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Lecture 14
Minimum Spanning Trees

(MSTs): Prim, Kruskal

CS 161 Design and Analysis of Algorithms
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Application:

Connecting a Network

o Suppose the remote mountain country of Vectoria has been given
a major grant to install a large Wi-Fi the center of each of its
mountain villages.

o Communication cables can run from the main Internet access point
to a village tower and cables can also run between pairs of towers.

o The challenge is to interconnect all the towers and the Internet
access point as cheaply as possible.
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Application:
Connecting a Network

N

a We can model this problem using a graph, G, where
each vertex in G is the location of a Wi-Fi the Internet
access point, and an edge in G is a possible cable we
could run between two such vertices.

o Each edge in G could then be given a weight that is
equal to the cost of running the cable that that edge
represents.

a Thus, we are interested in finding a connected acyclic
subgraph of G that includes all the vertices of G and
has minimum total cost.

a Using the language of graph theory, we are interested
in finding a minimum spanning tree (MST) of G.
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Minimum Spanning Trees

Spanning subgraph
= Subgraph of a graph G
containing all the vertices of G

Spanning tree

= Spanning subgraph that is
itself a (free) tree

Minimum spanning tree (MST)
= Spanning tree of a weighted
graph with minimum total
edge weight
o Applications
= Communications networks
= Transportation networks

N
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Cycle Property:

m Let T be a minimum

Cycle Property
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spanning tree of a
weighted graph G

Let e be an edge of G
that is not in T and C let

be the cycle formed by e
with T

For every edge f of C,
weight(f) < weight(e)

Proof:
= By contradiction
= If weight(f) > weight(e) we

can get a spanning tree
of smaller weight by
replacing e with f

4

Replacing f with e yields
a better spanning tree
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Partition Property

N

L
Partition Property:

= Consider a partition of the vertices of
G into subsets U and V

= Let e be an edge of minimum weight
across the partition

= There is @ minimum spanning tree of
G containing edge e

Proof: Replacing f with e yields
= Let T be an MST of G ﬂ another MST
= If T does not contain e, consider the U V
cycle C formed by e with T and let f 7 -
be an edge of C across the partition B 4
= By the cycle property, 79
weight(f) < weight(e) 3
= Thus, weight(f) = weight(e) S~ o 3

= We obtain another MST by replacing
f with e
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Prim-Jarnik’ s Algorithm

N

a

a

Similar to Dijkstra’ s algorithm

We pick an arbitrary vertex s and we grow the MST as
a cloud of vertices, starting from s

We store with each vertex v label d(v) representing
the smallest weight of an edge connecting v to a
vertex in the cloud

At each step:

s We add to the cloud the vertex u outside the cloud with the
smallest distance label

= We update the labels of the vertices adjacent to u
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Prim-Jarnik Pseudo-code

L

Algorithm PrimdarnikMST(G):

Input: A weighted connected graph G with n vertices and m edges
Output: A minimum spanning tree 1" for G

Pick any vertex v of G

Dlv] -0

for each vertex u # v do
Dlu] + 4+

Initialize T' «+ 0.

Initialize a priority queue @ with an item ((w,null), D[u]) for each vertex u,

where (u, null) is the element and D[u] is the key.
while @ is not empty do
(u,e) + Q.removeMin()
Add vertex u and edge e to 7.
for each vertex z adjacent to u such that z is in @) do
/[ perform the relaxation procedure on edge (u, 2)
if w((u,z)) < D[z] then
D[z] + w((u,2))
Change to (z, (u, z)) the element of vertex z in Q).
Change to D[z] the key of vertex z in Q.
return the tree T’

© 2015 Goodrich and Tamassia Minimum Spanning Trees




Example

N
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Example (contd.)

N
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Analysis

o Graph operations
= We cycle through the incident edges once for each vertex

o Label operations

= We set/get the distance, parent and locator labels of vertex z O(deg(z))
times

m Setting/getting a label takes O(1) time
o Priority queue operations

= Each vertex is inserted once into and removed once from the priority
queue, where each insertion or removal takes O(log n) time

= The key of a vertex w in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time

a Prim-Jarnik’ s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure

= Recall that 2, deg(v) = 2m
o The running time is O(m log n) since the graph is connected

N
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Kruskal’ s Approach

a Maintain a partition of the vertices into
clusters
= Initially, single-vertex clusters
= Keep an MST for each cluster
= Merge “closest” clusters and their MSTs

a A priority queue stores the edges outside
clusters (or you could even sort the edges)
= Key: weight
= Element: edge

a At the end of the algorithm
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Kruskal’s Algorithm

N

Algorithm KruskalMST(G):

Input: A simple connected weighted graph G with n vertices and m edges
Output: A minimum spanning tree T for G

for each vertex v in G do
Define an elementary cluster C'(v) < {v}.
Let @ be a priority queue storing the edges in GG, using edge weights as keys

T+ 0 // T will ultimately contain the edges of the MST
while 7" has fewer than n — 1 edges do

(u,v) + Q.removeMin()
Let C(v) be the cluster containing v
Let C'(u) be the cluster containing u
if C(v) # C(u) then
Add edge (v,u)to T
Merge C(v) and C(u) into one cluster, that is, union C'(v) and C'(u)
return tree 7T’
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'Example of Kruskal’s Algorithm




'Example (contd.)
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Data Structure for Kruskal’s

Algorithm

N

a The algorithm maintains a forest of trees

a A priority queue extracts the edges by increasing
weight
a An edge is accepted it if connects distinct trees

o We need a data structure that maintains a
partition, i.e., a collection of disjoint sets, with
operations:

= makeSet(u): create a set consisting of u
= find(u): return the set storing u
= union(A, B): replace sets A and B with their union
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List-based Partition
J a Each set is stored in a sequence U

o Each element has a reference back to the set

= operation find(u) takes O(1) time, and returns the set of
which u is a member.

= in operation union(A,B), we move the elements of the
smaller set to the sequence of the larger set and update
their references

= the time for operation union(A,B) is min(|A|, |B|)
o Whenever an element is processed, it goes into a

set of size at least double, hence each element is
processed at most log n times
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Partition-Based Implementation

N

a Partition-based version of Kruskal’ s
Algorithm

= Cluster merges as unions
m Cluster locations as finds
o Running time O((n + m) log n)
» Priority Queue operations: O(m log n)
= Union-Find operations: O(n log n)
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