TxT
D
\lJ
Lecture 13

Shortest path algorithms

CS 161 Design and Analysis of Algorithms

loannis Panageas

N

Weighted Graphs

o In a weighted graph, each edge has an associated numerical
value, called the weight of the edge

Edge weights may represent, distances, costs, etc.
Example:

= Ina flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

© 2015 Goodrich and Tamassia Shortest Paths

Shortest Paths

Q

Given a weighted graph and two vertices # and v, we want to
find a path of minimum total weight between « and v.

= Length of a path is the sum of the weights of its edges.
a Example:

= Shortest path between Providence and Honolulu
o Applications

= Internet packet routing

= Flight reservations

= Driving directions

© 2015 Goodrich and Tamassia

Shortest Paths

Shortest Path Properties

Property 1:
A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
Tree of shortest paths from Providence

© 2015 Goodrich and Tamassia Shortest Paths

N

a The distance of a vertex
y from a vertex s is the
length of a shortest path
between s and v

o Dijkstra’ s algorithm
computes the distances
of all the vertices from a
given start vertex s
o Assumptions:
= the graph is connected

= the edges are
undirected

= the edge weights are
nonnegative

Q

Dijkstra’ s Algorithm

We grow a “cloud” of vertices,
beginning with s and eventually
covering all the vertices

We store with each vertex v a
label D[v] representing the
distance of v from s in the
subgraph consisting of the cloud
and its adjacent vertices

At each step

= We add to the cloud the vertex
u outside the cloud with the
smallest distance label, D[u]

= We update the labels of the
vertices adjacent to u

© 2015 Goodrich and Tamassia Shortest Paths 5

Edge Relaxation

N

o Consider an edge e =(u,z)
such that

= uis the vertex most recently .-~~~
added to the cloud %

s zis notin the cloud

a The relaxation of edge e
updates distance d(z) as
follows:

© 2015 Goodrich and Tamassia Shortest Paths

——— - o
-
-

e m ——— = —

————
- y
-

Dijkstra’s Algorithm: Details

N

Algorithm DijkstraShortestPaths(G, v):
Input: A simple undirected weighted graph G with nonnegative edge weights,
and a distinguished vertex v of G
Output: A label, D|u], for each vertex u of G, such that D[u] is the distance
fromvtouin G
Dv] + 0
for each vertex u # v of G do
Dlu] + +o0
Let a priority queue, (), contain all the vertices of G using the D labels as keys.
while @ is not empty do
// pull a new vertex u into the cloud
u +— @).removeMin()
for each vertex z adjacent to u such that z is in) do
// perform the relaxation procedure on edge (u, 2)
if D[u] + w((u, 2)) < D[2] then
D|z] < D[u| + w((u, 2))
Change the key for vertex z in Q to D|z]
return the label D[u| of each vertex u

© 2015 Goodrich and Tamassia Shortest Paths

© 2015 Goodrich and Tamassia Shortest Paths

N

Example (cont.)

© 2015 Goodrich and Tamassia Shortest Paths

N

Q

Analysis of Dijkstra’ s Algorithm

Graph operations
= We find all the incident edges once for each vertex

Label operations
s We set/get the distance and locator labels of vertex z O(deg(z)) times
m Setting/getting a label takes O(1) time

Priority queue operations

» Each vertex is inserted once into and removed once from the priority
queue, where each insertion or removal takes O(log n) time

= The key of a vertex in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time

Dijkstra’ s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list/map structure
= Recall that X, deg(v) = 2m

The running time can also be expressed as O(m log n) since the
graph is connected

© 2015 Goodrich and Tamassia Shortest Paths 10

Why Dijkstra’ s Algorithm Works

N

= Suppose it didn’ t find all shortest
distances. Let w be the first wrong
vertex the algorithm processed.

= When the previous node, u, on the
true shortest path was considered,
its distance was correct

= But the edge (u,w) was relaxed at
that time!

= Thus, so long as D[w]>DJ[u], w’s

distance cannot be wrong. That is,

there is no wrong vertex

© 2015 Goodrich and Tamassia Shortest Paths

o Dijkstra’ s algorithm is based on the greedy
method. It adds vertices by increasing distance.

(u,w) = (D,F) in this example

11

Why It Doesn’ t Work for Negative-
Weight Edges

N

@ Dijkstra’ s algorithm is based on the greedy
method. It adds vertices by increasing distance.

= If a node with a negative
incident edge were to be added
late to the cloud, it could mess
up distances for vertices already
in the cloud. “

C’ s true distance is 1, but
it is already in the cloud
with d(C)=5!

© 2015 Goodrich and Tamassia Shortest Paths 12

Bellman-Ford Algorithm

N

a Works even with negative-weight edges

a Must assume directed edges (for otherwise
we would have negative-weight cycles)

a Iteration i finds all shortest paths that use |
edges.

a Running time: O(nm).

a Can be extended to detect a negative-weight

cycle if it exists
= How?

© 2015 Goodrich and Tamassia Shortest Paths 13

Bellman-Ford Algorithm: Details

Algorithm BellmanFordShortestPaths(G' v):

Input: A weighted directed graph G with n vertices, and a vertex v of G
Output: A label Dlu], for each vertex u of G, such that D[u] is the distance

from v to u in G, or an indication that G has a negative-weight cycle
Dlv] «+ 0
for each vertex u # v of G do
Dlu| + +o0
fori« 1ton—1do
for each (directed) edge (u, z) outgoing from u do
// Perform the relaxation operation on (u, 2)
if D[u] +w((u,2)) < D|[z] then
D|[z] «+ Dlu] + w((u,2))
if there are no edges left with potential relaxation operations then
return the label D[u] of each vertex u

else
return “G contains a negative-weight cycle”

© 2015 Goodrich and Tamassia Shortest Paths 14

BeIIman Ford Example

/\

Nodes are labeled with their D[v] values

© 2015 Goodrich and Tamassia Shortest Paths 15

DAG-based Algorithm

N

a We can produce a specialized shortest-
path algorithm for directed acyclic
graphs (DAGS)

a Works even with negative-weight edges
a Uses topological order

a Doesn’ t use any fancy data structures
a Is much faster than Dijkstra’ s algorithm
a Running time: O(n+m).

© 2015 Goodrich and Tamassia Shortest Paths 16

DAG-based Algorithm: Details

N

Algorithm DAGShortestPaths(G, s):
Input: A weighted directed acyclic graph (DAG) G with n vertices and m
edges, and a distinguished vertex s in G
Output: A label D[u), for each vertex u of G, such that D[u] is the distance

fromvtouin G

Compute a topological ordering (vq,ve,...,v,) for G
D[s] + 0
for each vertex u # s of G do

Dlu] + 40
fori« 1ton—1do

// Relax each outgoing edge from v;

for each edge (v;, u) outgoing from v; do

if D[v;] + w((v;,u)) < Dlu| then
Dlu] + Dlv;] + w((v;, u))

Output the distance labels D as the distances from s.

© 2015 Goodrich and Tamassia Shortest Paths 17

N

1

© 2015 Goodrich and Tamassia

DAG Example

Nodes are labeled with theirld(v) values

Shortest Paths

(two steps)

All-Pairs Shortest Paths

N
\J

a Find the distance
between every pair of
vertices in a weighted
directed graph G.

o We can make n calls to
Dijkstra’ s algorithm (if
no negative edges),
which takes O(nmlog n)
time.

o Likewise, n calls to
Bellman-Ford would take
O(n2m) time.

a We can achieve O(n3)
time using dynamic

programming (similar to yses only vertices
numbered 1,...,k-1

the Floyd-Warshall

gorlthm
© 2015 Goodrich and Tamassia

Algorithm A/lPair(G) {assumes vertices 1,...
for all vertex pairs (i,j)
if i=j
D,lii] < 0
else if (i,j) is an edge in G
D li,j] < weight of edge (i,j)
else
Dyliijl <+ o0
for k < 1 ton do
fori< Itondo
forj < I ton do
D k[i)j] < min {D k-1 [lz]]9
return D

D, _,|i,k1+D,_;[k,jl1}

Uses only vertices numbered 1,...,k
(compute weight of this edge)

.....

() Uses only vertices

numbered 1,...,k-1
Shortest Paths 19

