Lecture 20
NP-complete problems, reductions

CS 161 Design and Analysis of Algorithms
Ioannis Panageas
Example of a reduction

• The 3-SAT problem is NP-complete
• The K-Graph Independent Set (K-GIS) problem is in NP but we don’t know if it is hard
• Now, let’s reduce the 3-SAT to K-GIS using a poly-reduction.
• **Hard part:** find the reduction! how to write 3-SAT as a special case of K-GIS.
The 3-SAT problem

- **SAT** (Satisfiability): given a boolean formula, can you make it TRUE;

\[(x_1 \land (x_2 \lor \overline{x}_3)) \land ((\overline{x}_2 \land \overline{x}_3) \lor \overline{x}_1) \Rightarrow x_1 = 1, x_2 = 0, x_3 = 0\]

- **3-SAT**: AND clauses, each clause contains 3 variables by OR. For example:

\[(x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor x_3)\]

- **Cook’s Theorem**: 3-SAT is NP-complete
K-Coloring

• Given a graph $G(V, E)$, color the vertices using at most K colors so that all neighboring vertices do not share the same color!
• For example, the following graph can be colored with 4 colors.

• **Question**: Is K-Coloring NP-complete?
 Answer: YES
• First K-Coloring belongs to NP: We can verify in polynomial time if all edges have incident vertices with different colors (in $\Theta(E + V)$ time).
• Then reduce (polynomial reduction) 3-SAT to K-Coloring.
Reduction of 3-SAT to 3-colorability

Goal: We want to solve the 3-SAT problem by making use of an “oracle” that can answer any instance of the 3-colorability problem.

Thought process:
- The input to the 3-SAT problem is a Boolean expression, e.g. \((x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4 \lor x_5) \land (\neg x_1 \lor x_3 \lor x_5)\).
- The input to the 3-colorability problem is a graph.
- So for the reduction, we have to transform a Boolean expression \(E\) into a suitable graph \(G\).

Question: How do we relate a Boolean expression to 3-colorability?

Observation: For a Boolean expression \(E\) to be satisfiable, every clause \((x \lor y \lor z)\) in \(E\) must evaluate to \textit{true}. [Here, \(x, y, z\) are literals.]
- This means \(x, y, z\) cannot all be assigned \textit{false}.
Key Idea 1: Consider a 3-coloring of the following graph:

If vertices x, y have distinct colors, then the color of the “output vertex” u can be chosen to be any of the three colors.

If vertices x, y have the same color, then the color of the “output vertex” u must also be that same color.
Reduction of 3-SAT to 3-colorability

Let’s now consider the satisfiability of a single clause \((x \lor y \lor z)\).

Key Idea 2: Consider a 3-coloring of the following “combined graph”, using three colors \(T, \ F, \ N\) (for “true”, “false”, “neutral”).

![Graph](image)

Color each of the vertices \(x, y, z\) either \(T\) or \(F\), depending on whether we assign the corresponding variable to be *true* or *false*.

Key Observation 1: As long as \(x, y, z\) are not all colored \(F\), then we can always choose the final “output vertex” \(v\) to have color \(T\).

Key Observation 2: If all three \(x, y, z\) are colored \(F\), then the final “output vertex” \(v\) must have color \(F\).
Reduction of 3-SAT to 3-colorability

Key Idea 3: Consider the following “gadget graph”:

Let each clause \((x \lor y \lor z)\) be associated to a gadget graph.

- The three literals \(x, y, z\) in \((x \lor y \lor z)\) shall correspond to the “input vertices” of this gadget graph.
- The final “output vertex” of this gadget graph shall be connected to two other vertices with colors \(F\) and \(N\) respectively.

Key Observation: This gadget graph has a 3-coloring if and only if the vertices \(\overline{x}, \overline{y}, \overline{z}\) do not all have color \(F\).
Reduction of 3-SAT to 3-colorability

Example: The Boolean expression “(x₁ V ¬x₂ V x₃)” is transformed to the following graph:
Reduction of 3-SAT to 3-Coloring

- Gadget graph for \((x \lor y \lor z)\):

- Example:

\[(u \lor \bar{v} \lor w) \land (v \lor x \lor \bar{y})\]
Reduction of 3-SAT to 3-Coloring

• Observe that the reduction is polynomial!

Claim 1: ϕ is satisfiable implies constructed Graph is 3-colorable.

Proof:
• If x_i variable is assigned True, color vertex x_i T and $\overline{x_i}$ F.
• For each clause $(x \lor y \lor z)$ at least one of x, y, z is colored T. Graph gadget for clause $(x \lor y \lor z)$ can be 3-colored such that output is color is T.
• Therefore, no two neighboring vertices have the same color and we used colors T, F, N.
Reduction of 3-SAT to 3-Coloring

Claim 2: Constructed Graph is 3-colorable (T, F, N) implies ϕ is satisfiable.

Proof:

- **Nodes True, False, Neutral** use colors T, F, N (need all three).
- If x_i is colored T then set variable x_i to be True, this is a truth assignment.
- Consider any clause $(x \lor y \lor z)$. It cannot be that all x, y, z are False. If so, the output of Graph gadget for $(x \lor y \lor z)$ has to be colored F but output is connected to nodes Neutral and False!
K-Graph Independent Set (K-IS)

- Set of K nodes, all pairs are NOT adjacent to each other
- For example, the following blue nodes are 4-IS ($K=4$)

Question: Is K-IS NP-complete?

Answer: YES

- First K-IS belongs to NP: We can verify in polynomial time if a set of K nodes are not adjacent to each other (in $\Theta(K^2)$ time).
- Then reduce (polynomial reduction) 3-SAT to K-IS.
Reduction of 3-SAT to K-IS

Given a formula ϕ with n literals and m clauses that we want to check if it satisfiable.

Construct a graph $G(V, E)$ as follows:

- For each clause $(x \lor y \lor z)$ in ϕ, create three new vertices, one for each variable, and link all the vertices $(x, y), (x, z), (y, z)$.
- Link each vertex (literal) x_i with all its the corresponding negations.
- The construction can happen in polynomial time since $|V| = 3m$, $|E| \leq 3m + 2n^2$

- ϕ is satisfiable if and only if there exists an IS of size $m!$
Reduction of 3-SAT to K-IS

\[\phi := (x_1 \lor \bar{x}_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor \bar{x}_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \]

\[K = 4 \]
Vertex Cover (VC)

- **Vertex Cover (VC)**: is there a subset of at most k vertices, such that it connect to all edges?

 e.g. in this graph, 4 of the 8 vertices is enough to cover

- **Question**: VC is NP Complete?
 - Answer: YES
 - First, it belongs in NP (why?)
 - Then Reduce 3-SAT to VC (or there is something simpler?)
Reduction of K-IS to Vertex Cover (VC)

• Given a graph $G(V, E)$, with $|V| = n$, suppose there exists an Independent Set of size k.

• Lemma: If $G(V, E)$, is a graph, then set of vertices S is an independent set if and only if $V - S$ is a vertex cover.

Proof: Let S be an independent set, and $e = (u, v)$ be some edge. Only one of u, v can be in S. Hence, at least one of u, v is in $V - S$. So, $V - S$ is a vertex cover. The other direction is similar.
CLIQUE

• **K-clique**: k vertices, all vertices are adjacent to each other
 – E.g. both of these are 4-CLIQUE

• **CLIQUE Problem**: in a graph, does k-clique exists?

• **Question**: CLIQUE is NP-Complete?
 – Answer: YES
 • First, it belongs in NP (why?)
 • Then, reduce Independent set to CLIQUE
Reduction of IS to CLIQUE

- **Reduce** Independent set (IS) to CLIQUE
 - Complement a graph!
 - CLIQUE become IS, IS become CLIQUE
 - (most reduction are complicated, this is exceptionally simple...)

![Graph diagrams showing the reduction process with Max Clique and Max IS values.]
Set Cover

• **Set Cover**: Given a set of U of elements and collection of set $S_1 S_2 S_3 \ldots S_m$ of subset of U. Is there a collection of at most k set, whose Union is U?
Reduction of VC to Set Cover

• **Question:** Set Cover is NP-Complete?
 – **Answer:** YES
 • First, show that is NP (Easy)
 • Then, prove that vertex cover can reduce to set cover.
Reduction of VC to Set Cover

• Let $G = (V, E)$ and k be an instance of vertex cover

• Now,
 – $U = E$ (set of edges)
 – Create set of S_1, S_2, S_3 ...
 • $S_1 = \text{all edges adjacent to node 1}$
 • $S_2 = \text{all edges adjacent to node 2}$
 • Etc

• Conclusion: If G has a vertex cover of size $\leq k$, then U has a set cover $\leq k$.
 Subset Sum

• **Subset Sum**: (Recall the Reformulation of the partition problem!) Given a set S of integers and a target integer t, does there exist $S' \subseteq S$ with $\sum_{x \in S'} x = t$.

• **Recall that Subset Sum is reduced to Knapsack!**

• **Question**: Subset Sum is NP-Complete?

 Answer: YES
 • First, it belongs in NP (why?).
 • Then, reduce VC to Subset Sum.
Reduction of VC to Subset Sum

• Let $G = (V, E)$, with $|V| = n$, $|E| = m$ and assume that has a VC of size k. Number the vertices from 0 to $n - 1$ and the edges from 0 to $m - 1$.

• Let $S = \{x_0, ..., x_{n-1}\} \cup \{y_0, ..., y_{m-1}\}$. Each x_i consists of $m + 1$ digits (in base 10) and can be written as $x_{i,m}x_{i,m-1}...x_{i,0}$. The digit $x_{i,m}$ is always 1. Each remaining $x_{i,j}$ is 1 if vertex i is an endpoint of edge j, 0 otherwise.

• Each y_i has $i + 1$ digits: a 1 followed by i 0’s. Finally, let t be the base 10 representation of the integer k followed by m 2’s.
Reduction of VC to Subset Sum

The reduction on an example

Vertex Cover instance

 Subset Sum instance

\[\begin{align*}
x_0 &= 1000011 \\
x_1 &= 1001101 \\
x_2 &= 1010110 \\
x_3 &= 1111000 \\
x_4 &= 1100000 \\
y_0 &= 1 \\
y_1 &= 10 \\
y_2 &= 100 \\
y_3 &= 1000 \\
y_4 &= 10000 \\
y_5 &= 100000 \\
t &= 0222222
\end{align*} \]
Reduction of VC to Subset Sum

Graph has VC of size \(k \) implies that there is a subset of sum \(k \).

Proof.
Assume the graph has a VC \(V_0 \) of size \(k \). Let
\[
S_0 = \{ x_i \mid i \in V_0 \} \cup \{ y_i \mid \text{only one endpoint of edge } i \in S_0 \}.
\]

Since there are three 1’s in positions 0 through \(m - 1 \), there will be no carries from those positions. The choice of \(S_0 \) items guarantees each of these digit positions has sum 2, as required by \(t \). Since \(|V_0| = k \), the \(x_i \)'s in \(S_0 \) will contribute exactly \(k \) 1’s in position \(m \) for a total of \(k \).
Reduction of VC to Subset Sum

There is a subset of sum k imples the graph has VC of size k

Proof.
Assume S_0 is a set of numbers with sum k. Let V_0 be the set of all vertices i for which $x_i \in S_0$.

Since there are no carries in the lowest m digits, there must be exactly k vertices in V_0 (to get t to start with k) and each edge must have at least one endpoint in V_0 (observe that if edge i has no endpoints in V_0 then S_0 has only a single 1 among all the i-th digits and the sum of S_0 cannot have a 2 in that position).
Web of reductions of the Lecture
This is the last lecture of CS161!