
Lecture 3
Recap of basic data 

structures, binary search, 
insertion/selection sort

CS 161 Design and Analysis of Algorithms 
Ioannis Panageas



2-1

Outline of these notes

I Review of basic data structures

I Searching in a sorted array/binary search: the algorithm,

analysis, proof of optimality

I Sorting, part 1: insertion sort, selection sort

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-2

Basic Data structures

Prerequisite material. Review [GT Chapters 2–4, 6] as necessary)

I Arrays, dynamic arrays

I Linked lists

I Stacks, queues

I Dictionaries, hash tables

I Binary trees

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-3

Arrays, Dynamic arrays, Linked lists

I Arrays:
I Numbered collection of cells or entries

I Numbering usually starts at 0
I Fixed number of entries

I Each cell has an index which uniquely identifies it.
I Accessing or modifying the contents of a cell given its index:

O(1) time.
I Inserting or deleting an item in the middle of an array is slow.

I Dynamic arrays:
I Similar to arrays, but size can be increased or decreased
I ArrayList in Java, list in Python

I Linked lists:
I Collection of nodes that form a linear ordering.

I The list has a first node and a last node
I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.
I Accessing a cell given its index (i.e., finding the kth item in the

list) is slow.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-3

Arrays, Dynamic arrays, Linked lists
I Arrays:

I Numbered collection of cells or entries
I Numbering usually starts at 0
I Fixed number of entries

I Each cell has an index which uniquely identifies it.
I Accessing or modifying the contents of a cell given its index:

O(1) time.
I Inserting or deleting an item in the middle of an array is slow.

I Dynamic arrays:
I Similar to arrays, but size can be increased or decreased
I ArrayList in Java, list in Python

I Linked lists:
I Collection of nodes that form a linear ordering.

I The list has a first node and a last node
I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.
I Accessing a cell given its index (i.e., finding the kth item in the

list) is slow.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-3

Arrays, Dynamic arrays, Linked lists
I Arrays:

I Numbered collection of cells or entries

I Numbering usually starts at 0
I Fixed number of entries

I Each cell has an index which uniquely identifies it.
I Accessing or modifying the contents of a cell given its index:

O(1) time.
I Inserting or deleting an item in the middle of an array is slow.

I Dynamic arrays:
I Similar to arrays, but size can be increased or decreased
I ArrayList in Java, list in Python

I Linked lists:
I Collection of nodes that form a linear ordering.

I The list has a first node and a last node
I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.
I Accessing a cell given its index (i.e., finding the kth item in the

list) is slow.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-3

Arrays, Dynamic arrays, Linked lists
I Arrays:

I Numbered collection of cells or entries
I Numbering usually starts at 0

I Fixed number of entries

I Each cell has an index which uniquely identifies it.
I Accessing or modifying the contents of a cell given its index:

O(1) time.
I Inserting or deleting an item in the middle of an array is slow.

I Dynamic arrays:
I Similar to arrays, but size can be increased or decreased
I ArrayList in Java, list in Python

I Linked lists:
I Collection of nodes that form a linear ordering.

I The list has a first node and a last node
I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.
I Accessing a cell given its index (i.e., finding the kth item in the

list) is slow.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-3

Arrays, Dynamic arrays, Linked lists
I Arrays:

I Numbered collection of cells or entries
I Numbering usually starts at 0
I Fixed number of entries

I Each cell has an index which uniquely identifies it.
I Accessing or modifying the contents of a cell given its index:

O(1) time.
I Inserting or deleting an item in the middle of an array is slow.

I Dynamic arrays:
I Similar to arrays, but size can be increased or decreased
I ArrayList in Java, list in Python

I Linked lists:
I Collection of nodes that form a linear ordering.

I The list has a first node and a last node
I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.
I Accessing a cell given its index (i.e., finding the kth item in the

list) is slow.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-3

Arrays, Dynamic arrays, Linked lists
I Arrays:

I Numbered collection of cells or entries
I Numbering usually starts at 0
I Fixed number of entries

I Each cell has an index which uniquely identifies it.

I Accessing or modifying the contents of a cell given its index:
O(1) time.

I Inserting or deleting an item in the middle of an array is slow.
I Dynamic arrays:

I Similar to arrays, but size can be increased or decreased
I ArrayList in Java, list in Python

I Linked lists:
I Collection of nodes that form a linear ordering.

I The list has a first node and a last node
I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.
I Accessing a cell given its index (i.e., finding the kth item in the

list) is slow.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-3

Arrays, Dynamic arrays, Linked lists
I Arrays:

I Numbered collection of cells or entries
I Numbering usually starts at 0
I Fixed number of entries

I Each cell has an index which uniquely identifies it.
I Accessing or modifying the contents of a cell given its index:

O(1) time.

I Inserting or deleting an item in the middle of an array is slow.
I Dynamic arrays:

I Similar to arrays, but size can be increased or decreased
I ArrayList in Java, list in Python

I Linked lists:
I Collection of nodes that form a linear ordering.

I The list has a first node and a last node
I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.
I Accessing a cell given its index (i.e., finding the kth item in the

list) is slow.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-3

Arrays, Dynamic arrays, Linked lists
I Arrays:

I Numbered collection of cells or entries
I Numbering usually starts at 0
I Fixed number of entries

I Each cell has an index which uniquely identifies it.
I Accessing or modifying the contents of a cell given its index:

O(1) time.
I Inserting or deleting an item in the middle of an array is slow.

I Dynamic arrays:
I Similar to arrays, but size can be increased or decreased
I ArrayList in Java, list in Python

I Linked lists:
I Collection of nodes that form a linear ordering.

I The list has a first node and a last node
I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.
I Accessing a cell given its index (i.e., finding the kth item in the

list) is slow.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-3

Arrays, Dynamic arrays, Linked lists
I Arrays:

I Numbered collection of cells or entries
I Numbering usually starts at 0
I Fixed number of entries

I Each cell has an index which uniquely identifies it.
I Accessing or modifying the contents of a cell given its index:

O(1) time.
I Inserting or deleting an item in the middle of an array is slow.

I Dynamic arrays:

I Similar to arrays, but size can be increased or decreased
I ArrayList in Java, list in Python

I Linked lists:
I Collection of nodes that form a linear ordering.

I The list has a first node and a last node
I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.
I Accessing a cell given its index (i.e., finding the kth item in the

list) is slow.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-3

Arrays, Dynamic arrays, Linked lists
I Arrays:

I Numbered collection of cells or entries
I Numbering usually starts at 0
I Fixed number of entries

I Each cell has an index which uniquely identifies it.
I Accessing or modifying the contents of a cell given its index:

O(1) time.
I Inserting or deleting an item in the middle of an array is slow.

I Dynamic arrays:
I Similar to arrays, but size can be increased or decreased

I ArrayList in Java, list in Python
I Linked lists:

I Collection of nodes that form a linear ordering.
I The list has a first node and a last node
I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.
I Accessing a cell given its index (i.e., finding the kth item in the

list) is slow.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-3

Arrays, Dynamic arrays, Linked lists
I Arrays:

I Numbered collection of cells or entries
I Numbering usually starts at 0
I Fixed number of entries

I Each cell has an index which uniquely identifies it.
I Accessing or modifying the contents of a cell given its index:

O(1) time.
I Inserting or deleting an item in the middle of an array is slow.

I Dynamic arrays:
I Similar to arrays, but size can be increased or decreased
I ArrayList in Java, list in Python

I Linked lists:
I Collection of nodes that form a linear ordering.

I The list has a first node and a last node
I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.
I Accessing a cell given its index (i.e., finding the kth item in the

list) is slow.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-3

Arrays, Dynamic arrays, Linked lists
I Arrays:

I Numbered collection of cells or entries
I Numbering usually starts at 0
I Fixed number of entries

I Each cell has an index which uniquely identifies it.
I Accessing or modifying the contents of a cell given its index:

O(1) time.
I Inserting or deleting an item in the middle of an array is slow.

I Dynamic arrays:
I Similar to arrays, but size can be increased or decreased
I ArrayList in Java, list in Python

I Linked lists:

I Collection of nodes that form a linear ordering.
I The list has a first node and a last node
I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.
I Accessing a cell given its index (i.e., finding the kth item in the

list) is slow.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-3

Arrays, Dynamic arrays, Linked lists
I Arrays:

I Numbered collection of cells or entries
I Numbering usually starts at 0
I Fixed number of entries

I Each cell has an index which uniquely identifies it.
I Accessing or modifying the contents of a cell given its index:

O(1) time.
I Inserting or deleting an item in the middle of an array is slow.

I Dynamic arrays:
I Similar to arrays, but size can be increased or decreased
I ArrayList in Java, list in Python

I Linked lists:
I Collection of nodes that form a linear ordering.

I The list has a first node and a last node
I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.
I Accessing a cell given its index (i.e., finding the kth item in the

list) is slow.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-3

Arrays, Dynamic arrays, Linked lists
I Arrays:

I Numbered collection of cells or entries
I Numbering usually starts at 0
I Fixed number of entries

I Each cell has an index which uniquely identifies it.
I Accessing or modifying the contents of a cell given its index:

O(1) time.
I Inserting or deleting an item in the middle of an array is slow.

I Dynamic arrays:
I Similar to arrays, but size can be increased or decreased
I ArrayList in Java, list in Python

I Linked lists:
I Collection of nodes that form a linear ordering.

I The list has a first node and a last node

I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.
I Accessing a cell given its index (i.e., finding the kth item in the

list) is slow.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-3

Arrays, Dynamic arrays, Linked lists
I Arrays:

I Numbered collection of cells or entries
I Numbering usually starts at 0
I Fixed number of entries

I Each cell has an index which uniquely identifies it.
I Accessing or modifying the contents of a cell given its index:

O(1) time.
I Inserting or deleting an item in the middle of an array is slow.

I Dynamic arrays:
I Similar to arrays, but size can be increased or decreased
I ArrayList in Java, list in Python

I Linked lists:
I Collection of nodes that form a linear ordering.

I The list has a first node and a last node
I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.
I Accessing a cell given its index (i.e., finding the kth item in the

list) is slow.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-3

Arrays, Dynamic arrays, Linked lists
I Arrays:

I Numbered collection of cells or entries
I Numbering usually starts at 0
I Fixed number of entries

I Each cell has an index which uniquely identifies it.
I Accessing or modifying the contents of a cell given its index:

O(1) time.
I Inserting or deleting an item in the middle of an array is slow.

I Dynamic arrays:
I Similar to arrays, but size can be increased or decreased
I ArrayList in Java, list in Python

I Linked lists:
I Collection of nodes that form a linear ordering.

I The list has a first node and a last node
I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.

I Accessing a cell given its index (i.e., finding the kth item in the
list) is slow.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-3

Arrays, Dynamic arrays, Linked lists
I Arrays:

I Numbered collection of cells or entries
I Numbering usually starts at 0
I Fixed number of entries

I Each cell has an index which uniquely identifies it.
I Accessing or modifying the contents of a cell given its index:

O(1) time.
I Inserting or deleting an item in the middle of an array is slow.

I Dynamic arrays:
I Similar to arrays, but size can be increased or decreased
I ArrayList in Java, list in Python

I Linked lists:
I Collection of nodes that form a linear ordering.

I The list has a first node and a last node
I Each node has a next node and a previous node (possibly null)

I Inserting or deleting an item in the middle of linked list is fast.
I Accessing a cell given its index (i.e., finding the kth item in the

list) is slow.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-4

Stacks and Queues

I Stacks:
I Container of objects that are inserted and removed according

to Last-In First-Out (LIFO) principle:
I Only the most-recently inserted object can be removed.

I Insert and remove are usually called push and pop

I Queues (often called FIFO Queues)
I Container of objects that are inserted and removed according

to First-In First-Out (FIFO) principle:
I Only the element that has been in the queue the longes can

be removed.

I Insert and remove are usually called enqueue and dequeue
I Elements are inserted at the rear of the queue and are removed

from the front

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-4

Stacks and Queues

I Stacks:

I Container of objects that are inserted and removed according
to Last-In First-Out (LIFO) principle:

I Only the most-recently inserted object can be removed.

I Insert and remove are usually called push and pop

I Queues (often called FIFO Queues)
I Container of objects that are inserted and removed according

to First-In First-Out (FIFO) principle:
I Only the element that has been in the queue the longes can

be removed.

I Insert and remove are usually called enqueue and dequeue
I Elements are inserted at the rear of the queue and are removed

from the front

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-4

Stacks and Queues

I Stacks:
I Container of objects that are inserted and removed according

to Last-In First-Out (LIFO) principle:

I Only the most-recently inserted object can be removed.

I Insert and remove are usually called push and pop

I Queues (often called FIFO Queues)
I Container of objects that are inserted and removed according

to First-In First-Out (FIFO) principle:
I Only the element that has been in the queue the longes can

be removed.

I Insert and remove are usually called enqueue and dequeue
I Elements are inserted at the rear of the queue and are removed

from the front

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-4

Stacks and Queues

I Stacks:
I Container of objects that are inserted and removed according

to Last-In First-Out (LIFO) principle:
I Only the most-recently inserted object can be removed.

I Insert and remove are usually called push and pop

I Queues (often called FIFO Queues)
I Container of objects that are inserted and removed according

to First-In First-Out (FIFO) principle:
I Only the element that has been in the queue the longes can

be removed.

I Insert and remove are usually called enqueue and dequeue
I Elements are inserted at the rear of the queue and are removed

from the front

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-4

Stacks and Queues

I Stacks:
I Container of objects that are inserted and removed according

to Last-In First-Out (LIFO) principle:
I Only the most-recently inserted object can be removed.

I Insert and remove are usually called push and pop

I Queues (often called FIFO Queues)
I Container of objects that are inserted and removed according

to First-In First-Out (FIFO) principle:
I Only the element that has been in the queue the longes can

be removed.

I Insert and remove are usually called enqueue and dequeue
I Elements are inserted at the rear of the queue and are removed

from the front

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-4

Stacks and Queues

I Stacks:
I Container of objects that are inserted and removed according

to Last-In First-Out (LIFO) principle:
I Only the most-recently inserted object can be removed.

I Insert and remove are usually called push and pop

I Queues (often called FIFO Queues)

I Container of objects that are inserted and removed according
to First-In First-Out (FIFO) principle:

I Only the element that has been in the queue the longes can
be removed.

I Insert and remove are usually called enqueue and dequeue
I Elements are inserted at the rear of the queue and are removed

from the front

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-4

Stacks and Queues

I Stacks:
I Container of objects that are inserted and removed according

to Last-In First-Out (LIFO) principle:
I Only the most-recently inserted object can be removed.

I Insert and remove are usually called push and pop

I Queues (often called FIFO Queues)
I Container of objects that are inserted and removed according

to First-In First-Out (FIFO) principle:

I Only the element that has been in the queue the longes can
be removed.

I Insert and remove are usually called enqueue and dequeue
I Elements are inserted at the rear of the queue and are removed

from the front

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-4

Stacks and Queues

I Stacks:
I Container of objects that are inserted and removed according

to Last-In First-Out (LIFO) principle:
I Only the most-recently inserted object can be removed.

I Insert and remove are usually called push and pop

I Queues (often called FIFO Queues)
I Container of objects that are inserted and removed according

to First-In First-Out (FIFO) principle:
I Only the element that has been in the queue the longes can

be removed.

I Insert and remove are usually called enqueue and dequeue
I Elements are inserted at the rear of the queue and are removed

from the front

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-4

Stacks and Queues

I Stacks:
I Container of objects that are inserted and removed according

to Last-In First-Out (LIFO) principle:
I Only the most-recently inserted object can be removed.

I Insert and remove are usually called push and pop

I Queues (often called FIFO Queues)
I Container of objects that are inserted and removed according

to First-In First-Out (FIFO) principle:
I Only the element that has been in the queue the longes can

be removed.

I Insert and remove are usually called enqueue and dequeue

I Elements are inserted at the rear of the queue and are removed
from the front

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-4

Stacks and Queues

I Stacks:
I Container of objects that are inserted and removed according

to Last-In First-Out (LIFO) principle:
I Only the most-recently inserted object can be removed.

I Insert and remove are usually called push and pop

I Queues (often called FIFO Queues)
I Container of objects that are inserted and removed according

to First-In First-Out (FIFO) principle:
I Only the element that has been in the queue the longes can

be removed.

I Insert and remove are usually called enqueue and dequeue
I Elements are inserted at the rear of the queue and are removed

from the front

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-5

Dictionaries/Maps

I Dictionaries
I A Dictionary (or Map) stores <key,value> pairs, which are

often referred to as items
I There can be at most item with a given key.
I Examples:

1. <Student ID, Student data>

2. <Object ID, Object data>

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-5

Dictionaries/Maps

I Dictionaries

I A Dictionary (or Map) stores <key,value> pairs, which are
often referred to as items

I There can be at most item with a given key.
I Examples:

1. <Student ID, Student data>

2. <Object ID, Object data>

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-5

Dictionaries/Maps

I Dictionaries
I A Dictionary (or Map) stores <key,value> pairs, which are

often referred to as items

I There can be at most item with a given key.
I Examples:

1. <Student ID, Student data>

2. <Object ID, Object data>

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-5

Dictionaries/Maps

I Dictionaries
I A Dictionary (or Map) stores <key,value> pairs, which are

often referred to as items
I There can be at most item with a given key.

I Examples:

1. <Student ID, Student data>

2. <Object ID, Object data>

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-5

Dictionaries/Maps

I Dictionaries
I A Dictionary (or Map) stores <key,value> pairs, which are

often referred to as items
I There can be at most item with a given key.
I Examples:

1. <Student ID, Student data>

2. <Object ID, Object data>

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-5

Dictionaries/Maps

I Dictionaries
I A Dictionary (or Map) stores <key,value> pairs, which are

often referred to as items
I There can be at most item with a given key.
I Examples:

1. <Student ID, Student data>

2. <Object ID, Object data>

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-5

Dictionaries/Maps

I Dictionaries
I A Dictionary (or Map) stores <key,value> pairs, which are

often referred to as items
I There can be at most item with a given key.
I Examples:

1. <Student ID, Student data>

2. <Object ID, Object data>

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-6

Hashing

An efficient method for implementing a dictionary. Uses

I A hash table, an array of size N.

I A hash function, which maps any key from the set of possible
keys to an integer in the range [0,N − 1]

I A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

I Chaining
I Open addressing: linear probing, quadratic probing, double

hashing
I Cuckoo hashing

Hashing is fast:

I O(1) expected time for access, insertion

I Cuckoo hashing improves the access time to O(1) worst-case
time. Insertion time remains O(1) expected time.

Disadvantages on next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-6

Hashing
An efficient method for implementing a dictionary.

Uses

I A hash table, an array of size N.

I A hash function, which maps any key from the set of possible
keys to an integer in the range [0,N − 1]

I A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

I Chaining
I Open addressing: linear probing, quadratic probing, double

hashing
I Cuckoo hashing

Hashing is fast:

I O(1) expected time for access, insertion

I Cuckoo hashing improves the access time to O(1) worst-case
time. Insertion time remains O(1) expected time.

Disadvantages on next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-6

Hashing
An efficient method for implementing a dictionary. Uses

I A hash table, an array of size N.

I A hash function, which maps any key from the set of possible
keys to an integer in the range [0,N − 1]

I A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

I Chaining
I Open addressing: linear probing, quadratic probing, double

hashing
I Cuckoo hashing

Hashing is fast:

I O(1) expected time for access, insertion

I Cuckoo hashing improves the access time to O(1) worst-case
time. Insertion time remains O(1) expected time.

Disadvantages on next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-6

Hashing
An efficient method for implementing a dictionary. Uses

I A hash table, an array of size N.

I A hash function, which maps any key from the set of possible
keys to an integer in the range [0,N − 1]

I A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

I Chaining
I Open addressing: linear probing, quadratic probing, double

hashing
I Cuckoo hashing

Hashing is fast:

I O(1) expected time for access, insertion

I Cuckoo hashing improves the access time to O(1) worst-case
time. Insertion time remains O(1) expected time.

Disadvantages on next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-6

Hashing
An efficient method for implementing a dictionary. Uses

I A hash table, an array of size N.

I A hash function, which maps any key from the set of possible
keys to an integer in the range [0,N − 1]

I A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

I Chaining
I Open addressing: linear probing, quadratic probing, double

hashing
I Cuckoo hashing

Hashing is fast:

I O(1) expected time for access, insertion

I Cuckoo hashing improves the access time to O(1) worst-case
time. Insertion time remains O(1) expected time.

Disadvantages on next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-6

Hashing
An efficient method for implementing a dictionary. Uses

I A hash table, an array of size N.

I A hash function, which maps any key from the set of possible
keys to an integer in the range [0,N − 1]

I A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.

Commonly used collision strategies are:
I Chaining
I Open addressing: linear probing, quadratic probing, double

hashing
I Cuckoo hashing

Hashing is fast:

I O(1) expected time for access, insertion

I Cuckoo hashing improves the access time to O(1) worst-case
time. Insertion time remains O(1) expected time.

Disadvantages on next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-6

Hashing
An efficient method for implementing a dictionary. Uses

I A hash table, an array of size N.

I A hash function, which maps any key from the set of possible
keys to an integer in the range [0,N − 1]

I A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

I Chaining
I Open addressing: linear probing, quadratic probing, double

hashing
I Cuckoo hashing

Hashing is fast:

I O(1) expected time for access, insertion

I Cuckoo hashing improves the access time to O(1) worst-case
time. Insertion time remains O(1) expected time.

Disadvantages on next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-6

Hashing
An efficient method for implementing a dictionary. Uses

I A hash table, an array of size N.

I A hash function, which maps any key from the set of possible
keys to an integer in the range [0,N − 1]

I A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

I Chaining

I Open addressing: linear probing, quadratic probing, double
hashing

I Cuckoo hashing

Hashing is fast:

I O(1) expected time for access, insertion

I Cuckoo hashing improves the access time to O(1) worst-case
time. Insertion time remains O(1) expected time.

Disadvantages on next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-6

Hashing
An efficient method for implementing a dictionary. Uses

I A hash table, an array of size N.

I A hash function, which maps any key from the set of possible
keys to an integer in the range [0,N − 1]

I A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

I Chaining
I Open addressing: linear probing, quadratic probing, double

hashing

I Cuckoo hashing

Hashing is fast:

I O(1) expected time for access, insertion

I Cuckoo hashing improves the access time to O(1) worst-case
time. Insertion time remains O(1) expected time.

Disadvantages on next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-6

Hashing
An efficient method for implementing a dictionary. Uses

I A hash table, an array of size N.

I A hash function, which maps any key from the set of possible
keys to an integer in the range [0,N − 1]

I A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

I Chaining
I Open addressing: linear probing, quadratic probing, double

hashing
I Cuckoo hashing

Hashing is fast:

I O(1) expected time for access, insertion

I Cuckoo hashing improves the access time to O(1) worst-case
time. Insertion time remains O(1) expected time.

Disadvantages on next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-6

Hashing
An efficient method for implementing a dictionary. Uses

I A hash table, an array of size N.

I A hash function, which maps any key from the set of possible
keys to an integer in the range [0,N − 1]

I A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

I Chaining
I Open addressing: linear probing, quadratic probing, double

hashing
I Cuckoo hashing

Hashing is fast:

I O(1) expected time for access, insertion

I Cuckoo hashing improves the access time to O(1) worst-case
time. Insertion time remains O(1) expected time.

Disadvantages on next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-6

Hashing
An efficient method for implementing a dictionary. Uses

I A hash table, an array of size N.

I A hash function, which maps any key from the set of possible
keys to an integer in the range [0,N − 1]

I A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

I Chaining
I Open addressing: linear probing, quadratic probing, double

hashing
I Cuckoo hashing

Hashing is fast:

I O(1) expected time for access, insertion

I Cuckoo hashing improves the access time to O(1) worst-case
time. Insertion time remains O(1) expected time.

Disadvantages on next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-6

Hashing
An efficient method for implementing a dictionary. Uses

I A hash table, an array of size N.

I A hash function, which maps any key from the set of possible
keys to an integer in the range [0,N − 1]

I A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

I Chaining
I Open addressing: linear probing, quadratic probing, double

hashing
I Cuckoo hashing

Hashing is fast:

I O(1) expected time for access, insertion

I Cuckoo hashing improves the access time to O(1) worst-case
time. Insertion time remains O(1) expected time.

Disadvantages on next slide.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-6

Hashing
An efficient method for implementing a dictionary. Uses

I A hash table, an array of size N.

I A hash function, which maps any key from the set of possible
keys to an integer in the range [0,N − 1]

I A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

I Chaining
I Open addressing: linear probing, quadratic probing, double

hashing
I Cuckoo hashing

Hashing is fast:

I O(1) expected time for access, insertion

I Cuckoo hashing improves the access time to O(1) worst-case
time. Insertion time remains O(1) expected time. 

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-8

Binary Trees: a quick review

We will use as a data structure and as a tool for analyzing
algorithms.

Level 0 (root)

Level 1

Level 2

Level 3

The depth of a binary tree is the maximum of the levels of all its
leaves.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-8

Binary Trees: a quick review

We will use as a data structure and as a tool for analyzing
algorithms.

Level 0 (root)

Level 1

Level 2

Level 3

The depth of a binary tree is the maximum of the levels of all its
leaves.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-8

Binary Trees: a quick review

We will use as a data structure and as a tool for analyzing
algorithms.

Level 0 (root)

Level 1

Level 2

Level 3

The depth of a binary tree is the maximum of the levels of all its
leaves.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-9

Traversing binary trees

G H

D E F

B C

A

I Preorder: root, left subtree (in preorder), right subtree (in
preorder): ABDGHCEF

I Inorder: left subtree (in inorder), root, right subtree (in
inorder): GDHBAECF

I Postorder: left subtree (in postorder), right subtree (in
postorder), root: GHDBEFCA

I Breadth-first order (level order): level 0 left-to-right, then
level 1 left-to-right, . . . : ABCDEFGH

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-9

Traversing binary trees

G H

D E F

B C

A

I Preorder: root, left subtree (in preorder), right subtree (in
preorder): ABDGHCEF

I Inorder: left subtree (in inorder), root, right subtree (in
inorder): GDHBAECF

I Postorder: left subtree (in postorder), right subtree (in
postorder), root: GHDBEFCA

I Breadth-first order (level order): level 0 left-to-right, then
level 1 left-to-right, . . . : ABCDEFGH

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-9

Traversing binary trees

G H

D E F

B C

A

I Preorder: root, left subtree (in preorder), right subtree (in
preorder): ABDGHCEF

I Inorder: left subtree (in inorder), root, right subtree (in
inorder): GDHBAECF

I Postorder: left subtree (in postorder), right subtree (in
postorder), root: GHDBEFCA

I Breadth-first order (level order): level 0 left-to-right, then
level 1 left-to-right, . . . : ABCDEFGH

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-9

Traversing binary trees

G H

D E F

B C

A

I Preorder: root, left subtree (in preorder), right subtree (in
preorder): ABDGHCEF

I Inorder: left subtree (in inorder), root, right subtree (in
inorder): GDHBAECF

I Postorder: left subtree (in postorder), right subtree (in
postorder), root: GHDBEFCA

I Breadth-first order (level order): level 0 left-to-right, then
level 1 left-to-right, . . . : ABCDEFGH

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-9

Traversing binary trees

G H

D E F

B C

A

I Preorder: root, left subtree (in preorder), right subtree (in
preorder): ABDGHCEF

I Inorder: left subtree (in inorder), root, right subtree (in
inorder): GDHBAECF

I Postorder: left subtree (in postorder), right subtree (in
postorder), root: GHDBEFCA

I Breadth-first order (level order): level 0 left-to-right, then
level 1 left-to-right, . . . : ABCDEFGH

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-10

Facts about binary trees

1. There are at most 2k nodes at level k.

2. A binary tree with depth d has:
I At most 2d leaves.
I At most 2d+1 − 1 nodes.

3. A binary tree with n leaves has depth ≥ dlg ne.
4. A binary tree with n nodes has depth ≥ blg nc.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-10

Facts about binary trees

1. There are at most 2k nodes at level k.

2. A binary tree with depth d has:
I At most 2d leaves.
I At most 2d+1 − 1 nodes.

3. A binary tree with n leaves has depth ≥ dlg ne.
4. A binary tree with n nodes has depth ≥ blg nc.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-10

Facts about binary trees

1. There are at most 2k nodes at level k.

2. A binary tree with depth d has:
I At most 2d leaves.

I At most 2d+1 − 1 nodes.

3. A binary tree with n leaves has depth ≥ dlg ne.
4. A binary tree with n nodes has depth ≥ blg nc.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-10

Facts about binary trees

1. There are at most 2k nodes at level k.

2. A binary tree with depth d has:
I At most 2d leaves.
I At most 2d+1 − 1 nodes.

3. A binary tree with n leaves has depth ≥ dlg ne.
4. A binary tree with n nodes has depth ≥ blg nc.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-10

Facts about binary trees

1. There are at most 2k nodes at level k.

2. A binary tree with depth d has:
I At most 2d leaves.
I At most 2d+1 − 1 nodes.

3. A binary tree with n leaves has depth ≥ dlg ne.

4. A binary tree with n nodes has depth ≥ blg nc.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-10

Facts about binary trees

1. There are at most 2k nodes at level k.

2. A binary tree with depth d has:
I At most 2d leaves.
I At most 2d+1 − 1 nodes.

3. A binary tree with n leaves has depth ≥ dlg ne.
4. A binary tree with n nodes has depth ≥ blg nc.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-11

Binary search trees

9 32

25 52 79

36 65

47

I Function as ordered dictionaries. (Can find successors,
predecessors)

I find, insert, and remove can all be done in O(h) time
(h = tree height)

I AVL trees, Red-Black Trees, Weak AVL trees: h = O(log n),
so find, insert, and remove can all be done in O(log n) time.

I Splay trees and Skip Lists: alternatives to balanced trees

I Can traverse the tree and list all items in O(n) time.

I [GT] Chapters 3–4 for details

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-11

Binary search trees

9 32

25 52 79

36 65

47

I Function as ordered dictionaries. (Can find successors,
predecessors)

I find, insert, and remove can all be done in O(h) time
(h = tree height)

I AVL trees, Red-Black Trees, Weak AVL trees: h = O(log n),
so find, insert, and remove can all be done in O(log n) time.

I Splay trees and Skip Lists: alternatives to balanced trees

I Can traverse the tree and list all items in O(n) time.

I [GT] Chapters 3–4 for details

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-11

Binary search trees

9 32

25 52 79

36 65

47

I Function as ordered dictionaries. (Can find successors,
predecessors)

I find, insert, and remove can all be done in O(h) time
(h = tree height)

I AVL trees, Red-Black Trees, Weak AVL trees: h = O(log n),
so find, insert, and remove can all be done in O(log n) time.

I Splay trees and Skip Lists: alternatives to balanced trees

I Can traverse the tree and list all items in O(n) time.

I [GT] Chapters 3–4 for details

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-11

Binary search trees

9 32

25 52 79

36 65

47

I Function as ordered dictionaries. (Can find successors,
predecessors)

I find, insert, and remove can all be done in O(h) time
(h = tree height)

I AVL trees, Red-Black Trees, Weak AVL trees: h = O(log n),
so find, insert, and remove can all be done in O(log n) time.

I Splay trees and Skip Lists: alternatives to balanced trees

I Can traverse the tree and list all items in O(n) time.

I [GT] Chapters 3–4 for details

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-11

Binary search trees

9 32

25 52 79

36 65

47

I Function as ordered dictionaries. (Can find successors,
predecessors)

I find, insert, and remove can all be done in O(h) time
(h = tree height)

I AVL trees, Red-Black Trees, Weak AVL trees: h = O(log n),
so find, insert, and remove can all be done in O(log n) time.

I Splay trees and Skip Lists: alternatives to balanced trees

I Can traverse the tree and list all items in O(n) time.

I [GT] Chapters 3–4 for details

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-11

Binary search trees

9 32

25 52 79

36 65

47

I Function as ordered dictionaries. (Can find successors,
predecessors)

I find, insert, and remove can all be done in O(h) time
(h = tree height)

I AVL trees, Red-Black Trees, Weak AVL trees: h = O(log n),
so find, insert, and remove can all be done in O(log n) time.

I Splay trees and Skip Lists: alternatives to balanced trees

I Can traverse the tree and list all items in O(n) time.

I [GT] Chapters 3–4 for details

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-11

Binary search trees

9 32

25 52 79

36 65

47

I Function as ordered dictionaries. (Can find successors,
predecessors)

I find, insert, and remove can all be done in O(h) time
(h = tree height)

I AVL trees, Red-Black Trees, Weak AVL trees: h = O(log n),
so find, insert, and remove can all be done in O(log n) time.

I Splay trees and Skip Lists: alternatives to balanced trees

I Can traverse the tree and list all items in O(n) time.

I [GT] Chapters 3–4 for details

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-12

Binary Search: Searching in a sorted array

I Input is a sorted array A and an item x .

I Problem is to locate x in the array.
I Several variants of the problem, for example. . .

1. Determine whether x is stored in the array
2. Find the largest i such that A[i ] ≤ x (with a reasonable

convention if x < A[0]).

We will focus on the first variant.

I We will show that binary search is an optimal algorithm for
solving this problem.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-12

Binary Search: Searching in a sorted array

I Input is a sorted array A and an item x .

I Problem is to locate x in the array.
I Several variants of the problem, for example. . .

1. Determine whether x is stored in the array
2. Find the largest i such that A[i ] ≤ x (with a reasonable

convention if x < A[0]).

We will focus on the first variant.

I We will show that binary search is an optimal algorithm for
solving this problem.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-12

Binary Search: Searching in a sorted array

I Input is a sorted array A and an item x .

I Problem is to locate x in the array.

I Several variants of the problem, for example. . .

1. Determine whether x is stored in the array
2. Find the largest i such that A[i ] ≤ x (with a reasonable

convention if x < A[0]).

We will focus on the first variant.

I We will show that binary search is an optimal algorithm for
solving this problem.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-12

Binary Search: Searching in a sorted array

I Input is a sorted array A and an item x .

I Problem is to locate x in the array.
I Several variants of the problem, for example

. . .

1. Determine whether x is stored in the array
2. Find the largest i such that A[i ] ≤ x (with a reasonable

convention if x < A[0]).

We will focus on the first variant.

I We will show that binary search is an optimal algorithm for
solving this problem.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-12

Binary Search: Searching in a sorted array

I Input is a sorted array A and an item x .

I Problem is to locate x in the array.
I Several variants of the problem, for example. . .

1. Determine whether x is stored in the array

2. Find the largest i such that A[i ] ≤ x (with a reasonable
convention if x < A[0]).

We will focus on the first variant.

I We will show that binary search is an optimal algorithm for
solving this problem.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-12

Binary Search: Searching in a sorted array

I Input is a sorted array A and an item x .

I Problem is to locate x in the array.
I Several variants of the problem, for example. . .

1. Determine whether x is stored in the array
2. Find the largest i such that A[i ] ≤ x (with a reasonable

convention if x < A[0]).

We will focus on the first variant.

I We will show that binary search is an optimal algorithm for
solving this problem.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-12

Binary Search: Searching in a sorted array

I Input is a sorted array A and an item x .

I Problem is to locate x in the array.
I Several variants of the problem, for example. . .

1. Determine whether x is stored in the array
2. Find the largest i such that A[i ] ≤ x (with a reasonable

convention if x < A[0]).

We will focus on the first variant.

I We will show that binary search is an optimal algorithm for
solving this problem.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-12

Binary Search: Searching in a sorted array

I Input is a sorted array A and an item x .

I Problem is to locate x in the array.
I Several variants of the problem, for example. . .

1. Determine whether x is stored in the array
2. Find the largest i such that A[i ] ≤ x (with a reasonable

convention if x < A[0]).

We will focus on the first variant.

I We will show that binary search is an optimal algorithm for
solving this problem.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-13

Binary Search: Searching in a sorted array

Input: A: Sorted array with n entries [0..n − 1]
x : Item we are seeking

Output: Location of x , if x found
-1, if x not found

def binarySearch(A,x,first,last)

if first > last:

return (-1)

else:

mid = b(first+last)/2c
if x == A[mid]:

return mid

else if x < A[mid]:

return binarySearch(A,x,first,mid-1)

else:

return binarySearch(A,x,mid+1,last)

binarySearch(A,x,0,n-1)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-13

Binary Search: Searching in a sorted array

Input: A: Sorted array with n entries [0..n − 1]
x : Item we are seeking

Output: Location of x , if x found
-1, if x not found

def binarySearch(A,x,first,last)

if first > last:

return (-1)

else:

mid = b(first+last)/2c
if x == A[mid]:

return mid

else if x < A[mid]:

return binarySearch(A,x,first,mid-1)

else:

return binarySearch(A,x,mid+1,last)

binarySearch(A,x,0,n-1)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-13

Binary Search: Searching in a sorted array

Input: A: Sorted array with n entries [0..n − 1]
x : Item we are seeking

Output: Location of x , if x found
-1, if x not found

def binarySearch(A,x,first,last)

if first > last:

return (-1)

else:

mid = b(first+last)/2c
if x == A[mid]:

return mid

else if x < A[mid]:

return binarySearch(A,x,first,mid-1)

else:

return binarySearch(A,x,mid+1,last)

binarySearch(A,x,0,n-1)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-13

Binary Search: Searching in a sorted array

Input: A: Sorted array with n entries [0..n − 1]
x : Item we are seeking

Output: Location of x , if x found
-1, if x not found

def binarySearch(A,x,first,last)

if first > last:

return (-1)

else:

mid = b(first+last)/2c
if x == A[mid]:

return mid

else if x < A[mid]:

return binarySearch(A,x,first,mid-1)

else:

return binarySearch(A,x,mid+1,last)

binarySearch(A,x,0,n-1)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-14

Correctness of Binary Search

We need to prove two things:

1. If x is in the array, its location in the array (its index) is
between first and last, inclusive.
Note that this is equivalent to:

Either x is not in the array, or its location is between
first and last, inclusive.

2. On each recursive call, the difference last − first gets strictly
smaller.

first last

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-14

Correctness of Binary Search

We need to prove two things:

1. If x is in the array, its location in the array (its index) is
between first and last, inclusive.
Note that this is equivalent to:

Either x is not in the array, or its location is between
first and last, inclusive.

2. On each recursive call, the difference last − first gets strictly
smaller.

first last

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-14

Correctness of Binary Search

We need to prove two things:

1. If x is in the array, its location in the array (its index) is
between first and last, inclusive.

Note that this is equivalent to:

Either x is not in the array, or its location is between
first and last, inclusive.

2. On each recursive call, the difference last − first gets strictly
smaller.

first last

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-14

Correctness of Binary Search

We need to prove two things:

1. If x is in the array, its location in the array (its index) is
between first and last, inclusive.
Note that this is equivalent to:

Either x is not in the array, or its location is between
first and last, inclusive.

2. On each recursive call, the difference last − first gets strictly
smaller.

first last

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-14

Correctness of Binary Search

We need to prove two things:

1. If x is in the array, its location in the array (its index) is
between first and last, inclusive.
Note that this is equivalent to:

Either x is not in the array, or its location is between
first and last, inclusive.

2. On each recursive call, the difference last − first gets strictly
smaller.

first last

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-15

Correctness of Binary Search
To prove that the invariant continues to hold, we need to consider
three cases.

1. last ≥ first + 2
first last

mid

2. last = first + 1
first last

mid

3. last = first
first = last

mid

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-15

Correctness of Binary Search
To prove that the invariant continues to hold, we need to consider
three cases.

1. last ≥ first + 2
first last

mid

2. last = first + 1
first last

mid

3. last = first
first = last

mid

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-15

Correctness of Binary Search
To prove that the invariant continues to hold, we need to consider
three cases.

1. last ≥ first + 2
first last

mid

2. last = first + 1
first last

mid

3. last = first
first = last

mid

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-15

Correctness of Binary Search
To prove that the invariant continues to hold, we need to consider
three cases.

1. last ≥ first + 2
first last

mid

2. last = first + 1
first last

mid

3. last = first
first = last

mid

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-16

Binary Search: Analysis of Running Time

I We will count the number of 3-way comparisons of x against
elements of A. (also known as decisions)

I Rationale:

1. This is the essentially the same as the number of recursive
calls. Every recursive call, except for possibly the very last one,
results in a 3-way comparison.

2. Gives us a way to compare binary search against other
algorithms that solve the same problem: searching for an item
in an array by comparing the item against array entries.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-16

Binary Search: Analysis of Running Time

I We will count the number of 3-way comparisons of x against
elements of A. (also known as decisions)

I Rationale:

1. This is the essentially the same as the number of recursive
calls. Every recursive call, except for possibly the very last one,
results in a 3-way comparison.

2. Gives us a way to compare binary search against other
algorithms that solve the same problem: searching for an item
in an array by comparing the item against array entries.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-16

Binary Search: Analysis of Running Time

I We will count the number of 3-way comparisons of x against
elements of A. (also known as decisions)

I Rationale:

1. This is the essentially the same as the number of recursive
calls. Every recursive call, except for possibly the very last one,
results in a 3-way comparison.

2. Gives us a way to compare binary search against other
algorithms that solve the same problem: searching for an item
in an array by comparing the item against array entries.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-16

Binary Search: Analysis of Running Time

I We will count the number of 3-way comparisons of x against
elements of A. (also known as decisions)

I Rationale:

1. This is the essentially the same as the number of recursive
calls. Every recursive call, except for possibly the very last one,
results in a 3-way comparison.

2. Gives us a way to compare binary search against other
algorithms that solve the same problem: searching for an item
in an array by comparing the item against array entries.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-16

Binary Search: Analysis of Running Time

I We will count the number of 3-way comparisons of x against
elements of A. (also known as decisions)

I Rationale:

1. This is the essentially the same as the number of recursive
calls. Every recursive call, except for possibly the very last one,
results in a 3-way comparison.

2. Gives us a way to compare binary search against other
algorithms that solve the same problem: searching for an item
in an array by comparing the item against array entries.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-17

Binary Search: Analysis of Running Time (continued)

I Binary search in an array of size 1: 1 decision

I Binary search in an array of size n > 1: after 1 decision, either
we are done, or the problem is reduced to binary search in a
subarray with a worst-case size of bn/2c

I So the worst-case time to do binary search on an array of size
n is T (n), where T (n) satisfies the equation

T (n) =

{
1 if n = 1

1 + T
(⌊

n
2

⌋)
otherwise

I The solution to this equation is:

T (n) = blg nc+ 1

This can be proved by induction.

I So binary search does blg nc+ 1 3-way comparisons on an
array of size n, in the worst case.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-17

Binary Search: Analysis of Running Time (continued)

I Binary search in an array of size 1: 1 decision

I Binary search in an array of size n > 1: after 1 decision, either
we are done, or the problem is reduced to binary search in a
subarray with a worst-case size of bn/2c

I So the worst-case time to do binary search on an array of size
n is T (n), where T (n) satisfies the equation

T (n) =

{
1 if n = 1

1 + T
(⌊

n
2

⌋)
otherwise

I The solution to this equation is:

T (n) = blg nc+ 1

This can be proved by induction.

I So binary search does blg nc+ 1 3-way comparisons on an
array of size n, in the worst case.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-17

Binary Search: Analysis of Running Time (continued)

I Binary search in an array of size 1: 1 decision

I Binary search in an array of size n > 1: after 1 decision, either
we are done, or the problem is reduced to binary search in a
subarray with a worst-case size of bn/2c

I So the worst-case time to do binary search on an array of size
n is T (n), where T (n) satisfies the equation

T (n) =

{
1 if n = 1

1 + T
(⌊

n
2

⌋)
otherwise

I The solution to this equation is:

T (n) = blg nc+ 1

This can be proved by induction.

I So binary search does blg nc+ 1 3-way comparisons on an
array of size n, in the worst case.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-17

Binary Search: Analysis of Running Time (continued)

I Binary search in an array of size 1: 1 decision

I Binary search in an array of size n > 1: after 1 decision, either
we are done, or the problem is reduced to binary search in a
subarray with a worst-case size of bn/2c

I So the worst-case time to do binary search on an array of size
n is T (n), where T (n) satisfies the equation

T (n) =

{
1 if n = 1

1 + T
(⌊

n
2

⌋)
otherwise

I The solution to this equation is:

T (n) = blg nc+ 1

This can be proved by induction.

I So binary search does blg nc+ 1 3-way comparisons on an
array of size n, in the worst case.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-17

Binary Search: Analysis of Running Time (continued)

I Binary search in an array of size 1: 1 decision

I Binary search in an array of size n > 1: after 1 decision, either
we are done, or the problem is reduced to binary search in a
subarray with a worst-case size of bn/2c

I So the worst-case time to do binary search on an array of size
n is T (n), where T (n) satisfies the equation

T (n) =

{
1 if n = 1

1 + T
(⌊

n
2

⌋)
otherwise

I The solution to this equation is:

T (n) = blg nc+ 1

This can be proved by induction.

I So binary search does blg nc+ 1 3-way comparisons on an
array of size n, in the worst case.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-17

Binary Search: Analysis of Running Time (continued)

I Binary search in an array of size 1: 1 decision

I Binary search in an array of size n > 1: after 1 decision, either
we are done, or the problem is reduced to binary search in a
subarray with a worst-case size of bn/2c

I So the worst-case time to do binary search on an array of size
n is T (n), where T (n) satisfies the equation

T (n) =

{
1 if n = 1

1 + T
(⌊

n
2

⌋)
otherwise

I The solution to this equation is:

T (n) = blg nc+ 1

This can be proved by induction.

I So binary search does blg nc+ 1 3-way comparisons on an
array of size n, in the worst case.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-18

Optimality of binary search

I We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

I The lower bound we will establish is blg nc+ 1 3-way
comparisons.

I Since Binary Search performs within this bound, it is optimal.

I Our lower bound is established using a Decision Tree model.

I Note that the bound is exact (not just asymptotic)
I Our lower bound is on the worst case

I It says: for every algorithm for finding an item in an array of
size n, there is some input that forces it to perform blg nc+ 1
comparisons.

I It does not say: for every algorithm for finding an item in an
array of size n, every input forces it to perform blg nc+ 1
comparisons.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-18

Optimality of binary search

I We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

I The lower bound we will establish is blg nc+ 1 3-way
comparisons.

I Since Binary Search performs within this bound, it is optimal.

I Our lower bound is established using a Decision Tree model.

I Note that the bound is exact (not just asymptotic)
I Our lower bound is on the worst case

I It says: for every algorithm for finding an item in an array of
size n, there is some input that forces it to perform blg nc+ 1
comparisons.

I It does not say: for every algorithm for finding an item in an
array of size n, every input forces it to perform blg nc+ 1
comparisons.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-18

Optimality of binary search

I We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

I The lower bound we will establish is blg nc+ 1 3-way
comparisons.

I Since Binary Search performs within this bound, it is optimal.

I Our lower bound is established using a Decision Tree model.

I Note that the bound is exact (not just asymptotic)
I Our lower bound is on the worst case

I It says: for every algorithm for finding an item in an array of
size n, there is some input that forces it to perform blg nc+ 1
comparisons.

I It does not say: for every algorithm for finding an item in an
array of size n, every input forces it to perform blg nc+ 1
comparisons.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-18

Optimality of binary search

I We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

I The lower bound we will establish is blg nc+ 1 3-way
comparisons.

I Since Binary Search performs within this bound, it is optimal.

I Our lower bound is established using a Decision Tree model.

I Note that the bound is exact (not just asymptotic)
I Our lower bound is on the worst case

I It says: for every algorithm for finding an item in an array of
size n, there is some input that forces it to perform blg nc+ 1
comparisons.

I It does not say: for every algorithm for finding an item in an
array of size n, every input forces it to perform blg nc+ 1
comparisons.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-18

Optimality of binary search

I We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

I The lower bound we will establish is blg nc+ 1 3-way
comparisons.

I Since Binary Search performs within this bound, it is optimal.

I Our lower bound is established using a Decision Tree model.

I Note that the bound is exact (not just asymptotic)
I Our lower bound is on the worst case

I It says: for every algorithm for finding an item in an array of
size n, there is some input that forces it to perform blg nc+ 1
comparisons.

I It does not say: for every algorithm for finding an item in an
array of size n, every input forces it to perform blg nc+ 1
comparisons.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-18

Optimality of binary search

I We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

I The lower bound we will establish is blg nc+ 1 3-way
comparisons.

I Since Binary Search performs within this bound, it is optimal.

I Our lower bound is established using a Decision Tree model.

I Note that the bound is exact (not just asymptotic)

I Our lower bound is on the worst case
I It says: for every algorithm for finding an item in an array of

size n, there is some input that forces it to perform blg nc+ 1
comparisons.

I It does not say: for every algorithm for finding an item in an
array of size n, every input forces it to perform blg nc+ 1
comparisons.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-18

Optimality of binary search

I We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

I The lower bound we will establish is blg nc+ 1 3-way
comparisons.

I Since Binary Search performs within this bound, it is optimal.

I Our lower bound is established using a Decision Tree model.

I Note that the bound is exact (not just asymptotic)
I Our lower bound is on the worst case

I It says: for every algorithm for finding an item in an array of
size n, there is some input that forces it to perform blg nc+ 1
comparisons.

I It does not say: for every algorithm for finding an item in an
array of size n, every input forces it to perform blg nc+ 1
comparisons.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-18

Optimality of binary search

I We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

I The lower bound we will establish is blg nc+ 1 3-way
comparisons.

I Since Binary Search performs within this bound, it is optimal.

I Our lower bound is established using a Decision Tree model.

I Note that the bound is exact (not just asymptotic)
I Our lower bound is on the worst case

I It says: for every algorithm for finding an item in an array of
size n, there is some input that forces it to perform blg nc+ 1
comparisons.

I It does not say: for every algorithm for finding an item in an
array of size n, every input forces it to perform blg nc+ 1
comparisons.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-18

Optimality of binary search

I We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

I The lower bound we will establish is blg nc+ 1 3-way
comparisons.

I Since Binary Search performs within this bound, it is optimal.

I Our lower bound is established using a Decision Tree model.

I Note that the bound is exact (not just asymptotic)
I Our lower bound is on the worst case

I It says: for every algorithm for finding an item in an array of
size n, there is some input that forces it to perform blg nc+ 1
comparisons.

I It does not say: for every algorithm for finding an item in an
array of size n, every input forces it to perform blg nc+ 1
comparisons.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-19

The decision tree model for searching in an array

Consider any algorithm that searches for an item x in an array A of size n
by comparing entries in A against x . Any such algorithm can be modeled
as a decision tree:

I Each node is labeled with an integer ∈ {0 . . . n − 1}.
I A node labeled i represents a 3-way comparison between x and A[i ].

I The left subtree of a node labeled i describes the decision tree for
what happens if x < A[i ].

I The right subtree of a node labeled i describes the decision tree for
what happens if x > A[i ].

Example: Decision tree for binary search with n = 13:

1 3 5 8 10 12

0 4 7 11

2 9

6

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-19

The decision tree model for searching in an array
Consider any algorithm that searches for an item x in an array A of size n
by comparing entries in A against x . Any such algorithm can be modeled
as a decision tree:

I Each node is labeled with an integer ∈ {0 . . . n − 1}.
I A node labeled i represents a 3-way comparison between x and A[i ].

I The left subtree of a node labeled i describes the decision tree for
what happens if x < A[i ].

I The right subtree of a node labeled i describes the decision tree for
what happens if x > A[i ].

Example: Decision tree for binary search with n = 13:

1 3 5 8 10 12

0 4 7 11

2 9

6

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-19

The decision tree model for searching in an array
Consider any algorithm that searches for an item x in an array A of size n
by comparing entries in A against x . Any such algorithm can be modeled
as a decision tree:

I Each node is labeled with an integer ∈ {0 . . . n − 1}.

I A node labeled i represents a 3-way comparison between x and A[i ].

I The left subtree of a node labeled i describes the decision tree for
what happens if x < A[i ].

I The right subtree of a node labeled i describes the decision tree for
what happens if x > A[i ].

Example: Decision tree for binary search with n = 13:

1 3 5 8 10 12

0 4 7 11

2 9

6

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-19

The decision tree model for searching in an array
Consider any algorithm that searches for an item x in an array A of size n
by comparing entries in A against x . Any such algorithm can be modeled
as a decision tree:

I Each node is labeled with an integer ∈ {0 . . . n − 1}.
I A node labeled i represents a 3-way comparison between x and A[i ].

I The left subtree of a node labeled i describes the decision tree for
what happens if x < A[i ].

I The right subtree of a node labeled i describes the decision tree for
what happens if x > A[i ].

Example: Decision tree for binary search with n = 13:

1 3 5 8 10 12

0 4 7 11

2 9

6

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-19

The decision tree model for searching in an array
Consider any algorithm that searches for an item x in an array A of size n
by comparing entries in A against x . Any such algorithm can be modeled
as a decision tree:

I Each node is labeled with an integer ∈ {0 . . . n − 1}.
I A node labeled i represents a 3-way comparison between x and A[i ].

I The left subtree of a node labeled i describes the decision tree for
what happens if x < A[i ].

I The right subtree of a node labeled i describes the decision tree for
what happens if x > A[i ].

Example: Decision tree for binary search with n = 13:

1 3 5 8 10 12

0 4 7 11

2 9

6

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-19

The decision tree model for searching in an array
Consider any algorithm that searches for an item x in an array A of size n
by comparing entries in A against x . Any such algorithm can be modeled
as a decision tree:

I Each node is labeled with an integer ∈ {0 . . . n − 1}.
I A node labeled i represents a 3-way comparison between x and A[i ].

I The left subtree of a node labeled i describes the decision tree for
what happens if x < A[i ].

I The right subtree of a node labeled i describes the decision tree for
what happens if x > A[i ].

Example: Decision tree for binary search with n = 13:

1 3 5 8 10 12

0 4 7 11

2 9

6

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-20

Lower bound on locating an item in an array of size n

1. Any algorithm for searching an array of size n can be modeled by a
decision tree with at least n nodes.

2. Since the decision tree is a binary tree with n nodes,
the depth is at least blg nc.

3. The worst-case number of comparisons for the algorithm is the depth of
the decision tree +1. (Remember, root has depth 0).

Hence any algorithm for locating an item in an array of size n using only
comparisons must perform at least blg nc+ 1 comparisons in the worst case.

So binary search is optimal with respect to worst-case performance.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-20

Lower bound on locating an item in an array of size n

1. Any algorithm for searching an array of size n can be modeled by a
decision tree with at least n nodes.

2. Since the decision tree is a binary tree with n nodes,
the depth is at least blg nc.

3. The worst-case number of comparisons for the algorithm is the depth of
the decision tree +1. (Remember, root has depth 0).

Hence any algorithm for locating an item in an array of size n using only
comparisons must perform at least blg nc+ 1 comparisons in the worst case.

So binary search is optimal with respect to worst-case performance.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-20

Lower bound on locating an item in an array of size n

1. Any algorithm for searching an array of size n can be modeled by a
decision tree with at least n nodes.

2. Since the decision tree is a binary tree with n nodes,
the depth is at least blg nc.

3. The worst-case number of comparisons for the algorithm is the depth of
the decision tree +1. (Remember, root has depth 0).

Hence any algorithm for locating an item in an array of size n using only
comparisons must perform at least blg nc+ 1 comparisons in the worst case.

So binary search is optimal with respect to worst-case performance.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-20

Lower bound on locating an item in an array of size n

1. Any algorithm for searching an array of size n can be modeled by a
decision tree with at least n nodes.

2. Since the decision tree is a binary tree with n nodes,
the depth is at least blg nc.

3. The worst-case number of comparisons for the algorithm is the depth of
the decision tree +1. (Remember, root has depth 0).

Hence any algorithm for locating an item in an array of size n using only
comparisons must perform at least blg nc+ 1 comparisons in the worst case.

So binary search is optimal with respect to worst-case performance.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-20

Lower bound on locating an item in an array of size n

1. Any algorithm for searching an array of size n can be modeled by a
decision tree with at least n nodes.

2. Since the decision tree is a binary tree with n nodes,
the depth is at least blg nc.

3. The worst-case number of comparisons for the algorithm is the depth of
the decision tree +1. (Remember, root has depth 0).

Hence any algorithm for locating an item in an array of size n using only
comparisons must perform at least blg nc+ 1 comparisons in the worst case.

So binary search is optimal with respect to worst-case performance.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-20

Lower bound on locating an item in an array of size n

1. Any algorithm for searching an array of size n can be modeled by a
decision tree with at least n nodes.

2. Since the decision tree is a binary tree with n nodes,
the depth is at least blg nc.

3. The worst-case number of comparisons for the algorithm is the depth of
the decision tree +1. (Remember, root has depth 0).

Hence any algorithm for locating an item in an array of size n using only
comparisons must perform at least blg nc+ 1 comparisons in the worst case.

So binary search is optimal with respect to worst-case performance.
CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-21

Sorting

I Rearranging a list of items in nondescending order.

I Useful preprocessing step (e.g., for binary search)

I Important step in other algorithms

I Illustrates more general algorithmic techniques

We will discuss

I Comparison-based sorting algorithms (Insertion sort, Selection
Sort, Quicksort, Mergesort, Heapsort)

I Bucket-based sorting methods

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-21

Sorting

I Rearranging a list of items in nondescending order.

I Useful preprocessing step (e.g., for binary search)

I Important step in other algorithms

I Illustrates more general algorithmic techniques

We will discuss

I Comparison-based sorting algorithms (Insertion sort, Selection
Sort, Quicksort, Mergesort, Heapsort)

I Bucket-based sorting methods

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-21

Sorting

I Rearranging a list of items in nondescending order.

I Useful preprocessing step (e.g., for binary search)

I Important step in other algorithms

I Illustrates more general algorithmic techniques

We will discuss

I Comparison-based sorting algorithms (Insertion sort, Selection
Sort, Quicksort, Mergesort, Heapsort)

I Bucket-based sorting methods

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-21

Sorting

I Rearranging a list of items in nondescending order.

I Useful preprocessing step (e.g., for binary search)

I Important step in other algorithms

I Illustrates more general algorithmic techniques

We will discuss

I Comparison-based sorting algorithms (Insertion sort, Selection
Sort, Quicksort, Mergesort, Heapsort)

I Bucket-based sorting methods

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-21

Sorting

I Rearranging a list of items in nondescending order.

I Useful preprocessing step (e.g., for binary search)

I Important step in other algorithms

I Illustrates more general algorithmic techniques

We will discuss

I Comparison-based sorting algorithms (Insertion sort, Selection
Sort, Quicksort, Mergesort, Heapsort)

I Bucket-based sorting methods

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-21

Sorting

I Rearranging a list of items in nondescending order.

I Useful preprocessing step (e.g., for binary search)

I Important step in other algorithms

I Illustrates more general algorithmic techniques

We will discuss

I Comparison-based sorting algorithms (Insertion sort, Selection
Sort, Quicksort, Mergesort, Heapsort)

I Bucket-based sorting methods

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-21

Sorting

I Rearranging a list of items in nondescending order.

I Useful preprocessing step (e.g., for binary search)

I Important step in other algorithms

I Illustrates more general algorithmic techniques

We will discuss

I Comparison-based sorting algorithms (Insertion sort, Selection
Sort, Quicksort, Mergesort, Heapsort)

I Bucket-based sorting methods

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-21

Sorting

I Rearranging a list of items in nondescending order.

I Useful preprocessing step (e.g., for binary search)

I Important step in other algorithms

I Illustrates more general algorithmic techniques

We will discuss

I Comparison-based sorting algorithms (Insertion sort, Selection
Sort, Quicksort, Mergesort, Heapsort)

I Bucket-based sorting methods

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-21

Sorting

I Rearranging a list of items in nondescending order.

I Useful preprocessing step (e.g., for binary search)

I Important step in other algorithms

I Illustrates more general algorithmic techniques

We will discuss in the class
I Comparison-based sorting algorithms (Insertion sort, Selection

Sort, Quicksort, Mergesort, Heapsort)

I Bucket-based sorting methods

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-22

Comparison-based sorting

I Basic operation: compare two items.

I Abstract model.

I Advantage: doesn’t use specific properties of the data items.
So same algorithm can be used for sorting integers, strings,
etc.

I Disadvantage: under certain circumstances, specific properties
of the data item can speed up the sorting process.

I Measure of time: number of comparisons
I Consistent with philosophy of counting basic operations,

discussed earlier.
I Misleading if other operations dominate (e.g., if we sort by

moving items around without comparing them)

I Comparison-based sorting has lower bound of Ω(n log n)
comparisons. (We will prove this.)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-22

Comparison-based sorting

I Basic operation: compare two items.

I Abstract model.

I Advantage: doesn’t use specific properties of the data items.
So same algorithm can be used for sorting integers, strings,
etc.

I Disadvantage: under certain circumstances, specific properties
of the data item can speed up the sorting process.

I Measure of time: number of comparisons
I Consistent with philosophy of counting basic operations,

discussed earlier.
I Misleading if other operations dominate (e.g., if we sort by

moving items around without comparing them)

I Comparison-based sorting has lower bound of Ω(n log n)
comparisons. (We will prove this.)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-22

Comparison-based sorting

I Basic operation: compare two items.

I Abstract model.

I Advantage: doesn’t use specific properties of the data items.
So same algorithm can be used for sorting integers, strings,

etc.

I Disadvantage: under certain circumstances, specific properties
of the data item can speed up the sorting process.

I Measure of time: number of comparisons
I Consistent with philosophy of counting basic operations,

discussed earlier.
I Misleading if other operations dominate (e.g., if we sort by

moving items around without comparing them)

I Comparison-based sorting has lower bound of Ω(n log n)
comparisons. (We will prove this.)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-22

Comparison-based sorting

I Basic operation: compare two items.

I Abstract model.

I Advantage: doesn’t use specific properties of the data items.
So same algorithm can be used for sorting integers, strings,
etc.

I Disadvantage: under certain circumstances, specific properties
of the data item can speed up the sorting process.

I Measure of time: number of comparisons
I Consistent with philosophy of counting basic operations,

discussed earlier.
I Misleading if other operations dominate (e.g., if we sort by

moving items around without comparing them)

I Comparison-based sorting has lower bound of Ω(n log n)
comparisons. (We will prove this.)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-22

Comparison-based sorting

I Basic operation: compare two items.

I Abstract model.

I Advantage: doesn’t use specific properties of the data items.
So same algorithm can be used for sorting integers, strings,
etc.

I Disadvantage: under certain circumstances, specific properties
of the data item can speed up the sorting process.

I Measure of time: number of comparisons

I Consistent with philosophy of counting basic operations,
discussed earlier.

I Misleading if other operations dominate (e.g., if we sort by
moving items around without comparing them)

I Comparison-based sorting has lower bound of Ω(n log n)
comparisons. (We will prove this.)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-22

Comparison-based sorting

I Basic operation: compare two items.

I Abstract model.

I Advantage: doesn’t use specific properties of the data items.
So same algorithm can be used for sorting integers, strings,
etc.

I Disadvantage: under certain circumstances, specific properties
of the data item can speed up the sorting process.

I Measure of time: number of comparisons
I Consistent with philosophy of counting basic operations,

discussed earlier.

I Misleading if other operations dominate (e.g., if we sort by
moving items around without comparing them)

I Comparison-based sorting has lower bound of Ω(n log n)
comparisons. (We will prove this.)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-22

Comparison-based sorting

I Basic operation: compare two items.

I Abstract model.

I Advantage: doesn’t use specific properties of the data items.
So same algorithm can be used for sorting integers, strings,
etc.

I Disadvantage: under certain circumstances, specific properties
of the data item can speed up the sorting process.

I Measure of time: number of comparisons
I Consistent with philosophy of counting basic operations,

discussed earlier.
I Misleading if other operations dominate (e.g., if we sort by

moving items around without comparing them)

I Comparison-based sorting has lower bound of Ω(n log n)
comparisons. (We will prove this.)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-22

Comparison-based sorting

I Basic operation: compare two items.

I Abstract model.

I Advantage: doesn’t use specific properties of the data items.
So same algorithm can be used for sorting integers, strings,
etc.

I Disadvantage: under certain circumstances, specific properties
of the data item can speed up the sorting process.

I Measure of time: number of comparisons
I Consistent with philosophy of counting basic operations,

discussed earlier.
I Misleading if other operations dominate (e.g., if we sort by

moving items around without comparing them)

I Comparison-based sorting has lower bound of Ω(n log n)
comparisons. (We will prove this.)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-23

Θ(n log n) work vs. quadratic (Θ(n2)) work

n

y

100000

200000

300000

400000

500000

600000

700000

200 400 600 800 1000

y =
(
n
2

)

y = 10n lgn

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-24

Some terminology

I A permutation of a sequence of items is a reordering of the
sequence. A sequence of n items has n! distinct permutations.

I Note: Sorting is the problem of finding a particular
distinguished permutation of a list.

I An inversion in a sequence or list is a pair of items such that
the larger one precedes the smaller one.

Example: The list

18 29 12 15 32 10

has 9 inversions:

{(18,12), (18,15), (18,10), (29,12), (29,15),

(29,10), (12,10), (15,10), (32,10)}

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-24

Some terminology

I A permutation of a sequence of items is a reordering of the
sequence. A sequence of n items has n! distinct permutations.

I Note: Sorting is the problem of finding a particular
distinguished permutation of a list.

I An inversion in a sequence or list is a pair of items such that
the larger one precedes the smaller one.

Example: The list

18 29 12 15 32 10

has 9 inversions:

{(18,12), (18,15), (18,10), (29,12), (29,15),

(29,10), (12,10), (15,10), (32,10)}

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-24

Some terminology

I A permutation of a sequence of items is a reordering of the
sequence. A sequence of n items has n! distinct permutations.

I Note: Sorting is the problem of finding a particular
distinguished permutation of a list.

I An inversion in a sequence or list is a pair of items such that
the larger one precedes the smaller one.

Example: The list

18 29 12 15 32 10

has 9 inversions:

{(18,12), (18,15), (18,10), (29,12), (29,15),

(29,10), (12,10), (15,10), (32,10)}

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-24

Some terminology

I A permutation of a sequence of items is a reordering of the
sequence. A sequence of n items has n! distinct permutations.

I Note: Sorting is the problem of finding a particular
distinguished permutation of a list.

I An inversion in a sequence or list is a pair of items such that
the larger one precedes the smaller one.

Example: The list

18 29 12 15 32 10

has 9 inversions:

{(18,12), (18,15), (18,10), (29,12), (29,15),

(29,10), (12,10), (15,10), (32,10)}

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-24

Some terminology

I A permutation of a sequence of items is a reordering of the
sequence. A sequence of n items has n! distinct permutations.

I Note: Sorting is the problem of finding a particular
distinguished permutation of a list.

I An inversion in a sequence or list is a pair of items such that
the larger one precedes the smaller one.

Example: The list

18 29 12 15 32 10

has 9 inversions:

{(18,12), (18,15), (18,10), (29,12), (29,15),

(29,10), (12,10), (15,10), (32,10)}

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-25

Insertion sort

I Work from left to right across array

I Insert each item in correct position with respect to (sorted)
elements to its left

(Sorted) x

k

(Unsorted)

0

(Unsorted)

(Sorted)

n − 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-25

Insertion sort

I Work from left to right across array

I Insert each item in correct position with respect to (sorted)
elements to its left

(Sorted) x

k

(Unsorted)

0

(Unsorted)

(Sorted)

n − 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-25

Insertion sort

I Work from left to right across array

I Insert each item in correct position with respect to (sorted)
elements to its left

(Sorted) x

k

(Unsorted)

0

(Unsorted)

(Sorted)

n − 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-25

Insertion sort

I Work from left to right across array

I Insert each item in correct position with respect to (sorted)
elements to its left

(Sorted) x

k

(Unsorted)

0

(Unsorted)

(Sorted)

n − 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-26

Insertion sort pseudocode

≤ x > x · · · > x x

k

def insertionSort(n, A):

for k = 1 to n-1:

x = A[k]

j = k-1

while (j >= 0) and (A[j] > x):

A[j+1] = A[j]

j = j-1

A[j+1] = x

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-27

Insertion sort example

23 19 42 17 85 38

23 19 42 17 85 38

19 23 42 17 85 38

19 23 42 17 85 38

17 19 23 42 85 38

17 19 23 42 85 38

17 19 23 38 42 85

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-28

Analysis of Insertion Sort
I Worst-case running time:

I On kth iteration of outer loop, element A[k] is compared with
at most k elements:

A[k − 1], A[k − 2], . . . , A[0].
I Total number comparisons over all iterations is at most:

n−1∑

k=1

k =
n(n − 1)

2
= O(n2).

I Insertion Sort is a bad choice when n is large. (O(n2)
vs. O(n log n) ).

I Insertion Sort is a good choice when n is small. (Constant
hidden in the ”big oh” is small).

I Insertion Sort is efficient if the input is “almost sorted”:

Time ≤ n − 1 + (# inversions)

I Storage: in place: O(1) extra storage

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-28

Analysis of Insertion Sort
I Worst-case running time:

I On kth iteration of outer loop, element A[k] is compared with
at most k elements:

A[k − 1], A[k − 2], . . . , A[0].

I Total number comparisons over all iterations is at most:

n−1∑

k=1

k =
n(n − 1)

2
= O(n2).

I Insertion Sort is a bad choice when n is large. (O(n2)
vs. O(n log n) ).

I Insertion Sort is a good choice when n is small. (Constant
hidden in the ”big oh” is small).

I Insertion Sort is efficient if the input is “almost sorted”:

Time ≤ n − 1 + (# inversions)

I Storage: in place: O(1) extra storage

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-28

Analysis of Insertion Sort
I Worst-case running time:

I On kth iteration of outer loop, element A[k] is compared with
at most k elements:

A[k − 1], A[k − 2], . . . , A[0].
I Total number comparisons over all iterations is at most:

n−1∑

k=1

k =
n(n − 1)

2
= O(n2).

I Insertion Sort is a bad choice when n is large. (O(n2)
vs. O(n log n) ).

I Insertion Sort is a good choice when n is small. (Constant
hidden in the ”big oh” is small).

I Insertion Sort is efficient if the input is “almost sorted”:

Time ≤ n − 1 + (# inversions)

I Storage: in place: O(1) extra storage

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-28

Analysis of Insertion Sort
I Worst-case running time:

I On kth iteration of outer loop, element A[k] is compared with
at most k elements:

A[k − 1], A[k − 2], . . . , A[0].
I Total number comparisons over all iterations is at most:

n−1∑

k=1

k =
n(n − 1)

2
= O(n2).

I Insertion Sort is a bad choice when n is large. (O(n2)
vs. O(n log n) ).

I Insertion Sort is a good choice when n is small. (Constant
hidden in the ”big oh” is small).

I Insertion Sort is efficient if the input is “almost sorted”:

Time ≤ n − 1 + (# inversions)

I Storage: in place: O(1) extra storage

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-28

Analysis of Insertion Sort
I Worst-case running time:

I On kth iteration of outer loop, element A[k] is compared with
at most k elements:

A[k − 1], A[k − 2], . . . , A[0].
I Total number comparisons over all iterations is at most:

n−1∑

k=1

k =
n(n − 1)

2
= O(n2).

I Insertion Sort is a bad choice when n is large. (O(n2)
vs. O(n log n) ).

I Insertion Sort is a good choice when n is small. (Constant
hidden in the ”big oh” is small).

I Insertion Sort is efficient if the input is “almost sorted”:

Time ≤ n − 1 + (# inversions)

I Storage: in place: O(1) extra storage

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-28

Analysis of Insertion Sort
I Worst-case running time:

I On kth iteration of outer loop, element A[k] is compared with
at most k elements:

A[k − 1], A[k − 2], . . . , A[0].
I Total number comparisons over all iterations is at most:

n−1∑

k=1

k =
n(n − 1)

2
= O(n2).

I Insertion Sort is a bad choice when n is large. (O(n2)
vs. O(n log n) ).

I Insertion Sort is a good choice when n is small. (Constant
hidden in the ”big oh” is small).

I Insertion Sort is efficient if the input is “almost sorted”:

Time ≤ n − 1 + (# inversions)

I Storage: in place: O(1) extra storage

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-28

Analysis of Insertion Sort
I Worst-case running time:

I On kth iteration of outer loop, element A[k] is compared with
at most k elements:

A[k − 1], A[k − 2], . . . , A[0].
I Total number comparisons over all iterations is at most:

n−1∑

k=1

k =
n(n − 1)

2
= O(n2).

I Insertion Sort is a bad choice when n is large. (O(n2)
vs. O(n log n) ).

I Insertion Sort is a good choice when n is small. (Constant
hidden in the ”big oh” is small).

I Insertion Sort is efficient if the input is “almost sorted”:

Time ≤ n − 1 + (# inversions)

I Storage: in place: O(1) extra storage

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-29

Selection Sort

I Two variants:
1. Repeatedly (for i from 0 to n − 1) find the minimum value,

output it, delete it.
I Values are output in sorted order

2. Repeatedly (for i from n − 1 down to 1)
I Find the maximum of A[0],A[1],. . . ,A[i ].
I Swap this value with A[i ] (no-op if it is already A[i ]).

I Both variants run in O(n2) time if we use the straightforward
approach to finding the maximum/minimum.

I They can be improved by treating the items A[0],A[1],. . . ,A[i ]
as items in an appropriately designed priority queue. (Next set
of notes)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-29

Selection Sort

I Two variants:

1. Repeatedly (for i from 0 to n − 1) find the minimum value,
output it, delete it.

I Values are output in sorted order

2. Repeatedly (for i from n − 1 down to 1)
I Find the maximum of A[0],A[1],. . . ,A[i ].
I Swap this value with A[i ] (no-op if it is already A[i ]).

I Both variants run in O(n2) time if we use the straightforward
approach to finding the maximum/minimum.

I They can be improved by treating the items A[0],A[1],. . . ,A[i ]
as items in an appropriately designed priority queue. (Next set
of notes)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-29

Selection Sort

I Two variants:
1. Repeatedly (for i from 0 to n − 1) find the minimum value,

output it, delete it.
I Values are output in sorted order

2. Repeatedly (for i from n − 1 down to 1)
I Find the maximum of A[0],A[1],. . . ,A[i ].
I Swap this value with A[i ] (no-op if it is already A[i ]).

I Both variants run in O(n2) time if we use the straightforward
approach to finding the maximum/minimum.

I They can be improved by treating the items A[0],A[1],. . . ,A[i ]
as items in an appropriately designed priority queue. (Next set
of notes)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-29

Selection Sort

I Two variants:
1. Repeatedly (for i from 0 to n − 1) find the minimum value,

output it, delete it.
I Values are output in sorted order

2. Repeatedly (for i from n − 1 down to 1)

I Find the maximum of A[0],A[1],. . . ,A[i ].
I Swap this value with A[i ] (no-op if it is already A[i ]).

I Both variants run in O(n2) time if we use the straightforward
approach to finding the maximum/minimum.

I They can be improved by treating the items A[0],A[1],. . . ,A[i ]
as items in an appropriately designed priority queue. (Next set
of notes)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-29

Selection Sort

I Two variants:
1. Repeatedly (for i from 0 to n − 1) find the minimum value,

output it, delete it.
I Values are output in sorted order

2. Repeatedly (for i from n − 1 down to 1)
I Find the maximum of A[0],A[1],. . . ,A[i ].

I Swap this value with A[i ] (no-op if it is already A[i ]).

I Both variants run in O(n2) time if we use the straightforward
approach to finding the maximum/minimum.

I They can be improved by treating the items A[0],A[1],. . . ,A[i ]
as items in an appropriately designed priority queue. (Next set
of notes)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-29

Selection Sort

I Two variants:
1. Repeatedly (for i from 0 to n − 1) find the minimum value,

output it, delete it.
I Values are output in sorted order

2. Repeatedly (for i from n − 1 down to 1)
I Find the maximum of A[0],A[1],. . . ,A[i ].
I Swap this value with A[i ] (no-op if it is already A[i ]).

I Both variants run in O(n2) time if we use the straightforward
approach to finding the maximum/minimum.

I They can be improved by treating the items A[0],A[1],. . . ,A[i ]
as items in an appropriately designed priority queue. (Next set
of notes)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-29

Selection Sort

I Two variants:
1. Repeatedly (for i from 0 to n − 1) find the minimum value,

output it, delete it.
I Values are output in sorted order

2. Repeatedly (for i from n − 1 down to 1)
I Find the maximum of A[0],A[1],. . . ,A[i ].
I Swap this value with A[i ] (no-op if it is already A[i ]).

I Both variants run in O(n2) time if we use the straightforward
approach to finding the maximum/minimum.

I They can be improved by treating the items A[0],A[1],. . . ,A[i ]
as items in an appropriately designed priority queue. (Next set
of notes)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-29

Selection Sort

I Two variants:
1. Repeatedly (for i from 0 to n − 1) find the minimum value,

output it, delete it.
I Values are output in sorted order

2. Repeatedly (for i from n − 1 down to 1)
I Find the maximum of A[0],A[1],. . . ,A[i ].
I Swap this value with A[i ] (no-op if it is already A[i ]).

I Both variants run in O(n2) time if we use the straightforward
approach to finding the maximum/minimum.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine




