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Lecture 20

NP-complete problems, reductions

CS 161 Design and Analysis of Algorithms

loannis Panageas



Example of a reduction

 The 3-SAT problem is NP-complete

 The K-Graph Independent Set (K-GIS) problem is
in NP but we don’t know if it is hard

* Now, let’s reduce the 3-SAT to K-GIS using a poly-
reduction.

* Hard part: find the reduction! how to write 3-SAT
as a special case of K-GIS.



The 3-SAT problem

e SAT (Satisfiability): given a boolean formula, can you make
it TRUE;

(X, A, V) AR, AX)VY) m X =1X=0,%=0

e 3-SAT: AND clauses, each clause contains 3 variables by OR.
For example:

(X VX, VX)A XV X VX)A XV X V) A (X VX, VX))

* Cook’s Theorem: 3-SAT is NP-complete



K-Coloring

* Givenagraph G(V,E), color the vertices using at most Kcolors so that all
neighboring vertices do not share the same color!

* For example, the following graph can be colored with 4 colors.

* Question: Is K-Coloring NP-complete?
Answer: YES

* First K-Coloring belongs to NP: We can verify in polynomial time if all
edges have incident vertices with different colors (in @(E + V) time).

 Then reduce (polynomial reduction) 3-SAT to K-Coloring.



Reduction of 3-SAT to 3-colorability

Goal: We want to solve the 3-SAT problem by making use of an
“oracle” that can answer any instance of the 3-colorability problem.
Thought process:

 The input to the 3-SAT problem is a Boolean expression, e.g.
(X1 Vx,V—x3) A(—xy V—=x4VXxe)A(—Xy VX3V Xs).

 The input to the 3-colorability problem is a graph.

* So for the reduction, we have to transform a Boolean expression
E into a suitable graph G.

Question: How do we relate a Boolean expression to 3-colorability?

Observation: For a Boolean expression E to be satisfiable, every
clause (x Vy V z) in E must evaluate to true. [Here, x, y, z are literals.]

* This means x, y, z cannot all be assigned false.
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Reduction of 3-SAT to 3-colorability

Key Idea 1: Consider a 3-coloring of the following graph:

If vertices (®),(» have distinct colors, then the color of the “output
vertex” @ can be chosen to be any of the three colors.

If vertices (»),(y) have the same color, then the color of the “output
vertex” @ must also be that same color.
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Reduction of 3-SAT to 3-colorability

Let’s now consider the satisfiability of a single clause (x Vy V z).

)

Key Idea 2: Consider a 3-coloring of the following “combined graph”,

»”  ((

using three colors T, F, N (for “true”, “false”, “neutral”).

Color each of the vertices ®,®),@ either T or F, depending on
whether we assign the corresponding variable to be true or false.

Key Observation 1: As long as @),®), @ are not all colored F, then we
can always choose the final “output vertex”® to have color T.

Key Observation 2: If all three ®,®),@ are colored F, then the final
“output vertex” @ must have color F.
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Reduction of 3-SAT to 3-colorability

Key Idea 3: Consider the following “gadget graph”:

@
Let each clause (x V y V z) be associated to a gadget graph.

* Thethree literals x,y,z in (x Vy V z) shall correspond to the
“input vertices” of this gadget graph.

* The final “output vertex” of this gadget graph shall be connected
to two other vertices with colors F and N respectively.

Key Observation: This gadget graph has a 3-coloring if and only if
the vertices &),®), @ do not all have color F.
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Reduction of 3-SAT to 3-colorability

Example: The Boolean expression “(x; V —x, V x3)” is transformed
to the following graph:
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Reduction of 3-SAT to 3-Coloring

* Gadget graph for (x VyV Z): WFN
y Neutral

 Example:

(uvovw)A(wVvxVvy)




Reduction of 3-SAT to 3-Coloring

* Observe that the reduction is polynomial!

Claim 1: ¢ is satisfiable implies constructed Graph is 3-colorable.

Proof:

* |If x; variable is assigned True, color vertex x; T and X; F.

* For eachclause (x VyV z) at least one of x,y, z is colored T.
Graph gadget for clause (x V y V z) can be 3-colored such
that output is coloris T.

* Therefore, no two neighboring vertices have the same color
and we used colors T, F, N.



Reduction of 3-SAT to 3-Coloring

Claim 2: Constructed Graph is 3-colorable (T, F, N) implies ¢
is satisfiable.

Proof:
 Nodes True, False, Neutral use colors T, F, N(need all three)

* If x; is colored T then set variable x; to be True, this is a
truth assignment.

* Consider any clause (x Vy V z). It cannot be that all x, y, z
are False. If so, the output of Graph gadget for (x Vy V z)
has to be colored F but output is connected to nodes
Neutral and False!



K-Graph Independent Set (K-IS)

* Set of K nodes, all pairs are NOT adjacent to each other
* For example, the following blue nodes are 4-IS (K=4)

-

e Question: Is K-IS NP-compIete.’

\F
\;
Answer: YES

* First K-IS belongs to NP: We can verify in polynomial time if a set of
K nodes are not adjacent to each other (in @(K?) time).

 Then reduce (polynomial reduction) 3-SAT to K-IS.




Reduction of 3-SAT to K-IS

Given a formula ¢ with n literals and m clauses that we want to check if
it satisfiable.

Construct a graph G(V, E) as follows:

* Foreachclause (x VyV z)in ¢, create three new vertices, one for
each variable, and link all the vertices (x, y), (x, z), (y, z).

* Link each vertex (literal) x; with all its the corresponding negations.

* The construction can happen in polynomial time since |V| = 3m,
|E| < 3m + 2n?

¢ is satisfiable if and only if there exists an IS of size m!



Reduction of 3-SAT to K-IS

¢ = (x1VJ_Cz V32'3)/\(321 VXZ VX3)/\(.921 sz V)Eg)/\(x1V922Vx3)

K=4

x|
N

%
\
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Vertex Cover (VC)

* Vertex Cover (VC): is there a subset of at most k
vertices, such that it connect to all edges?

e.g. in this graph, 4 of the 8
vertices is enough to cover

* Question: VCis NP Complete?

— Answer: YES
* First, it belongs in NP (why?)
* Then Reduce 3-SAT to VC (or there is something simpler?)



Reduction of K-IS to Vertex Cover (VC)

* Given a graph G(V, E), with |V| = n, suppose
there exists an Independent Set of size k.

* Lemma: If G(V, E), is a graph, then set of vertices
S is an independent set if and only if V — S is a
vertex cover.

Proof: Let S be an independent set,and e = (u,v)
be some edge. Only one of u, v can be in §. Hence,
at leastoneofu,visinV — S§.So,IV/ — Sisa
vertex cover. The other direction is similar.



CLIQUE

* K-cligue: k vertices, all vertices are adjacent to

each other g DEINC O,
— E.g. both of these are 4-CLIQUE
V3 V4 @

A B

 CLIQUE Problem: in a graph, does k-cligue exists?

* Question: CLIQUE is NP-Complete?

— Answer: YES
* First, it belongs in NP (why?)
* Then, reduce Independent set to CLIQUE



Reduction of IS to CLIQUE

* Reduce Independent set (IS) to CLIQUE
— Complement a graph!
— CLIQUE become IS, IS become CLIQUE

— (most reduction are complicated, this is exceptionally
simple...)

—

Max Clique =5 Max Cligue =2
Max IS =72 Max IS =5




Set Cover

 Set Cover: Given a set of U of elements and
collection of set 5, S, S5 ... S,, of subset of U. Is

there a collection of at most k set, whose Union
isU?




Reduction of VC to Set Cover

* Question: Set Cover is NP-Complete?

— Answer: YES
 First, show that is NP (Easy)
* Then, prove that vertex cover can reduce to set cover.




Reduction of VC to Set Cover

* LetG = (V,E) and k be an instance of vertex
cover

* Now,
— U = FE (set of edges)
— Create set of 51, 55, 53 ....
* 5, = all edges adjacent to node 1

* S5, = all edges adjacent to node 2
* Etc

* Conclusion: If G has a vertex cover of size < k,
then U has a set cover < k.



Subset Sum

* Subset Sum: (Recall the Reformulation of the
partition problem!) Given a set S of integers and a
target integer t, does there exist S' € S
with ), corx = ¢.

* Recall that Subset Sum is reduced to Knapsack!

e Question: Subset Sum is NP-Complete?
Answer: YES

* First, it belongs in NP (why?).

e Then, reduce VC to Subset Sum.



Reduction of VC to Subset Sum

e letG = (V,E), with |V| =n, |E| = mand and
assume that has a VC of size k. Number the vertices
from 0 ton — 1 and the edges from 0 tom — 1.

e LetS = {xg, ..., Xn—1} U {¥Vo, ..., Ym—1}- Each x;
consists of m 4+ 1 digits (in base 10) and can be
written as X; ; X; m—1... X; o. The digit x; ,,, is always
1. Each remaining x; ; is 1 if vertex i is an endpoint of
edge j, 0 otherwise.

* Eachy; hasi + 1 digits: a 1 followed by i O’s. Finally,
let t be the base 10 representation of the integer k
followed by m 2’s.



Reduction of VC to Subset Sum

The reduction on an example

Vertex Cover instance Subset Sum instance

1

1| A |3

= 1111000

N
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Reduction of VC to Subset Sum

Graph has VC of size k implies that there is a subset of sum k.

Proof.
Assume the graph has a VC V, of size k. Let
So = {x;|i € Vy}U {y; | only one endpoint of edgei € S, }.

Since there are three 1’s in positions 0 through m — 1, there will be
no carries from those positions. The choice of S, items guarantees
each of these digit positions has sum 2, as required by t. Since

Vol = k, the x;’s in Sy will contribute exactly k 1’s in position m
for a total of k.



Reduction of VC to Subset Sum

There is a subset of sum k imples the graph has VC of size k

Proof.
Assume S is a set of numbers with sum k. Let V; be the set of all

vertices i for which x; € §,.

Since there are no carries in the lowest m digits, there must be
exactly k vertices in V; (to get t to start with k) and each edge must
have at least one endpoint in V, (observe that if edge i has no
endpoints in I/, then S, has only a single 1 among all the i-th digits
and the sum of S, cannot have a 2 in that position).



Web of reductions of the Lecture

INDSET 3COL
CLIQUE VERTEXCOVER

SL‘ESETSUM SETE‘DVER



THANK YOU!

This is the last lecture of CS161!






