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   Shortest path algorithms
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Weighted Graphs
 In a weighted graph, each edge has an associated numerical 

value, called the weight of the edge
 Edge weights may represent, distances, costs, etc.
 Example:

 In a  flight route graph, the weight of an edge represents the 
distance in miles between the endpoint airports
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Shortest Paths
 Given a weighted graph and two vertices u and v, we want to 

find a path of minimum total weight between u and v.
 Length of a path is the sum of the weights of its edges.

 Example:
 Shortest path between Providence and Honolulu

 Applications
 Internet packet routing 
 Flight reservations
 Driving directions
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Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other 
vertices

Example:
Tree of shortest paths from Providence
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Dijkstra’s Algorithm
 The distance of a vertex 

v from a vertex s is the 
length of a shortest path 
between s and v

 Dijkstra’s algorithm 
computes the distances 
of all the vertices from a 
given start vertex s

 Assumptions:
 the graph is connected
 the edges are 

undirected
 the edge weights are 

nonnegative

 We grow a “cloud” of vertices, 
beginning with s and eventually 
covering all the vertices

 We store with each vertex v a 
label D[v] representing the 
distance of v from s in the 
subgraph consisting of the cloud 
and its adjacent vertices

 At each step
 We add to the cloud the vertex 

u outside the cloud with the 
smallest distance label, D[u]

 We update the labels of the 
vertices adjacent to u
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Edge Relaxation
 Consider an edge e  (u,z)

such that
 u is the vertex most recently 

added to the cloud
 z is not in the cloud

 The relaxation of edge e 
updates distance d(z) as 
follows:
D[z]  min{D[z], D[u] weight(e)}

D[z] 75
D[u] 50

zs
u

D[z] 60
D[u] 50

zs
u

e
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Dijkstra’s Algorithm: Details

Shortest Paths 7
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Example
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Example (cont.)
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Analysis of Dijkstra’s Algorithm
 Graph operations

 We find all the incident edges once for each vertex
 Label operations

 We set/get the distance and locator labels of vertex z O(deg(z)) times
 Setting/getting a label takes O(1) time

 Priority queue operations
 Each vertex is inserted once into and removed once from the priority 

queue, where each insertion or removal takes O(log n) time
 The key of a vertex in the priority queue is modified at most deg(w) 

times, where each key change takes O(log n) time 
 Dijkstra’s algorithm runs in O((n  m) log n) time provided the 

graph is represented by the adjacency list/map structure
 Recall that v deg(v) 2m

 The running time can also be expressed as O(m log n) since the 
graph is connected
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Why Dijkstra’s Algorithm Works
 Dijkstra’s algorithm is based on the greedy 

method. It adds vertices by increasing distance.
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 Suppose it didn’t find all shortest 
distances. Let w be the first wrong 
vertex the algorithm processed.

 When the previous node, u, on the 
true shortest path was considered, 
its distance was correct

 But the edge (u,w) was relaxed at 
that time!

 Thus, so long as D[w]>D[u], w’s 
distance cannot be wrong.  That is, 
there is no wrong vertex

(u,w) = (D,F) in this example
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Why It Doesn’t Work for Negative-
Weight Edges

 If a node with a negative 
incident edge were to be added 
late to the cloud, it could mess 
up distances for vertices already 
in the cloud. 
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Dijkstra’s algorithm is based on the greedy 
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C’s true distance is 1, but 
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Bellman-Ford Algorithm 
 Works even with negative-weight edges
 Must assume directed edges (for otherwise 

we would have negative-weight cycles)
 Iteration i finds all shortest paths that use i

edges.
 Running time: O(nm).
 Can be extended to detect a negative-weight 

cycle if it exists 
 How?
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Bellman-Ford Algorithm: Details 
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DAG-based Algorithm 
 We can produce a specialized shortest-

path algorithm for directed acyclic 
graphs (DAGs)

 Works even with negative-weight edges
 Uses topological order
 Doesn’t use any fancy data structures
 Is much faster than Dijkstra’s algorithm
 Running time: O(n+m).
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DAG-based Algorithm: Details 
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DAG Example
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All-Pairs Shortest Paths
 Find the distance 

between every pair of 
vertices in a weighted 
directed graph G.

 We can make n calls to 
Dijkstra’s algorithm (if 
no negative edges), 
which takes O(nmlog n) 
time.

 Likewise, n calls to 
Bellman-Ford would take 
O(n2m) time.

 We can achieve O(n3) 
time using dynamic 
programming (similar to 
the Floyd-Warshall
algorithm).

Algorithm AllPair(G) {assumes vertices 1,…,n}
for all vertex pairs (i,j) 

if i j
D0[i,i]  0

else if (i,j) is an edge in G
D0[i,j]  weight of edge (i,j)

else
D0[i,j]  + 

for k  1 to n do    
for i  1 to n do    

for j  1 to n do    
Dk[i,j]  min{Dk-1[i,j], Dk-1[i,k]+Dk-1[k,j]}

return Dn

k

j

i

Uses only vertices
numbered 1,…,k-1 Uses only vertices

numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(compute weight of this edge)


