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Lecture 7
Heaps, Heapsort, Stable sorting, 
Optimality of Heapsort/Mergesort
(revisited)
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Heapsort

Consider the following version of Selection Sort (sometimes called
Max sort)

def maxSort(A,n):

for k = n-1 downto 1

find j such that A[j] == max(A[0],A[1],..., A[k])

A[j] ↔ A[k]

A straightforward implementation requires O(n2) time, because of
the time spent repeatedly finding the maximum of the first k items.

But we can speed this up by using a binary heap.
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Priority Queues and Heaps

I Priority Queue
I Abstract data type
I Collection of items.
I Each item has an associated key, which corresponds to a

priority.
I Supports the following operations

I Insert an item with a given key
I Delete an item
I Select the item with the most urgent priority in the priority

queue.

I Most urgent priority may correspond to the lowest key value or
to the highest key value, depending on the application.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine



3-3

Priority Queues and Heaps

I Priority Queue

I Abstract data type
I Collection of items.
I Each item has an associated key, which corresponds to a

priority.
I Supports the following operations

I Insert an item with a given key
I Delete an item
I Select the item with the most urgent priority in the priority

queue.

I Most urgent priority may correspond to the lowest key value or
to the highest key value, depending on the application.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine



3-3

Priority Queues and Heaps

I Priority Queue
I Abstract data type

I Collection of items.
I Each item has an associated key, which corresponds to a

priority.
I Supports the following operations

I Insert an item with a given key
I Delete an item
I Select the item with the most urgent priority in the priority

queue.

I Most urgent priority may correspond to the lowest key value or
to the highest key value, depending on the application.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine



3-3

Priority Queues and Heaps

I Priority Queue
I Abstract data type
I Collection of items.

I Each item has an associated key, which corresponds to a
priority.

I Supports the following operations
I Insert an item with a given key
I Delete an item
I Select the item with the most urgent priority in the priority

queue.

I Most urgent priority may correspond to the lowest key value or
to the highest key value, depending on the application.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine



3-3

Priority Queues and Heaps

I Priority Queue
I Abstract data type
I Collection of items.
I Each item has an associated key, which corresponds to a

priority.

I Supports the following operations
I Insert an item with a given key
I Delete an item
I Select the item with the most urgent priority in the priority

queue.

I Most urgent priority may correspond to the lowest key value or
to the highest key value, depending on the application.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine



3-3

Priority Queues and Heaps

I Priority Queue
I Abstract data type
I Collection of items.
I Each item has an associated key, which corresponds to a

priority.
I Supports the following operations

I Insert an item with a given key
I Delete an item
I Select the item with the most urgent priority in the priority

queue.

I Most urgent priority may correspond to the lowest key value or
to the highest key value, depending on the application.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine



3-3

Priority Queues and Heaps

I Priority Queue
I Abstract data type
I Collection of items.
I Each item has an associated key, which corresponds to a

priority.
I Supports the following operations

I Insert an item with a given key

I Delete an item
I Select the item with the most urgent priority in the priority

queue.

I Most urgent priority may correspond to the lowest key value or
to the highest key value, depending on the application.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine



3-3

Priority Queues and Heaps

I Priority Queue
I Abstract data type
I Collection of items.
I Each item has an associated key, which corresponds to a

priority.
I Supports the following operations

I Insert an item with a given key
I Delete an item

I Select the item with the most urgent priority in the priority
queue.

I Most urgent priority may correspond to the lowest key value or
to the highest key value, depending on the application.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine



3-3

Priority Queues and Heaps

I Priority Queue
I Abstract data type
I Collection of items.
I Each item has an associated key, which corresponds to a

priority.
I Supports the following operations

I Insert an item with a given key
I Delete an item
I Select the item with the most urgent priority in the priority

queue.

I Most urgent priority may correspond to the lowest key value or
to the highest key value, depending on the application.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine



3-3

Priority Queues and Heaps

I Priority Queue
I Abstract data type
I Collection of items.
I Each item has an associated key, which corresponds to a

priority.
I Supports the following operations

I Insert an item with a given key
I Delete an item
I Select the item with the most urgent priority in the priority

queue.

I Most urgent priority may correspond to the lowest key value or
to the highest key value, depending on the application.

CompSci 161—Spring 2022— c©M. B. Dillencourt—University of California, Irvine



3-4

Binary Heaps

I Specific implementation of priority queue

I Items are stored in an array.

I The array represents a binary tree in level order (breadth-first
order).

I Can be max-heap or min-heap
I In a max-heap, large key values represent more urgent priorities
I In a min-heap, small key values represent more urgent priorities

I In this introduction, we will be using a max-heap.

I Heap invariant for max-heaps: For any item v other than the
root,

key (parent(v)) ≥ key(v)

I In a min-heap, the direction of the inequality is reversed.

I In our examples, items are integers, key is the integer value
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3-5

Viewing the array as a binary tree

I Root is H[0]

I Left child of H[i ] is H[2i + 1] (provided 2i + 1 < n, where
n = H.size)

I Right child of H[i ] is H[2i + 2] (provided 2i + 2 < n)

I Parent of H[i ] is H[b(i − 1)/2c] (provided i > 0)
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3-6

Heap operations in a max-heap:

I FindMax(H): Find maximum item in the heap

I ExtractMax(H): Find maximum item and delete it from the
heap

I Insert(H,x): Insert the new item x in the heap

I Delete(H,i): Delete the item at location i from the heap
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3-7

FindMax: Find maximum item in the heap

Findmax is easy: just report the value at the root.

def FindMax(H):

return H[0]
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3-8

Helper functions

I Except for FindMax, the binary heap operations require some
data movement.

I The heap invariant must be preserved after each operation.
I We define two helper functions.

I SiftUp(H,i): Move the item at location i up to its correct
position by repeatedly swapping the item with its parent, as
necessary.

I SiftDown(H,i): Move the item at location i down to its
correct position by repeatedly swapping the item with the child
having the larger key, as necessary.

[GT] calls these ”up-heap bubbling” and ”down-heap
bubbling”
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SiftUp: Sift an item up to its correct position

def SiftUp(H,i):

parent = (i-1)/2;

if (i > 0) and (H[parent].key < H[i].key):

H[i] ↔ H[parent]

SiftUp(H,parent)

Analysis: at most 1 comparison at each level, so total time is
O(log n)

14 31 20

36 23 18 15

79 27

83
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SiftDown: Sift an item down to its correct position
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n = H.size // number of item in heap

left = 2i+1; right = 2i+2
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Insert: Insert the new item x

def Insert(H,x):

H.size = H.size+1 // increment number of items

k = H.size-1 //index of last position

H[k] = x //insert x in last position

SiftUp(H,k)

Analysis: Siftup time dominates, so total time is O(log n)

Insert(H,81)

14 31 20

36 23 18 15

79 27

83
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Delete: Delete the item at location i

def Delete(H,i):

k = H.size-1 //index of last position

H[i] = H[k] // overwrite item being deleted with

element in last position

H.size = H.size-1 // decrement number of item

SiftUp(H,i) // either SiftUp or SiftDown will do nothing

SiftDown(H,i)

Analysis: Siftup/siftdown time dominates, so total time is O(log n)

Delete(H,3)

14 31 20

36 23 18 15

79 27

83
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ExtractMax: Find maximum item and delete it

def ExtractMax(H):

x = H[0]

Delete(H,0)

return x

Analysis: Delete time dominates, so total time is O(log n)
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Constructing a heap

How do we efficiently construct a brand-new heap storing n given
item?

If we insert the items one at a time, time spent on kth insertion is
O(log k).

So total time is

O

(
n−1∑
k=1

log k

)
= O (n log n)

There is a better way that only requires O(n) time. . .
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Constructing a heap in O(n) time

1. Put the data in H, in arbitrary order. (So H stores the correct
data, but does not satisfy the heap invariant.)

2. Run the following Heapify function.

def heapify(H,n)

for i = n-1 down to 0:
SiftDown(H,i)

The code given above can be improved: We can start at
i = b(n-2)/2c (or equivalently, i = bn/2c − 1), rather than
i = n − 1.
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Heapify example
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Heapify example, continued
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Heapify example, continued
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Heapify example, continued
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Heapify example, continued
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Heapify example, continued
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Analysis of heap construction algorithm using Heapify

Algorithm heapify(H,n);

for i = n-1 down to 0:

SiftDown(H,i)

I Correctness: After SiftDown(H,i) is executed, subtree rooted
at node i satisfies heap invariant. (Can show by induction).

I Running time: Heapify runs in O(n) time. We will prove this
on the next slide.
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at node i satisfies heap invariant. (Can show by induction).

I Running time: Heapify runs in O(n) time. We will prove this
on the next slide.
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Proof that Heapify runs in O(n) time

I Suppose the tree has n nodes and d levels (so
2d ≤ n < 2d+1).

I If node i is at level j , SiftDown(H,i) needs ≤ 2(d − j)
comparisons.

I There are at most 2j nodes at level j .
I So total number of comparisons is no more than:

d∑
j=0

2(d − j)2j = 2d
d∑

j=0

2j − 2
d∑

j=0

j2j

= 2d(2d+1 − 1)− 2
[
(d − 1)2d+1 + 2

]
= 2d2d+1 − 2d − 2d2d+1 + 2 · 2d+1 − 4

= 4 · 2d − 2d − 4

< 4 · 2d ≤ 4n = O(n)

So heap can be constructed using O(n) comparisons.
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Heapsort: version based on Max Sort

def heapsort(A,n):

heapify(A,n) // form max heap using array A

for k = n-1 down to 1:

A[k] = ExtractMax(A)

heap

0 k

sorted tail

n − 1

heap

0

sorted tail

k n − 1
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Heapsort example

Sort: 13 23 18 94 42 12 37 81 52 56

Heapify:

23 13 42

52 56 12 18

81 37

94

94

0

81

1

37

2

52

3

56

4

12

5

18

6

23

7

13

8

42

9
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Heapsort example, continued

23 13

52 42 12 18

56 37

81

81

0

56

1

37

2

52

3

42

4

12

5

18

6

23

7

13

8

94

9
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Heapsort example, continued

13

23 42 12 18

52 37

56

56

0

52

1

37

2

23

3

42

4

12

5

18

6

13

7

81

8

94

9
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Heapsort example, continued

23 13 12 18

42 37

52

52

0

42

1

37

2

23

3

13

4

12

5

18

6

56

7

81

8

94

9

Exercise: Finish this example.
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Analysis of Heapsort

I Storage: O(1) extra space (in place)
I Time:

I Heapify: O(n)
I All calls to ExtractMax:

n−1∑
k=1

O (log(k + 1)) = O(n log n)

I Hence total time is O(n log n).
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Heapsort: Alternate version

I Uses a min-heap (instead of a max-heap)

I Output items in sorted order rather than storing them back in
the array

def heapsort(A,n):

heapify(A,n) // Form min heap

for k = 1 to n:

x = ExtractMin(A)

output(x)

I Same analysis as previous version: O(n log n) time, O(1) extra
space

I If we stop after computing the first k entries, total work is

O(n + k log n)
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Comparison-based sorts: Summary/Comparison

Sort Worst-case Storage Remarks
Time Requirement

Insertion Sort O(n2) In-place Good if input is
almost sorted.

QuickSort O(n2) O(log n) extra O(n log n)
for stack expected time.

Mergesort O(n log n) O(n) extra
for merge

Heapsort O(n log n) In-place Can output k smallest
in sorted order in
O(n + k log n) time.
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Stable sorting

A sort is stable if keys having the same value appear in the same
order in the output array as they do in the input array.

[3 2 1 2] → [1 2 2 3] : Stable

[3 2 1 2] → [1 2 2 3] : Not Stable

Sort Stable (without special care)?

Insertion Yes
Sort
Quick- No
Sort
Merge- Yes (as described here)
Sort
Heap- No
Sort
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Lower bound on comparison-based sorting

I Based on Decision Tree model.
I Any algorithm that sorts a list or array of size n using

comparisons can be modeled as a decision tree:
I Each internal node is labeled i : j , representing a comparison

between L[i ] and L[j ].
I The left (respectively, right) of a node labeled i : j describes

for what happens if L[i ] < L[j ] (respectively, L[i ] > L[j ]).
I Each leaf node is a permutation of 0, . . . n − 1.

Example: Decision tree for sorting 3 items

0 1 2 0 2 1 1 2 0 2 1 0

1 : 2 2 0 1 1 0 2 1 : 2

0 : 2 0 : 2

0 : 1
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Lower bound on comparison-based sorting (continued)

1. Any comparison-based algorithm for sorting a list of size n can
be modeled by a decision tree with at least n! leaf nodes.

2. Since the decision tree is a binary tree with n! leaves, the
depth is at least dlg n!e.

3. The worst-case number of comparisons for the algorithm is
the depth of the decision tree.

4. lg n! = Ω(n log n) (proof on next slide)

Fact #2 and Fact #3 imply an exact bound:

Any comparison-based algorithm for sorting a list of size
n must perform at least dlg n!e comparisons in the worst
case.

The previous statement and Fact #4 imply an asymptotic bound:

Any comparison-based algorithm for sorting a list of size
n must perform at least Ω(n log n) comparisons in the
worst case.
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Lower bound on comparison-based sorting (continued)

Proof that lg n! = Ω(n log n):

n! = n · (n − 1) · (n − 3) · · · 2 · 1

The first dn/2e terms in the product are all ≥
⌈
n
2

⌉
.

This implies:

n! ≥
⌈n

2

⌉d n2e ≥ (n
2

) n
2

Take log2 of both sides:

lg n! ≥
(n

2

)
lg
(n

2

)
=
(n

2

)
(lg n − 1) = Ω(n lg n)
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Asymptotic optimality of MergeSort and HeapSort

We have just shown:

Any comparison-based algorithm for sorting a list of size
n must perform at least Ω(n log n) comparisons in the
worst case.

Earlier we showed:

The worst-case running time of MergeSort and HeapSort
on an input of size n is O(n log n).

Conclusions:

1. MergeSort and HeapSort are asymptotically optimal.

2. The lower bound is asymptotically tight (i.e., cannot be
improved asymptotically)
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