
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

 Lecture 14
 Minimum Spanning Trees
 (MSTs): Prim, Kruskal

© 2015 Goodrich and Tamassia

Application:
Connecting a Network
❑ Suppose the remote mountain country of Vectoria has been given

a major grant to install a large Wi-Fi the center of each of its
mountain villages.

❑ Communication cables can run from the main Internet access point
to a village tower and cables can also run between pairs of towers.

❑ The challenge is to interconnect all the towers and the Internet
access point as cheaply as possible.

Minimum Spanning Trees 1

© 2015 Goodrich and Tamassia

Application:
Connecting a Network
❑ We can model this problem using a graph, G, where

each vertex in G is the location of a Wi-Fi the Internet
access point, and an edge in G is a possible cable we
could run between two such vertices.

❑ Each edge in G could then be given a weight that is
equal to the cost of running the cable that that edge
represents.

❑ Thus, we are interested in finding a connected acyclic
subgraph of G that includes all the vertices of G and
has minimum total cost.

❑ Using the language of graph theory, we are interested
in finding a minimum spanning tree (MST) of G.

Minimum Spanning Trees 2

© 2015 Goodrich and Tamassia Minimum Spanning Trees 3

Minimum Spanning Trees
Spanning subgraph

◼ Subgraph of a graph G
containing all the vertices of G

Spanning tree

◼ Spanning subgraph that is
itself a (free) tree

Minimum spanning tree (MST)

◼ Spanning tree of a weighted
graph with minimum total
edge weight

❑ Applications

◼ Communications networks

◼ Transportation networks

ORD

PIT

ATL

STL

DEN

DFW

DCA

10
1

9

8

6

3

25

7

4

© 2015 Goodrich and Tamassia Minimum Spanning Trees 4

Cycle Property
Cycle Property:

◼ Let T be a minimum

spanning tree of a
weighted graph G

◼ Let e be an edge of G
that is not in T and C let
be the cycle formed by e
with T

◼ For every edge f of C,

weight(f)  weight(e)

Proof:

◼ By contradiction

◼ If weight(f) > weight(e) we

can get a spanning tree
of smaller weight by
replacing e with f

8

4

2
3

6

7

7

9

8

e

C

f

8

4

2
3

6

7

7

9

8

C

e

f

Replacing f with e yields

a better spanning tree

© 2015 Goodrich and Tamassia Minimum Spanning Trees 5

U V

Partition Property
Partition Property:

◼ Consider a partition of the vertices of
G into subsets U and V

◼ Let e be an edge of minimum weight
across the partition

◼ There is a minimum spanning tree of
G containing edge e

Proof:

◼ Let T be an MST of G

◼ If T does not contain e, consider the
cycle C formed by e with T and let f
be an edge of C across the partition

◼ By the cycle property,
weight(f)  weight(e)

◼ Thus, weight(f) = weight(e)

◼ We obtain another MST by replacing
f with e

7

4

2
8

5

7

3

9

8 e

f

7

4

2
8

5

7

3

9

8 e

f

Replacing f with e yields

another MST

U V

© 2015 Goodrich and Tamassia Minimum Spanning Trees 6

Prim-Jarnik’s Algorithm

❑ Similar to Dijkstra’s algorithm

❑ We pick an arbitrary vertex s and we grow the MST as

a cloud of vertices, starting from s

❑ We store with each vertex v label d(v) representing

the smallest weight of an edge connecting v to a

vertex in the cloud

❑ At each step:

◼ We add to the cloud the vertex u outside the cloud with the

smallest distance label

◼ We update the labels of the vertices adjacent to u

© 2015 Goodrich and Tamassia Minimum Spanning Trees 7

Prim-Jarnik Pseudo-code

© 2015 Goodrich and Tamassia Minimum Spanning Trees 8

Example

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

8 



B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5 

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5 

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5 4

7

© 2015 Goodrich and Tamassia Minimum Spanning Trees 9

Example (contd.)

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
3

2

5 4

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
3

2

5 4

7

© 2015 Goodrich and Tamassia Minimum Spanning Trees 10

Analysis
❑ Graph operations

◼ We cycle through the incident edges once for each vertex

❑ Label operations
◼ We set/get the distance, parent and locator labels of vertex z O(deg(z))

times

◼ Setting/getting a label takes O(1) time

❑ Priority queue operations
◼ Each vertex is inserted once into and removed once from the priority

queue, where each insertion or removal takes O(log n) time

◼ The key of a vertex w in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time

❑ Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure

◼ Recall that Sv deg(v) = 2m

❑ The running time is O(m log n) since the graph is connected

© 2015 Goodrich and Tamassia

Kruskal’s Approach

❑ Maintain a partition of the vertices into
clusters

◼ Initially, single-vertex clusters

◼ Keep an MST for each cluster

◼ Merge “closest” clusters and their MSTs

❑ A priority queue stores the edges outside
clusters (or you could even sort the edges)

◼ Key: weight

◼ Element: edge

❑ At the end of the algorithm

◼ One cluster and one MSTMinimum Spanning Trees 11

© 2015 Goodrich and Tamassia

Kruskal’s Algorithm

Minimum Spanning Trees 12

© 2015 Goodrich and Tamassia Campus Tour 13

Example of Kruskal’s Algorithm

B
G

C

A

F

4

1
3

5

10

2

8

7

6
E

11

9

B
G

C

A

F

4

1
3

5

10

2

8

7

6
E

11

9

B
G

C

A

F

4

1
3

5

10

2

8

7

6
E

11

9

B
G

C

A

F

4

1
3

5

10

2

8

7

6
E

11

9

12

1212

12

D
H

D
H

D
H

D
H

© 2015 Goodrich and Tamassia Campus Tour 14

Example (contd.)

five steps

B
G

C

A

F

4

1
3

5

10

2

8

7

6
E

11

9

B
G

C

A

F

4

1
3

5

10

2

8

7

6
E

11

9

B
G

C

A

F

4

1
3

5

10

2

8

7

6
E

11

9

B
G

C

A

F

4

1
3

5

10

2

8

7

6
E

11

9

12

1212

12
D

H

D
H

D
H

D
H

© 2015 Goodrich and Tamassia

Data Structure for Kruskal’s
Algorithm

❑ The algorithm maintains a forest of trees

❑ A priority queue extracts the edges by increasing
weight

❑ An edge is accepted it if connects distinct trees

❑ We need a data structure that maintains a
partition, i.e., a collection of disjoint sets, with
operations:

◼ makeSet(u): create a set consisting of u

◼ find(u): return the set storing u

◼ union(A, B): replace sets A and B with their union

Minimum Spanning Trees 15

© 2015 Goodrich and Tamassia Minimum Spanning Trees 16

List-based Partition
❑ Each set is stored in a sequence

❑ Each element has a reference back to the set

◼ operation find(u) takes O(1) time, and returns the set of
which u is a member.

◼ in operation union(A,B), we move the elements of the
smaller set to the sequence of the larger set and update
their references

◼ the time for operation union(A,B) is min(|A|, |B|)

❑ Whenever an element is processed, it goes into a
set of size at least double, hence each element is
processed at most log n times

© 2015 Goodrich and Tamassia

Partition-Based Implementation

❑ Partition-based version of Kruskal’s
Algorithm
◼ Cluster merges as unions

◼ Cluster locations as finds

❑ Running time O((n + m) log n)

◼ Priority Queue operations: O(m log n)

◼ Union-Find operations: O(n log n)

Minimum Spanning Trees 17

