
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

                        Lecture 14
          Minimum Spanning Trees 
             (MSTs): Prim, Kruskal



© 2015 Goodrich and Tamassia

Application: 
Connecting a Network
❑ Suppose the remote mountain country of Vectoria has been given 

a major grant to install a large Wi-Fi the center of each of its 
mountain villages. 

❑ Communication cables can run from the main Internet access point 
to a village tower and cables can also run between pairs of towers. 

❑ The challenge is to interconnect all the towers and the Internet 
access point as cheaply as possible.
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Application: 
Connecting a Network
❑ We can model this problem using a graph, G, where 

each vertex in G is the location of a Wi-Fi the Internet 
access point, and an edge in G is a possible cable we 
could run between two such vertices. 

❑ Each edge in G could then be given a weight that is 
equal to the cost of running the cable that that edge 
represents. 

❑ Thus, we are interested in finding a connected acyclic 
subgraph of G that includes all the vertices of G and 
has minimum total cost. 

❑ Using the language of graph theory, we are interested 
in finding a minimum spanning tree (MST) of G.
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Minimum Spanning Trees
Spanning subgraph

◼ Subgraph of a graph G
containing all the vertices of G

Spanning tree

◼ Spanning subgraph that is 
itself a (free) tree

Minimum spanning tree (MST)

◼ Spanning tree of a weighted 
graph with minimum total 
edge weight

❑ Applications

◼ Communications networks

◼ Transportation networks
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Cycle Property
Cycle Property:

◼ Let T be a minimum 

spanning tree of a 
weighted graph G

◼ Let e be an edge of G
that is not in T and C let 
be the cycle formed by e
with T

◼ For every edge f of C,

weight(f)  weight(e)

Proof:

◼ By contradiction

◼ If weight(f) > weight(e) we 

can get a spanning tree 
of smaller weight by 
replacing e with f
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U V

Partition Property
Partition Property:

◼ Consider a partition of the vertices of 
G into subsets U and V

◼ Let e be an edge of minimum weight 
across the partition

◼ There is a minimum spanning tree of 
G containing edge e

Proof:

◼ Let T be an MST of G

◼ If T does not contain e, consider the 
cycle C formed by e with T and let  f
be an edge of C across the partition

◼ By the cycle property,
weight(f)  weight(e)

◼ Thus, weight(f) = weight(e)

◼ We obtain another MST by replacing 
f  with e
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Prim-Jarnik’s Algorithm

❑ Similar to Dijkstra’s algorithm

❑ We pick an arbitrary vertex s and we grow the MST as 

a cloud of vertices, starting from s

❑ We store with each vertex v label d(v) representing 

the smallest weight of an edge connecting v to a 

vertex in the cloud 

❑ At each step:

◼ We add to the cloud the vertex u outside the cloud with the 

smallest distance label

◼ We update the labels of the vertices adjacent to u
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Prim-Jarnik Pseudo-code
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Example
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Example (contd.)
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Analysis
❑ Graph operations

◼ We cycle through the incident edges once for each vertex

❑ Label operations
◼ We set/get the distance, parent and locator labels of vertex z O(deg(z))

times

◼ Setting/getting a label takes O(1) time

❑ Priority queue operations
◼ Each vertex is inserted once into and removed once from the priority 

queue, where each insertion or removal takes O(log n) time

◼ The key of a vertex w in the priority queue is modified at most deg(w) 
times, where each key change takes O(log n) time 

❑ Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the 
graph is represented by the adjacency list structure

◼ Recall that Sv deg(v) = 2m

❑ The running time is O(m log n) since the graph is connected
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Kruskal’s Approach

❑ Maintain a partition of the vertices into 
clusters

◼ Initially, single-vertex clusters

◼ Keep an MST for each cluster

◼ Merge “closest” clusters and their MSTs

❑ A priority queue stores the edges outside 
clusters (or you could even sort the edges)

◼ Key: weight

◼ Element: edge

❑ At the end of the algorithm

◼ One cluster and one MSTMinimum Spanning Trees 11
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Kruskal’s Algorithm
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Example of Kruskal’s Algorithm
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Example (contd.)

five steps
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Data Structure for Kruskal’s 
Algorithm

❑ The algorithm maintains a forest of trees

❑ A priority queue extracts the edges by increasing 
weight

❑ An edge is accepted it if connects distinct trees

❑ We need a data structure that maintains a 
partition, i.e., a collection of disjoint sets, with 
operations:

◼ makeSet(u): create a set consisting of u

◼ find(u): return the set storing u

◼ union(A, B): replace sets A and B with their union
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List-based Partition
❑ Each set is stored in a sequence

❑ Each element has a reference back to the set

◼ operation find(u) takes O(1) time, and returns the set of 
which u is a member.

◼ in operation union(A,B), we move the elements of the 
smaller set to the sequence of the larger set and update 
their references

◼ the time for operation union(A,B) is min(|A|, |B|)

❑ Whenever an element is processed, it goes into a 
set of size at least double, hence each element is 
processed at most log n times
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Partition-Based Implementation

❑ Partition-based version of Kruskal’s 
Algorithm 
◼ Cluster merges as unions 

◼ Cluster locations as finds

❑ Running time O((n + m) log n)

◼ Priority Queue operations: O(m log n)

◼ Union-Find operations: O(n log n)
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