
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 15
  Maxflow, bipartite matching



© 2015 Goodrich and Tamassia Maximum Flow 2

Flow Network
A flow network (or just network) N consists of
◼ A weighted digraph G with nonnegative integer edge weights, 

where the weight of an edge e is called the capacity c(e) of e

◼ Two distinguished vertices, s and t of G, called the source and sink, 
respectively, such that s has no incoming edges and t has no 
outgoing edges.

Example:
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Flow
A flow f for a network N is is an assignment of an integer value 
f(e) to each edge e that satisfies the following properties:

Capacity Rule: For each edge e,  0  f (e)  c(e)

Conservation Rule: For each vertex v  s,t

where E-(v) and E+(v) are the incoming and outgoing edges of v, resp. 

The value of a flow f , denoted |f|, is the total flow from the source, 

which is the same as the total flow into the sink 
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Maximum Flow
A flow for a network N is 

said to be maximum if its 
value is the largest of all 
flows for N

The maximum flow 
problem consists of 
finding a maximum flow 
for a given network N

Applications

◼ Hydraulic systems

◼ Electrical circuits

◼ Traffic movements

◼ Freight transportation
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Flow of value 8 = 2 + 3 + 3 = 1 + 3 + 4

Maximum flow of value 10 = 4 + 3 + 3 = 3 + 3 + 4
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Cut
A cut of a network N with source s
and sink t is a partition c = (Vs,Vt)
of the vertices of N such that s 
Vs and t  Vt

◼ Forward edge of cut c: origin in Vs

and destination in Vt

◼ Backward edge of cut c: origin in 
Vt and destination in Vs

Flow f(c) across a cut c: total flow 
of forward edges minus total flow 
of backward edges

Capacity c(c) of a cut c: total 
capacity of forward edges

Example:
◼ c(c) = 24

◼ f(c) = 8
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Flows and Cuts
Lemma:

The flow f(c) across any 
cut c is equal to the flow 
value |f|

Lemma:

The flow f(c) across a cut 
c is less than or equal to 
the capacity c(c) of the cut

Theorem:

The value of any flow is 
less than or equal to the 
capacity of any cut, i.e., 
for any flow f and any cut 
c, we have

|f|  c(c)
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c1 c2

c(c1) = 12 = 6 + 3 + 1 + 2

c(c2) = 21 = 3 + 7 + 9 + 2

|f| = 8
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Augmenting Path
Consider a flow f for a 
network N

Let e be an edge from u to v:
◼ Residual capacity of e from 

u to v: Df(u, v) = c(e) - f (e)

◼ Residual capacity of e from 
v to u: Df(v, u) = f (e)

Let p be a path from s to t
◼ The residual capacity Df(p)

of p is the smallest of the 
residual capacities of the 
edges of p in the direction 
from s to t

A path p from s to t is an 
augmenting path if Df(p) > 0
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Df(s,u) = 3

Df(u,w) = 1

Df(w,v) = 1

Df(v,t) = 2

Df(p) = 1

|f| = 7
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Flow Augmentation
Lemma:

Let p be an augmenting path 
for flow f in network N. There 
exists a flow f for N of value

| f | = |f | + Df(p)

Proof:

We compute flow f by 

modifying the flow on the 
edges of p

◼ Forward edge:
f (e) = f(e) + Df(p)

◼ Backward edge:
f (e) = f(e) - Df(p)
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Df(p) = 1
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The Ford-Fulkerson Algorithm
Initially, f(e) = 0 for each 
edge e

Repeatedly

◼ Search for an 
augmenting path p

◼ Augment by Df(p) the 

flow along the edges 
of p

A specialization of DFS 
(or BFS) searches for an 
augmenting path

◼ An edge e is traversed 
from u to v provided 
Df(u, v) > 0
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Max-Flow and Min-Cut
Termination of Ford-
Fulkerson’s algorithm
◼ There is no augmenting path 

from s to t with respect to the 
current flow f

Define
Vs set of vertices reachable from s

by augmenting paths

Vt set of remaining vertices 

Cut c = (Vs,Vt) has capacity
c(c) = |f|

◼ Forward edge: f(e) = c(e)

◼ Backward edge: f(e) = 0

Thus, flow f has maximum 
value and cut c has minimum 
capacity
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Theorem:

The value of a maximum 
flow is equal to the 
capacity of a minimum cut

c(c) = | f | = 10
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Example (1)
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Example (2)
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Analysis
In the worst case, Ford-
Fulkerson’s algorithm 
performs |f*| flow 
augmentations, where f* is a 
maximum flow

Example
◼ The augmenting paths found 

alternate between p1 and p2

◼ The algorithm performs 100 
augmentations

Finding an augmenting path 
and augmenting the flow 
takes O(n + m) time

The running time of Ford-
Fulkerson’s algorithm is 
O(|f*|(n + m))
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Maximum Bipartite Matching
In the maximum bipartite matching problem, we are 
given a connected undirected graph with the following 
properties:

◼ The vertices of G are partitioned into two sets, X and Y.

◼ Every edge of G has one endpoint in X and the other endpoint 
in Y.

Such a graph is called a bipartite graph. 

A matching in G is a set of edges that have no 
endpoints in common—such a set “pairs” up vertices 
in X with vertices in Y so that each vertex has at most 
one “partner” in the other set. 

The maximum bipartite matching problem is to find a 
matching with the greatest number of edges.
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Reduction to Max Flow

Given a flow f for H, we use f to define a set M of edges of G 
using the rule that an edge e is in M whenever f(e) = 1.
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Example and Analysis

Running time is O(nm), because G is 
connected.
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Baseball Elimination
Let T be a set of teams in a sports league, which, for 
historical reasons, let us assume is baseball. 

At any point during the season, each team, i, in T, will 
have some number, wi, of wins, and will have some 
number, gi, of games left to play. 

The baseball elimination problem is to determine 
whether it is possible for team i to finish the season in 
first place, given the games it has already won and the 
games it has left to play. 

Note that this depends on more than just the number of 
games left for team i, however; it also depends on the 
respective schedules of team i and the other teams.
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Baseball Elimination Example
Let gi,j denote the number of games remaining 
between team i and team j, so that gi is the 
sum, over all j, of the gi,j‘s.
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Reduction to Max Flow

Let us assume no single team eliminates 
team k (since this is easy to check).
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Creating the Graph
To consider how a combination of teams and game 
outcomes might eliminate team k, we create a graph, 
G, that has as its vertices a source, s, a sink, t, and 
the sets T′ and L. Then, let us include the following 
edges in G:
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Creating the Graph, Example
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Intuition and Analysis

We can solve baseball elimination for any team in a set 
of n teams by solving a single maximum flow problem 
on a network with at most O(n2) vertices and edges.
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