A graph is a pair \((V, E)\), where

- \(V\) is a set of nodes, called vertices
- \(E\) is a collection of pairs of vertices, called edges
- Vertices and edges are positions and store elements

Example:
- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route
Edge Types

- Directed edge
 - ordered pair of vertices \((u,v)\)
 - first vertex \(u\) is the origin
 - second vertex \(v\) is the destination
 - e.g., a flight
- Undirected edge
 - unordered pair of vertices \((u,v)\)
 - e.g., a flight route
- Directed graph
 - all the edges are directed
 - e.g., route network
- Undirected graph
 - all the edges are undirected
 - e.g., flight network
Applications

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram
Terminology

- **End vertices (or endpoints) of an edge**
 - U and V are the endpoints of a
- **Edges incident on a vertex**
 - a, d, and b are incident on V
- **Adjacent vertices**
 - U and V are adjacent
- **Degree of a vertex**
 - X has degree 5
- **Parallel edges**
 - h and i are parallel edges
- **Self-loop**
 - j is a self-loop
Terminology (cont.)

- **Path**
 - sequence of alternating vertices and edges
 - begins with a vertex
 - ends with a vertex
 - each edge is preceded and followed by its endpoints

- **Simple path**
 - path such that all its vertices and edges are distinct

- **Examples**
 - $P_1 = (V,b,X,h,Z)$ is a simple path
 - $P_2 = (U,c,W,e,X,g,Y,f,W,d,V)$ is a path that is not simple
Terminology (cont.)

- **Cycle**
 - circular sequence of alternating vertices and edges
 - each edge is preceded and followed by its endpoints

- **Simple cycle**
 - cycle such that all its vertices and edges are distinct

- **Examples**
 - $C_1 = (V, b, X, g, Y, f, W, c, U, a, \cdots)$ is a simple cycle
 - $C_2 = (U, c, W, e, X, g, Y, f, W, d, V, a, \cdots)$ is a cycle that is not simple
Properties

Property 1

\[\sum_v \deg(v) = 2m \]

Proof: each edge is counted twice

Property 2

In an undirected graph with no self-loops and no multiple edges

\[m \leq n \frac{(n - 1)}{2} \]

Proof: each vertex has degree at most \((n - 1)\)

What is the bound for a directed graph?

Notation

- \(n \): number of vertices
- \(m \): number of edges
- \(\deg(v) \): degree of vertex \(v \)

Example

- \(n = 4 \)
- \(m = 6 \)
- \(\deg(v) = 3 \)
Vertices and Edges

- A **graph** is a collection of **vertices** and **edges**.
- A **Vertex** can be an abstract unlabeled object or it can be labeled (e.g., with an integer number or an airport code) or it can store other objects.
- An **Edge** can likewise be an abstract unlabeled object or it can be labeled (e.g., a flight number, travel distance, cost), or it can also store other objects.
Edge List Structure

- **Vertex object**
 - element
 - reference to position in vertex sequence

- **Edge object**
 - element
 - origin vertex object
 - destination vertex object
 - reference to position in edge sequence

- **Vertex sequence**
 - sequence of vertex objects

- **Edge sequence**
 - sequence of edge objects
Adjacency List Structure

- Incidence sequence for each vertex
 - sequence of references to edge objects of incident edges
- Augmented edge objects
 - references to associated positions in incidence sequences of end vertices
Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
 - Integer key (index) associated with vertex
- 2D-array adjacency array
 - Reference to edge object for adjacent vertices
 - Null for non-adjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge
Performance
(All bounds are big-oh running times, except for “Space”)

- n vertices, m edges
- no parallel edges
- no self-loops

<table>
<thead>
<tr>
<th></th>
<th>Edge List</th>
<th>Adjacency List</th>
<th>Adjacency Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>$n + m$</td>
<td>$n + m$</td>
<td>n^2</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>m</td>
<td>$\text{deg}(v)$</td>
<td>n</td>
</tr>
<tr>
<td>areAdjacent (v, w)</td>
<td>m</td>
<td>$\text{min}(\text{deg}(v), \text{deg}(w))$</td>
<td>1</td>
</tr>
<tr>
<td>insertVertex(o)</td>
<td>1</td>
<td>1</td>
<td>n^2</td>
</tr>
<tr>
<td>insertEdge(v, w, o)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>m</td>
<td>$\text{deg}(v)$</td>
<td>n^2</td>
</tr>
<tr>
<td>removeEdge(e)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Depth-First Search
Subgraphs

- A subgraph S of a graph G is a graph such that
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G
Application: Web Crawlers

- A fundamental kind of algorithmic operation that we might wish to perform on a graph is **traversing the edges and the vertices** of that graph.
- A **traversal** is a systematic procedure for exploring a graph by examining all of its vertices and edges.
- For example, a **web crawler**, which is the data collecting part of a search engine, must explore a graph of hypertext documents by examining its vertices, which are the documents, and its edges, which are the hyperlinks between documents.
- A traversal is efficient if it visits all the vertices and edges in linear time.
Connectivity

- A graph is connected if there is a path between every pair of vertices.
- A connected component of a graph G is a maximal connected subgraph of G.

Connected graph

Non connected graph with two connected components
Trees and Forests

- A (free) tree is an undirected graph T such that
 - T is connected
 - T has no cycles

 This definition of tree is different from the one of a rooted tree

- A forest is an undirected graph without cycles

- The connected components of a forest are trees
Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree.
- A spanning tree is not unique unless the graph is a tree.
- Spanning trees have applications to the design of communication networks.
- A spanning forest of a graph is a spanning subgraph that is a forest.
Depth-First Search

- Depth-first search (DFS) is a general technique for traversing a graph.
- A DFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- DFS on a graph with n vertices and m edges takes $O(n + m)$ time.
- DFS can be further extended to solve other graph problems:
 - Find and report a path between two given vertices
 - Find a cycle in the graph

- Depth-first search is to graphs what Euler tour is to binary trees.
DFS Algorithm from a Vertex

Algorithm DFS\((G, v)\):

Input: A graph \(G\) and a vertex \(v\) in \(G\)

Output: A labeling of the edges in the connected component of \(v\) as discovery edges and back edges, and the vertices in the connected component of \(v\) as explored

Label \(v\) as explored

for each edge, \(e\), that is incident to \(v\) in \(G\) do

if \(e\) is unexplored then

Let \(w\) be the end vertex of \(e\) opposite from \(v\)

if \(w\) is unexplored then

Label \(e\) as a discovery edge

DFS\((G, w)\)

else

Label \(e\) as a back edge
Example

- **unexplored vertex**
- **visited vertex**
- **unexplored edge**
- **discovery edge**
- **back edge**
Example (cont.)

Depth-First Search
DFS and Maze Traversal

- The DFS algorithm is similar to a classic strategy for exploring a maze
 - We mark each intersection, corner and dead end (vertex) visited
 - We mark each corridor (edge) traversed
 - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)
Properties of DFS

Property 1

$DFS(G, v)$ visits all the vertices and edges in the connected component of v

Property 2

The discovery edges labeled by $DFS(G, v)$ form a spanning tree of the connected component of v
The General DFS Algorithm

- Perform a DFS from each unexplored vertex:

```
Algorithm DFS(G):
    Input: A graph G
    Output: A labeling of the vertices in each connected component of G as explored
    Initially label each vertex in v as unexplored
    for each vertex, v, in G do
        if v is unexplored then
            DFS(G, v)
```
Analysis of DFS

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
- DFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \text{deg}(v) = 2m$
Breadth-First Search
Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph.

- A BFS traversal of a graph G:
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- BFS on a graph with n vertices and m edges takes $O(n + m)$ time.

- BFS can be further extended to solve other graph problems:
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one
BFS Algorithm

- The algorithm uses “levels” L_i and a mechanism for setting and getting “labels” of vertices and edges.

```
Algorithm BFS($G$, s):
    Input: A graph $G$ and a vertex $s$ of $G$
    Output: A labeling of the edges in the connected component of $s$ as discovery edges and cross edges
    Create an empty list, $L_0$
    Mark $s$ as explored and insert $s$ into $L_0$
    $i \leftarrow 0$
    while $L_i$ is not empty do
        create an empty list, $L_{i+1}$
        for each vertex, $v$, in $L_i$ do
            for each edge, $e = (v, w)$, incident on $v$ in $G$ do
                if edge $e$ is unexplored then
                    if vertex $w$ is unexplored then
                        Label $e$ as a discovery edge
                        Mark $w$ as explored and insert $w$ into $L_{i+1}$
                    else
                        Label $e$ as a cross edge
                $i \leftarrow i + 1$
```
Example

- **unexplored vertex**
- **visited vertex**
- **unexplored edge**
- **discovery edge**
- **cross edge**

© 2015 Goodrich and Tamassia

Breadth-First Search
Example (cont.)
Example (cont.)

\[L_0 \]

\[L_1 \]

\[L_2 \]

\[L_0 \]

\[L_1 \]

\[L_2 \]
Properties

Notation

\(G_s \): connected component of \(s \)

Property 1

\(BFS(G, s) \) visits all the vertices and edges of \(G_s \)

Property 2

The discovery edges labeled by \(BFS(G, s) \) form a spanning tree \(T_s \) of \(G_s \)

Property 3

For each vertex \(v \) in \(L_i \)

- The path of \(T_s \) from \(s \) to \(v \) has \(i \) edges
- Every path from \(s \) to \(v \) in \(G_s \) has at least \(i \) edges
Analysis

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- BFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_v \deg(v) = 2m$
Applications

- We can use the BFS traversal algorithm, for a graph G, to solve the following problems in $O(n + m)$ time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists
DFS vs. BFS

<table>
<thead>
<tr>
<th>Applications</th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected components, paths, cycles</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Shortest paths</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Biconnected components</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>

DFS

BFS
DFS vs. BFS (cont.)

Back edge \((v, w)\)
- \(w\) is an ancestor of \(v\) in the tree of discovery edges

Cross edge \((v, w)\)
- \(w\) is in the same level as \(v\) or in the next level

DFS

BFS