845 792
882 970 839 870 875

8 Deterministic Selection

▶ How few elements must be smaller than pivot?

▶ How few must be non-smaller than pivot?

▶ How many could be in either group?

