TxT
D
\lJ
Lecture 15

Maxflow, bipartite matching

CS 161 Design and Analysis of Algorithms

loannis Panageas

Flow Network

A flow network (or just network) N consists of

= A weighted digraph G with nonnegative integer edge weights,
where the weight of an edge e is called the capacity c(e) of e

= Two distinguished vertices, s and t of G, called the source and sink,
respectively, such that s has no incoming edges and t has no
outgoing edges.

#® Example:

N

© 2015 Goodrich and Tamassia Maximum Flow 2

Flow

L/
A flow f for a network N is is an assignment of an integer value
f(e) to each edge e that satisfies the following properties:

Capacity Rule: For each edge e, 0<f(e) <c(e)
Conservation Rule: For each vertex v =s,t Z f(e)= Z f(e)

ecE™ (v) ecE™ (v)
where E-(v) and E*(v) are the incoming and outgoing edges of v, resp.

The value of a flow f, denoted |f|, is the total flow from the source,
which is the same as the total flow into the sink

#® Example:

N

© 2015 Goodrich and Tamassia Maximum Flow 3

Maximum Flow

A flow for a network N is
said to be maximum if its
value is the largest of all
flows for N

#® The maximum flow
problem consists of 512
finding a maximum flow Flowof value8=2+3+3=1+3+4
for a given network N

Applications

= Hydraulic systems

» Electrical circuits

= Traffic movements

= Freight transportation

N

2/2
Maximum flow of value 10 =4+ 3+ 3 =3+3 + 4

© 2015 Goodrich and Tamassia Maximum Flow 4

Cut

L

N

A cut of a network N with source s
and sink t is a partition y = (V.,V,)
of the vertices of N such that s e
V,andt € V,

» Forward edge of cut y: origin in V,
and destination in V,

= Backward edge of cut y: origin in
V, and destination in V,

Flow f(y) across a cut y: total flow
of forward edges minus total flow
of backward edges

Capacity c(y) of a cut y: total
capacity of forward edges

#® Example:
| C(Z’)=24
= f()=8

© 2015 Goodrich and Tamassia Maximum Flow

Flows and Cuts

Lemma:

The flow f(y) across any
cut y is equal to the flow
value |f|

Lemma:

The flow f(y) across a cut
z is less than or equal to
the capacity c(y) of the cut

Theorem:

N

] 212\
The value of any flow is ' \
less than or equal to the
capacity of any cut, i.e., C(x1)=12=6+3+1+2
for any flow f and any cut C(g,)=21=3+7+9+2
7, we have 2
Ifl < c(x) f| =8

© 2015 Goodrich and Tamassia Maximum Flow 6

Augmenting Path

Consider a flow f for a
network N

Let e be an edge from u to v:
= Residual capacity of e from
uto v: A(u, v) =c(e) —f (e)
= Residual capacity of e from
v to u: 4q(v, u) =1 (e)
#® Let #be apath fromstot
= The residual capacity 4:(x)
of xis the smallest of the
residual capacities of the

edges of xin the direction
fromstot

#® A path zfromstotisan
augmenting path if 4(z) >0

N

© 2015 Goodrich and Tamassia Maximum Flow 7

Flow Augmentation

Lemma:

Let # be an augmenting path

for flow f in network N. There (s)

exists a flow f/for N of value
| 7] =|f [+ A7)

Proof:

We compute flow f’by
modifying the flow on the
edges of

= Forward edge:
f7(e) = f(e) + A(~)

= Backward edge:
f7(e) = f(e) — A(~)

N

216

© 2015 Goodrich and Tamassia Maximum Flow

N

Initially, f(e) = 0 for each
edge e
Repeatedly
= Search for an
augmenting path =

= Augment by 4/(x) the
flow along the edges
of n

A specialization of DFS
(or BFS) searches for an
augmenting path

= An edge e is traversed

from u to v provided
A(u,v) >0

© 2015 Goodrich and Tamassia

The Ford-Fulkerson Algorithm

Algorithm MaxFlowFordFulkerson(N):
Input: Flow network N = (G, ¢, s,)
Output: A maximum flow f for N

for each edge e € N do
f(e) + 0
stop + false
repeat
traverse (& starting at s to find an augmenting path for f
if an augmenting path exists then
/I Compute the residual capacity A ¢(m) of w
A+ 400
for eachedge e € m do
if A¢(e) <A then
A Ag(e) 4
for eachedge e € 7 do //push A = Ay() units along 7
if e is a forward edge then <
f(e) + fle) + A
else
f(e) «— f(e) — A // e is a backward edge
else
stop +— true
until stop

/l f is a maximum flow

Maximum Flow 9

Max-Flow and Min-Cut

p
4
Termination of Ford- Theorem:
Fulkerson' s algorithm The value of a maximum
= There is no augmenting path flow is equal to the
from s to t with respect to the capacity of a minimum cut
current flow f
Define 2y
V, set of vertices reachable from s

by augmenting paths
V, set of remaining vertices
Cut y=(V,,V,) has capacity
c(x) = If
= Forward edge: f(e) = c(e)
= Backward edge: f(e) =0 u

. 12/2
Thus, flow f has maximum /

value and cut y has minimum ~
capacity c(y)=|f|=10

© 2015 Goodrich and Tamassia Maximum Flow 10

© 2015 Goodrich and Tamassia Maximum Flow

Example (2)

N

112

© 2015 Goodrich and Tamassia Maximum Flow

Analysis

N

®

®

®

© 2015 Goodrich and Tamassia

In the worst case, Ford-
Fulkerson’ s algorithm
performs |f*| flow
augmentations, where f* is a
maximum flow

Example

= The augmenting paths found
alternate between =, and =,

= The algorithm performs 100
augmentations

Finding an augmenting path

and augmenting the flow
takes O(n + m) time

The running time of Ford-
Fulkerson’s algorithm is
O(|*|(n +m))

Maximum Flow

0/50

1/50

1/50

1/50

Maximum Bipartite Matching

“# In the maximum bipartite matching problem, we are
given a connected undirected graph with the following
properties:

= The vertices of G are partitioned into two sets, X and Y.
= Every edge of G has one endpoint in X and the other endpoint
inY.
Such a graph is called a bipartite graph.

A matching in G is a set of edges that have no
endpoints in common—such a set “pairs” up vertices
in X with vertices in Y so that each vertex has at most
one “partner” in the other set.

The maximum bipartite matching problem is to find a
matching with the greatest number of edges.

© 2015 Goodrich and Tamassia Maximum Flow 14

Reduction to Max Flow

N

Let G be a bipartite graph whose vertices are partitioned into sets X and Y. We
create a flow network H such that a maximum flow in H can be immediately con-
verted into a maximum matching in G:

e We begin by including all the vertices of GG in H, plus a new source vertex s
and a new sink vertex .

e Next, we add every edge of G to H, but direct each such edge so that it is
oriented from the endpoint in X to the endpoint in Y. In addition, we insert
a directed edge from s to each vertex in X, and a directed edge from each
vertex in Y to . Finally, we assign to each edge of H a capacity of 1.

Given a flow f for H, we use f to define a set M of edges of G
using the rule that an edge e is in M whenever f(e) = 1.

© 2015 Goodrich and Tamassia Maximum Flow 15

Example and Analysis

N

Figure 16.11: (a) A bipartite graph G. (b) Flow network H derived from & and a
maximum flow in H; thick edges have unit flow and other edges have zero flow.

#Running time is O(nhm), because G is
connected.

© 2015 Goodrich and Tamassia Maximum Flow 16

Baseball Elimination

" @ Let T be a set of teams in a sports league, which, for
historical reasons, let us assume is baseball.

At any point during the season, each team, i, in T, will
have some number, w;, of wins, and will have some
number, g;, of games left to play.

The baseball elimination problem is to determine
whether it is possible for team i to finish the season in
first place, given the games it has already won and the
games it has left to play.

Note that this depends on more than just the number of
games left for team i, however; it also depends on the
respective schedules of team i and the other teams.

N

© 2015 Goodrich and Tamassia Maximum Flow 17

Baseball Elimination Example

@ Let g; ; denote the number of games remaining
between team i and team j, so that g; is the
sum, over all j, of the g;;'s.

N

Team Wins | Games Left Schedule (g; ;)
i w; i LA Oak Sea Tex
Los Angeles | 81 8 - I 6 1
Oakland 77 4 l - 0 3
Seattle 76 7 6 0 - 1
Texas 74 5 1 3 I -

Table 16.12: A set of teams, their standings, and their remaining schedule. Clearly,
Texas is eliminated from finishing in first place, since it can win at most 79 games.
In addition, even though it is currently in second place, Oakland is also eliminated,
because it can win at most 81 games, but in the remaining games between LA and
Seattle, either LA wins at least 1 game and finishes with at least 82 wins or Seattle
wins 6 games and finishes with at least 82 wins.

© 2015 Goodriéh a’ndTaméssié 'Makimum F'Iow' B 18

Reduction to Max Flow

N

With all the different ways for a team, k, to be eliminated, it might at first seem
like it is computationally infeasible to determine whether team k£ is eliminated.
Still, we can solve this problem by a reduction to a network flow problem. Let T”
denote the set of teams other than k, that is, 7" =T — {k}. Also, let L denote the
set of games that are left to play among teams in 7", that is,

L={{i,j}: i,7 € T'and g; ; > 0}.
Finally. let W denote the largest number of wins that are possible for team £ given
the current standings, that is, W = wy + g;..

Let us assume no single team eliminates
team k (since this is easy to check).

© 2015 Goodrich and Tamassia Maximum Flow 19

Creating the Graph

" @ To consider how a combination of teams and game
outcomes might eliminate team k, we create a graph,
G, that has as its vertices a source, s, a sink, t, and
the sets T’ and L. Then, let us include the following
edges in G:

N

e For each game pair, {i,j}, in L. add an edge (s, {7,7}). and give it capac-
ity gi,;j.

e For each game pair, {7, j}, in L, add edges ({i, 5}, i) and ({1, j}, j), and
give these edges capacity +oco.

e Foreach team, 7, add an edge (i, t) and give it capacity W —w;, which cannot
be negative in this case, since we ruled out the case when W < w;.

© 2015 Goodrich and Tamassia Maximum Flow 20

Creating the Graph, Example

N

give these edges capacity +oco.

be negative in this case, since we ruled out the case when W < w;,.

e For each game pair, {i,j}, in L. add an edge (s, {7,7}). and give it capac-
e For each game pair, {7, j}, in L, add edges ({i, 5}, i) and ({1, j}, j), and

e Foreach team, 7, add an edge (i, %) and give it capacity W —w;, which cannot

Game nodes Team nodes

© 2015 Goodrich and Tamassia Maximum Flow

21

Intuition and Analysis

N

The intuition behind the construction for G is that wins flow out from the
source, s, are split at each game node, {i, 7}, to allocate wins between each pair
of teams, 7 and j, and then are absorbed by the sink, £. The flow on each edge,
({2, 4},). represents the number of games in which team i beats 5. and the flow on |
each edge, (i,t), represents the number of remaining games that could be won by |
team . Thus, maximizing the flow in G is equivalent to testing if it is possible to |
allocate wins among all the remaining games not involving team k so that no team |
goes above W wins. So we compute a maximum flow for G, |

We can solve baseball elimination for any team in a set
of n teams by solving a single maximum flow problem
on a network with at most O(n2) vertices and edges.

© 2015 Goodrich and Tamassia Maximum Flow 22

