C.:. .:;
o
Lecture 3
Recap of basic data
structures, binary search,

insertion/selection sort

CS 161 Design and Analysis of Algorithms

loannis Panageas

2-1

Outline of these notes

> Review of basic data structures

» Searching in a sorted array/binary search: the algorithm,
analysis, proof of optimality

» Sorting, part 1: insertion sort, selection sort

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-2

Basic Data structures

Prerequisite material. Review [GT Chapters 2—4, 6] as necessary)
> Arrays, dynamic arrays
> Linked lists
» Stacks, queues
> Dictionaries, hash tables

> Binary trees

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-3

Arrays, Dynamic arrays, Linked lists

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-3

Arrays, Dynamic arrays, Linked lists

> Arrays:

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-3

Arrays, Dynamic arrays, Linked lists

> Arrays:
» Numbered collection of cells or entries

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-3

Arrays, Dynamic arrays, Linked lists

> Arrays:
» Numbered collection of cells or entries
» Numbering usually starts at 0

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-3

Arrays, Dynamic arrays, Linked lists

> Arrays:
» Numbered collection of cells or entries

» Numbering usually starts at 0
> Fixed number of entries

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-3

Arrays, Dynamic arrays, Linked lists

> Arrays:
» Numbered collection of cells or entries

» Numbering usually starts at 0
> Fixed number of entries

» Each cell has an index which uniquely identifies it.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-3

Arrays, Dynamic arrays, Linked lists

> Arrays:
» Numbered collection of cells or entries
» Numbering usually starts at 0
> Fixed number of entries
» Each cell has an index which uniquely identifies it.
» Accessing or modifying the contents of a cell given its index:

O(1) time.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-3

Arrays, Dynamic arrays, Linked lists

> Arrays:
» Numbered collection of cells or entries
» Numbering usually starts at 0
> Fixed number of entries
» Each cell has an index which uniquely identifies it.
» Accessing or modifying the contents of a cell given its index:
O(1) time.
» Inserting or deleting an item in the middle of an array is slow.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-3

Arrays, Dynamic arrays, Linked lists

> Arrays:
» Numbered collection of cells or entries

» Numbering usually starts at 0
> Fixed number of entries

» Each cell has an index which uniquely identifies it.
» Accessing or modifying the contents of a cell given its index:
O(1) time.
» Inserting or deleting an item in the middle of an array is slow.
» Dynamic arrays:

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-3

Arrays, Dynamic arrays, Linked lists

> Arrays:
» Numbered collection of cells or entries

» Numbering usually starts at 0
> Fixed number of entries

» Each cell has an index which uniquely identifies it.
» Accessing or modifying the contents of a cell given its index:
O(1) time.
» Inserting or deleting an item in the middle of an array is slow.
» Dynamic arrays:
» Similar to arrays, but size can be increased or decreased

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-3

Arrays, Dynamic arrays, Linked lists

> Arrays:
» Numbered collection of cells or entries

» Numbering usually starts at 0
> Fixed number of entries

» Each cell has an index which uniquely identifies it.
» Accessing or modifying the contents of a cell given its index:
O(1) time.
» Inserting or deleting an item in the middle of an array is slow.
» Dynamic arrays:
» Similar to arrays, but size can be increased or decreased
» ArrayList in Java, list in Python

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-3

Arrays, Dynamic arrays, Linked lists

> Arrays:
» Numbered collection of cells or entries

» Numbering usually starts at 0
> Fixed number of entries

» Each cell has an index which uniquely identifies it.
» Accessing or modifying the contents of a cell given its index:
O(1) time.

» Inserting or deleting an item in the middle of an array is slow.
» Dynamic arrays:

» Similar to arrays, but size can be increased or decreased

» ArrayList in Java, list in Python
> Linked lists:

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-3

Arrays, Dynamic arrays, Linked lists

> Arrays:
» Numbered collection of cells or entries

» Numbering usually starts at 0
> Fixed number of entries

» Each cell has an index which uniquely identifies it.
» Accessing or modifying the contents of a cell given its index:
O(1) time.

» Inserting or deleting an item in the middle of an array is slow.
» Dynamic arrays:

» Similar to arrays, but size can be increased or decreased

» ArrayList in Java, list in Python
> Linked lists:

» Collection of nodes that form a linear ordering.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-3

Arrays, Dynamic arrays, Linked lists

> Arrays:
» Numbered collection of cells or entries
» Numbering usually starts at 0
> Fixed number of entries
» Each cell has an index which uniquely identifies it.
» Accessing or modifying the contents of a cell given its index:
O(1) time.
» Inserting or deleting an item in the middle of an array is slow.
» Dynamic arrays:
» Similar to arrays, but size can be increased or decreased
» ArrayList in Java, list in Python
> Linked lists:
» Collection of nodes that form a linear ordering.
> The list has a first node and a last node

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-3

Arrays, Dynamic arrays, Linked lists

> Arrays:
» Numbered collection of cells or entries
» Numbering usually starts at 0
> Fixed number of entries
» Each cell has an index which uniquely identifies it.
» Accessing or modifying the contents of a cell given its index:
O(1) time.
» Inserting or deleting an item in the middle of an array is slow.
» Dynamic arrays:
» Similar to arrays, but size can be increased or decreased
» ArrayList in Java, list in Python
> Linked lists:
» Collection of nodes that form a linear ordering.
> The list has a first node and a last node
» Each node has a next node and a previous node (possibly null)

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-3

Arrays, Dynamic arrays, Linked lists

> Arrays:
» Numbered collection of cells or entries
» Numbering usually starts at 0
> Fixed number of entries
» Each cell has an index which uniquely identifies it.
» Accessing or modifying the contents of a cell given its index:
O(1) time.
» Inserting or deleting an item in the middle of an array is slow.
» Dynamic arrays:
» Similar to arrays, but size can be increased or decreased
» ArrayList in Java, list in Python
> Linked lists:
» Collection of nodes that form a linear ordering.
> The list has a first node and a last node
» Each node has a next node and a previous node (possibly null)
» Inserting or deleting an item in the middle of linked list is fast.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Arrays, Dynamic arrays, Linked lists

> Arrays:
» Numbered collection of cells or entries
» Numbering usually starts at 0
> Fixed number of entries
» Each cell has an index which uniquely identifies it.
» Accessing or modifying the contents of a cell given its index:
O(1) time.
» Inserting or deleting an item in the middle of an array is slow.
» Dynamic arrays:
» Similar to arrays, but size can be increased or decreased
» ArrayList in Java, list in Python
> Linked lists:
» Collection of nodes that form a linear ordering.
> The list has a first node and a last node
» Each node has a next node and a previous node (possibly null)
» Inserting or deleting an item in the middle of linked list is fast.
» Accessing a cell given its index (i.e., finding the kth item in the
list) is slow.

2-3

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-4

Stacks and Queues

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-4

Stacks and Queues

» Stacks:

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-4

Stacks and Queues

» Stacks:

» Container of objects that are inserted and removed according
to Last-In First-Out (LIFO) principle:

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-4

Stacks and Queues

» Stacks:

» Container of objects that are inserted and removed according
to Last-In First-Out (LIFO) principle:

> Only the most-recently inserted object can be removed.

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-4

Stacks and Queues

» Stacks:

» Container of objects that are inserted and removed according
to Last-In First-Out (LIFO) principle:

> Only the most-recently inserted object can be removed.

> Insert and remove are usually called push and pop

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-4

Stacks and Queues

» Stacks:

» Container of objects that are inserted and removed according
to Last-In First-Out (LIFO) principle:

> Only the most-recently inserted object can be removed.

> Insert and remove are usually called push and pop

» Queues (often called FIFO Queues)

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-4

Stacks and Queues

» Stacks:

» Container of objects that are inserted and removed according
to Last-In First-Out (LIFO) principle:

> Only the most-recently inserted object can be removed.
> Insert and remove are usually called push and pop
» Queues (often called FIFO Queues)

» Container of objects that are inserted and removed according
to First-In First-Out (FIFO) principle:

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-4

Stacks and Queues

» Stacks:

» Container of objects that are inserted and removed according
to Last-In First-Out (LIFO) principle:

> Only the most-recently inserted object can be removed.
> Insert and remove are usually called push and pop
» Queues (often called FIFO Queues)

» Container of objects that are inserted and removed according
to First-In First-Out (FIFO) principle:

> Only the element that has been in the queue the longes can
be removed.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-4

Stacks and Queues

» Stacks:

» Container of objects that are inserted and removed according
to Last-In First-Out (LIFO) principle:

> Only the most-recently inserted object can be removed.
> Insert and remove are usually called push and pop
» Queues (often called FIFO Queues)

» Container of objects that are inserted and removed according
to First-In First-Out (FIFO) principle:

> Only the element that has been in the queue the longes can
be removed.

> Insert and remove are usually called enqueue and dequeue

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Stacks and Queues

» Stacks:

» Container of objects that are inserted and removed according
to Last-In First-Out (LIFO) principle:

> Only the most-recently inserted object can be removed.

> Insert and remove are usually called push and pop

» Queues (often called FIFO Queues)

» Container of objects that are inserted and removed according

to First-In First-Out (FIFO) principle:
> Only the element that has been in the queue the longes can
be removed.

> Insert and remove are usually called enqueue and dequeue

» Elements are inserted at the rear of the queue and are removed
from the front

2-4

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-5

Dictionaries/Maps

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Dictionaries/Maps

» Dictionaries

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-5

Dictionaries/Maps

» Dictionaries

» A Dictionary (or Map) stores <key,value> pairs, which are
often referred to as items

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-5

Dictionaries/Maps

» Dictionaries

» A Dictionary (or Map) stores <key,value> pairs, which are
often referred to as items
» There can be at most item with a given key.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-5

Dictionaries/Maps

» Dictionaries
» A Dictionary (or Map) stores <key,value> pairs, which are
often referred to as items

» There can be at most item with a given key.
» Examples:

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-5

Dictionaries/Maps

» Dictionaries
» A Dictionary (or Map) stores <key,value> pairs, which are
often referred to as items

» There can be at most item with a given key.
» Examples:

1. <Student ID, Student data>

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-5

Dictionaries/Maps

» Dictionaries

» A Dictionary (or Map) stores <key,value> pairs, which are
often referred to as items
» There can be at most item with a given key.
» Examples:
1. <Student ID, Student data>
2. <0Object ID, Object data>

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-6

Hashing

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-6

Hashing

An efficient method for implementing a dictionary.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-6

Hashing

An efficient method for implementing a dictionary. Uses

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-6

Hashing
An efficient method for implementing a dictionary. Uses

> A hash table, an array of size N.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-6

Hashing
An efficient method for implementing a dictionary. Uses
> A hash table, an array of size N.

» A hash function, which maps any key from the set of possible
keys to an integer in the range [0, N — 1]

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-6
Hashing
An efficient method for implementing a dictionary. Uses
> A hash table, an array of size N.
» A hash function, which maps any key from the set of possible
keys to an integer in the range [0, N — 1]

» A collision strategy, which determines what to do when two

keys are mapped to the same table location by the hash
function.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-6
Hashing
An efficient method for implementing a dictionary. Uses
» A hash table, an array of size .
» A hash function, which maps any key from the set of possible
keys to an integer in the range [0, N — 1]

» A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-6
Hashing
An efficient method for implementing a dictionary. Uses
» A hash table, an array of size .
» A hash function, which maps any key from the set of possible
keys to an integer in the range [0, N — 1]

» A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

» Chaining

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-6
Hashing
An efficient method for implementing a dictionary. Uses
» A hash table, an array of size .
» A hash function, which maps any key from the set of possible
keys to an integer in the range [0, N — 1]
» A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:
» Chaining

» Open addressing: linear probing, quadratic probing, double
hashing

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-6
Hashing
An efficient method for implementing a dictionary. Uses
» A hash table, an array of size .

» A hash function, which maps any key from the set of possible
keys to an integer in the range [0, N — 1]

» A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

» Chaining

» Open addressing: linear probing, quadratic probing, double
hashing

» Cuckoo hashing

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-6
Hashing
An efficient method for implementing a dictionary. Uses
» A hash table, an array of size .
» A hash function, which maps any key from the set of possible
keys to an integer in the range [0, N — 1]

» A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

» Chaining

» Open addressing: linear probing, quadratic probing, double
hashing

» Cuckoo hashing

Hashing is fast:

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Hashing
An efficient method for implementing a dictionary. Uses
» A hash table, an array of size .
» A hash function, which maps any key from the set of possible
keys to an integer in the range [0, N — 1]

» A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

» Chaining

» Open addressing: linear probing, quadratic probing, double
hashing

» Cuckoo hashing

Hashing is fast:

» O(1) expected time for access, insertion

2-6

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Hashing
An efficient method for implementing a dictionary. Uses
» A hash table, an array of size .
» A hash function, which maps any key from the set of possible
keys to an integer in the range [0, N — 1]

» A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

» Chaining

» Open addressing: linear probing, quadratic probing, double
hashing

» Cuckoo hashing
Hashing is fast:
» O(1) expected time for access, insertion

» Cuckoo hashing improves the access time to O(1) worst-case
time. Insertion time remains O(1) expected time.

2-6

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Hashing
An efficient method for implementing a dictionary. Uses
» A hash table, an array of size N.
» A hash function, which maps any key from the set of possible
keys to an integer in the range [0, N — 1]

» A collision strategy, which determines what to do when two
keys are mapped to the same table location by the hash
function.Commonly used collision strategies are:

» Chaining

» Open addressing: linear probing, quadratic probing, double
hashing

» Cuckoo hashing

Hashing is fast:
» O(1) expected time for access, insertion

» Cuckoo hashing improves the access time to O(1) worst-case
time. Insertion time remains O(1) expected time.

2-6

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-8

Binary Trees: a quick review

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-8

Binary Trees: a quick review

We will use as a data structure and as a tool for analyzing
algorithms.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-8

Binary Trees: a quick review

We will use as a data structure and as a tool for analyzing
algorithms.

Level 0 (root)
Level 1
Level 2

Level 3

The depth of a binary tree is the maximum of the levels of all its
leaves.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-9

Traversing binary trees

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-9

Traversing binary trees

» Preorder: root, left subtree (in preorder), right subtree (in
preorder): ABDGHCEF

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-9

Traversing binary trees

» Preorder: root, left subtree (in preorder), right subtree (in
preorder): ABDGHCEF

» Inorder: left subtree (in inorder), root, right subtree (in
inorder): GDHBAECF

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-9

Traversing binary trees

» Preorder: root, left subtree (in preorder), right subtree (in
preorder): ABDGHCEF

» Inorder: left subtree (in inorder), root, right subtree (in
inorder): GDHBAECF

» Postorder: left subtree (in postorder), right subtree (in
postorder), root: GHDBEFCA

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-9

Traversing binary trees

» Preorder: root, left subtree (in preorder), right subtree (in
preorder): ABDGHCEF

» Inorder: left subtree (in inorder), root, right subtree (in
inorder): GDHBAECF

» Postorder: left subtree (in postorder), right subtree (in
postorder), root: GHDBEFCA

» Breadth-first order (level order): level 0 left-to-right, then
level 1 left-to-right, ...: ABCDEFGH

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-10

Facts about binary trees

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-10

Facts about binary trees

1. There are at most 2¥ nodes at level k.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-10

Facts about binary trees

1. There are at most 2¥ nodes at level k.

2. A binary tree with depth d has:
» At most 29 leaves.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-10

Facts about binary trees

1. There are at most 2¥ nodes at level k.

2. A binary tree with depth d has:

» At most 29 leaves.
» At most 291 — 1 nodes.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-10

Facts about binary trees

1. There are at most 2¥ nodes at level k.

2. A binary tree with depth d has:

» At most 29 leaves.
» At most 291 — 1 nodes.

3. A binary tree with n leaves has depth > [Ign].

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-10

Facts about binary trees

. There are at most 2% nodes at level k.

. A binary tree with depth d has:

» At most 29 leaves.
» At most 291 — 1 nodes.

N =

w

. A binary tree with n leaves has depth > [lg n].

N

. A binary tree with n nodes has depth > |lg n].

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-11

Binary search trees

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-11

Binary search trees

» Function as ordered dictionaries. (Can find successors,
predecessors)

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-11

Binary search trees

» Function as ordered dictionaries. (Can find successors,
predecessors)

» find, insert, and remove can all be done in O(h) time
(h = tree height)

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-11

Binary search trees

» Function as ordered dictionaries. (Can find successors,
predecessors)

» find, insert, and remove can all be done in O(h) time
(h = tree height)

» AVL trees, Red-Black Trees, Weak AVL trees: h = O(log n),
so find, insert, and remove can all be done in O(log n) time.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-11

Binary search trees

v

Function as ordered dictionaries. (Can find successors,
predecessors)

v

find, insert, and remove can all be done in O(h) time

(h = tree height)

AVL trees, Red-Black Trees, Weak AVL trees: h = O(log n),
so find, insert, and remove can all be done in O(log n) time.

v

v

Splay trees and Skip Lists: alternatives to balanced trees

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-11

Binary search trees

v

Function as ordered dictionaries. (Can find successors,
predecessors)

v

find, insert, and remove can all be done in O(h) time

(h = tree height)

AVL trees, Red-Black Trees, Weak AVL trees: h = O(log n),
so find, insert, and remove can all be done in O(log n) time.

v

v

Splay trees and Skip Lists: alternatives to balanced trees

v

Can traverse the tree and list all items in O(n) time.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-11

Binary search trees

» Function as ordered dictionaries. (Can find successors,
predecessors)

» find, insert, and remove can all be done in O(h) time
(h = tree height)

» AVL trees, Red-Black Trees, Weak AVL trees: h = O(log n),
so find, insert, and remove can all be done in O(log n) time.

» Splay trees and Skip Lists: alternatives to balanced trees

» Can traverse the tree and list all items in O(n) time.

» [GT] Chapters 3—4 for details

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-12

Binary Search: Searching in a sorted array

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-12

Binary Search: Searching in a sorted array

» Input is a sorted array A and an item x.

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-12

Binary Search: Searching in a sorted array

» Input is a sorted array A and an item x.

» Problem is to locate x in the array.

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-12

Binary Search: Searching in a sorted array

» Input is a sorted array A and an item x.

» Problem is to locate x in the array.
» Several variants of the problem, for example

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-12

Binary Search: Searching in a sorted array

» Input is a sorted array A and an item x.

» Problem is to locate x in the array.
» Several variants of the problem, for example. ..
1. Determine whether x is stored in the array

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-12

Binary Search: Searching in a sorted array

» Input is a sorted array A and an item x.
» Problem is to locate x in the array.

» Several variants of the problem, for example. ..

1. Determine whether x is stored in the array
2. Find the largest i such that A[i] < x (with a reasonable
convention if x < A[0]).

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-12

Binary Search: Searching in a sorted array

» Input is a sorted array A and an item x.
» Problem is to locate x in the array.

» Several variants of the problem, for example. ..

1. Determine whether x is stored in the array
2. Find the largest i such that A[i] < x (with a reasonable
convention if x < A[0]).

We will focus on the first variant.

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-12

Binary Search: Searching in a sorted array

v

Input is a sorted array A and an item x.

v

Problem is to locate x in the array.

Several variants of the problem, for example. ..

1. Determine whether x is stored in the array
2. Find the largest i such that A[i] < x (with a reasonable
convention if x < A[0]).

We will focus on the first variant.

v

v

We will show that binary search is an optimal algorithm for
solving this problem.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-13

Binary Search: Searching in a sorted array

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Binary Search: Searching in a sorted array

Input: A: Sorted array with n entries [0..n — 1]
x: ltem we are seeking

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Binary Search: Searching in a sorted array

Input: A: Sorted array with n entries [0..n — 1]
x: ltem we are seeking

Output: Location of x, if x found
-1, if x not found

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Binary Search: Searching in a sorted array

Input: A: Sorted array with n entries [0..n — 1]
x: ltem we are seeking

Output: Location of x, if x found
-1, if x not found

def binarySearch(A,x,first,last)
if first > last:
return (-1)
else:
mid = |(first+last)/2]
if x == A[mid]:
return mid
else if x < A[mid]:
return binarySearch(A,x,first,mid-1)
else:
return binarySearch(A,x,mid+1,last)

binarySearch(A,x,0,n-1)

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-14

Correctness of Binary Search

W

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-14

Correctness of Binary Search

We need to prove two things:

W

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-14

Correctness of Binary Search

We need to prove two things:

1. If x is in the array, its location in the array (its index) is
between first and last, inclusive.

W

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-14

Correctness of Binary Search

We need to prove two things:
1. If x is in the array, its location in the array (its index) is
between first and last, inclusive.
Note that this is equivalent to:
Either x is not in the array, or its location is between
first and last, inclusive.

W

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

Correctness of Binary Search

We need to prove two things:
1. If x is in the array, its location in the array (its index) is
between first and last, inclusive.
Note that this is equivalent to:
Either x is not in the array, or its location is between
first and last, inclusive.

2. On each recursive call, the difference /ast — first gets strictly
smaller.

W

2-14

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-15

Correctness of Binary Search

To prove that the invariant continues to hold, we need to consider
three cases.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-15

Correctness of Binary Search

To prove that the invariant continues to hold, we need to consider
three cases.

1. last > first + 2

W

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-15

Correctness of Binary Search

To prove that the invariant continues to hold, we need to consider
three cases.

1. last > first + 2

| L }
=T 11 [] ;
2. last = first +1
; }“;"' * ;
i 3, i |

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-15

Correctness of Binary Search
To prove that the invariant continues to hold, we need to consider
three cases.

1. last > first + 2

| L }
=T 11 [] ;
2. last = first +1
; }“;"' * ;
i | D i |
3. last = first

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-16

Binary Search: Analysis of Running Time

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-16

Binary Search: Analysis of Running Time

» We will count the number of 3-way comparisons of x against
elements of A. (also known as decisions)

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-16

Binary Search: Analysis of Running Time

» We will count the number of 3-way comparisons of x against
elements of A. (also known as decisions)
> Rationale:

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-16

Binary Search: Analysis of Running Time

» We will count the number of 3-way comparisons of x against
elements of A. (also known as decisions)
> Rationale:

1. This is the essentially the same as the number of recursive
calls. Every recursive call, except for possibly the very last one,
results in a 3-way comparison.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-16

Binary Search: Analysis of Running Time

» We will count the number of 3-way comparisons of x against
elements of A. (also known as decisions)
> Rationale:

1. This is the essentially the same as the number of recursive
calls. Every recursive call, except for possibly the very last one,
results in a 3-way comparison.

2. Gives us a way to compare binary search against other
algorithms that solve the same problem: searching for an item
in an array by comparing the item against array entries.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-17

Binary Search: Analysis of Running Time (continued)

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Binary Search: Analysis of Running Time (continued)

» Binary search in an array of size 1: 1 decision

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-17

Binary Search: Analysis of Running Time (continued)

» Binary search in an array of size 1: 1 decision

> Binary search in an array of size n > 1: after 1 decision, either
we are done, or the problem is reduced to binary search in a
subarray with a worst-case size of [n/2]|

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-17

Binary Search: Analysis of Running Time (continued)

» Binary search in an array of size 1: 1 decision

> Binary search in an array of size n > 1: after 1 decision, either
we are done, or the problem is reduced to binary search in a
subarray with a worst-case size of [n/2]|

» So the worst-case time to do binary search on an array of size
nis T(n), where T(n) satisfies the equation

1 ifn=1
Tim :{ 14+ 7([2]) otherwise

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Binary Search: Analysis of Running Time (continued)

» Binary search in an array of size 1: 1 decision

> Binary search in an array of size n > 1: after 1 decision, either
we are done, or the problem is reduced to binary search in a
subarray with a worst-case size of [n/2]|

» So the worst-case time to do binary search on an array of size
nis T(n), where T(n) satisfies the equation

1 ifn=1
T(m :{ 14+ 7([2]) otherwise

» The solution to this equation is:
T(n)=|lgn] +1

This can be proved by induction.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Binary Search: Analysis of Running Time (continued)

» Binary search in an array of size 1: 1 decision

> Binary search in an array of size n > 1: after 1 decision, either
we are done, or the problem is reduced to binary search in a
subarray with a worst-case size of [n/2]|

» So the worst-case time to do binary search on an array of size
nis T(n), where T(n) satisfies the equation

1 ifn=1
T(n) =
(n) { 14+ T([2]) otherwise
» The solution to this equation is:

T(n)=|lgn] +1

This can be proved by induction.
» So binary search does [lg n| + 1 3-way comparisons on an
array of size n, in the worst case.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-18

Optimality of binary search

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-18

Optimality of binary search

» We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-18

Optimality of binary search

» We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

» The lower bound we will establish is [Ign| + 1 3-way
comparisons.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-18

Optimality of binary search

» We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

» The lower bound we will establish is [Ign| + 1 3-way
comparisons.

» Since Binary Search performs within this bound, it is optimal.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-18

Optimality of binary search

>

We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

The lower bound we will establish is |lg n| + 1 3-way
comparisons.

Since Binary Search performs within this bound, it is optimal.

Our lower bound is established using a Decision Tree model.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-18

Optimality of binary search

>

We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

The lower bound we will establish is |lg n| + 1 3-way
comparisons.

Since Binary Search performs within this bound, it is optimal.
Our lower bound is established using a Decision Tree model.

Note that the bound is exact (not just asymptotic)

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-18

Optimality of binary search

>

We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

The lower bound we will establish is |lg n| + 1 3-way
comparisons.

Since Binary Search performs within this bound, it is optimal.

Our lower bound is established using a Decision Tree model.

» Note that the bound is exact (not just asymptotic)

Our lower bound is on the worst case

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-18

Optimality of binary search

>

We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

The lower bound we will establish is |lg n| + 1 3-way
comparisons.

Since Binary Search performs within this bound, it is optimal.

Our lower bound is established using a Decision Tree model.

» Note that the bound is exact (not just asymptotic)

Our lower bound is on the worst case

» |t says: for every algorithm for finding an item in an array of
size n, there is some input that forces it to perform [lgn| + 1
comparisons.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-18

Optimality of binary search

» We will establish a lower bound on the worst-case number of
decisions required to find an item in an array, using only 3-way
comparisons of the item against array entries.

» The lower bound we will establish is [Ign| + 1 3-way
comparisons.

» Since Binary Search performs within this bound, it is optimal.
» Qur lower bound is established using a Decision Tree model.

» Note that the bound is exact (not just asymptotic)
» Our lower bound is on the worst case

» |t says: for every algorithm for finding an item in an array of
size n, there is some input that forces it to perform [lgn| + 1
comparisons.

> It does not say: for every algorithm for finding an item in an
array of size n, every input forces it to perform [lgn] + 1
comparisons.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-19

The decision tree model for searching in an array

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-19

The decision tree model for searching in an array

Consider any algorithm that searches for an item x in an array A of size n
by comparing entries in A against x. Any such algorithm can be modeled
as a decision tree:

Example: Decision tree for binary search with n = 13:

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-19

The decision tree model for searching in an array

Consider any algorithm that searches for an item x in an array A of size n
by comparing entries in A against x. Any such algorithm can be modeled
as a decision tree:

> Each node is labeled with an integer € {0...n— 1}.

Example: Decision tree for binary search with n = 13:

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-19

The decision tree model for searching in an array

Consider any algorithm that searches for an item x in an array A of size n
by comparing entries in A against x. Any such algorithm can be modeled
as a decision tree:

> Each node is labeled with an integer € {0...n— 1}.

> A node labeled i represents a 3-way comparison between x and A[/].

Example: Decision tree for binary search with n = 13:

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-19

The decision tree model for searching in an array
Consider any algorithm that searches for an item x in an array A of size n
by comparing entries in A against x. Any such algorithm can be modeled
as a decision tree:

> Each node is labeled with an integer € {0...n— 1}.
> A node labeled i represents a 3-way comparison between x and A[/].

» The left subtree of a node labeled i/ describes the decision tree for
what happens if x < A[i].

Example: Decision tree for binary search with n = 13:

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-19

The decision tree model for searching in an array

Consider any algorithm that searches for an item x in an array A of size n
by comparing entries in A against x. Any such algorithm can be modeled
as a decision tree:

> Each node is labeled with an integer € {0...n— 1}.
> A node labeled i represents a 3-way comparison between x and A[/].

» The left subtree of a node labeled i/ describes the decision tree for
what happens if x < A[i].

> The right subtree of a node labeled i describes the decision tree for
what happens if x > A[/].

Example: Decision tree for binary search with n = 13:

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-20

Lower bound on locating an item in an array of size n

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-20

Lower bound on locating an item in an array of size n

1. Any algorithm for searching an array of size n can be modeled by a
decision tree with at least n nodes.

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-20

Lower bound on locating an item in an array of size n

1. Any algorithm for searching an array of size n can be modeled by a
decision tree with at least n nodes.

2. Since the decision tree is a binary tree with n nodes,
the depth is at least |lgn].

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-20

Lower bound on locating an item in an array of size n

1. Any algorithm for searching an array of size n can be modeled by a
decision tree with at least n nodes.

2. Since the decision tree is a binary tree with n nodes,
the depth is at least |lgn].

3. The worst-case number of comparisons for the algorithm is the depth of
the decision tree +1. (Remember, root has depth 0).

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-20

Lower bound on locating an item in an array of size n

1. Any algorithm for searching an array of size n can be modeled by a
decision tree with at least n nodes.

2. Since the decision tree is a binary tree with n nodes,
the depth is at least |lgn].

3. The worst-case number of comparisons for the algorithm is the depth of
the decision tree +1. (Remember, root has depth 0).

Hence any algorithm for locating an item in an array of size n using only
comparisons must perform at least |Ign| + 1 comparisons in the worst case.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-20

Lower bound on locating an item in an array of size n

1. Any algorithm for searching an array of size n can be modeled by a
decision tree with at least n nodes.

2. Since the decision tree is a binary tree with n nodes,
the depth is at least |lgn].

3. The worst-case number of comparisons for the algorithm is the depth of

the decision tree +1. (Remember, root has depth 0).

Hence any algorithm for locating an item in an array of size n using only
comparisons must perform at least |Ign| + 1 comparisons in the worst case.

So binary search is optimal with respect to worst-case performance.
CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-21

Sorting

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

Sorting

» Rearranging a list of items in nondescending order.

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-21

Sorting

» Rearranging a list of items in nondescending order.

» Useful preprocessing step (e.g., for binary search)

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-21

Sorting

» Rearranging a list of items in nondescending order.
» Useful preprocessing step (e.g., for binary search)

» Important step in other algorithms

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-21

Sorting

v

Rearranging a list of items in nondescending order.

v

Useful preprocessing step (e.g., for binary search)

v

Important step in other algorithms

v

[llustrates more general algorithmic techniques

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-21

Sorting

v

Rearranging a list of items in nondescending order.

v

Useful preprocessing step (e.g., for binary search)

v

Important step in other algorithms

v

[llustrates more general algorithmic techniques

We will discuss

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-21

Sorting

v

Rearranging a list of items in nondescending order.

v

Useful preprocessing step (e.g., for binary search)

v

Important step in other algorithms

v

[llustrates more general algorithmic techniques

We will discuss

» Comparison-based sorting algorithms (Insertion sort, Selection
Sort, Quicksort, Mergesort, Heapsort)

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-21

Sorting

v

Rearranging a list of items in nondescending order.

v

Useful preprocessing step (e.g., for binary search)

v

Important step in other algorithms

v

[llustrates more general algorithmic techniques

We will discuss

» Comparison-based sorting algorithms (Insertion sort, Selection
Sort, Quicksort, Mergesort, Heapsort)

» Bucket-based sorting methods

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-21

Sorting

v

Rearranging a list of items in nondescending order.

v

Useful preprocessing step (e.g., for binary search)

v

Important step in other algorithms

v

[llustrates more general algorithmic techniques

We will discuss in the class

» Comparison-based sorting algorithms (Insertion sort, Selection
Sort, Quicksort, Mergesort, Heapsort)

» Bucket-based sorting methods

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-22

Comparison-based sorting

» Basic operation: compare two items.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-22

Comparison-based sorting

» Basic operation: compare two items.

» Abstract model.

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-22
Comparison-based sorting

» Basic operation: compare two items.

> Abstract model.
» Advantage: doesn't use specific properties of the data items.
So same algorithm can be used for sorting integers, strings,

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-22

Comparison-based sorting

» Basic operation: compare two items.
» Abstract model.

» Advantage: doesn't use specific properties of the data items.
So same algorithm can be used for sorting integers, strings,
etc.

» Disadvantage: under certain circumstances, specific properties
of the data item can speed up the sorting process.

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-22

Comparison-based sorting

» Basic operation: compare two items.
» Abstract model.

» Advantage: doesn't use specific properties of the data items.
So same algorithm can be used for sorting integers, strings,
etc.

» Disadvantage: under certain circumstances, specific properties
of the data item can speed up the sorting process.

» Measure of time: number of comparisons

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-22

Comparison-based sorting

» Basic operation: compare two items.

» Abstract model.

» Advantage: doesn't use specific properties of the data items.
So same algorithm can be used for sorting integers, strings,
etc.

» Disadvantage: under certain circumstances, specific properties
of the data item can speed up the sorting process.

» Measure of time: number of comparisons

» Consistent with philosophy of counting basic operations,
discussed earlier.

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-22

Comparison-based sorting

» Basic operation: compare two items.
» Abstract model.

» Advantage: doesn't use specific properties of the data items.
So same algorithm can be used for sorting integers, strings,
etc.

» Disadvantage: under certain circumstances, specific properties
of the data item can speed up the sorting process.
» Measure of time: number of comparisons

» Consistent with philosophy of counting basic operations,
discussed earlier.

» Misleading if other operations dominate (e.g., if we sort by
moving items around without comparing them)

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-22

Comparison-based sorting

» Basic operation: compare two items.
» Abstract model.

» Advantage: doesn't use specific properties of the data items.
So same algorithm can be used for sorting integers, strings,
etc.

» Disadvantage: under certain circumstances, specific properties
of the data item can speed up the sorting process.
» Measure of time: number of comparisons
» Consistent with philosophy of counting basic operations,
discussed earlier.
» Misleading if other operations dominate (e.g., if we sort by
moving items around without comparing them)
» Comparison-based sorting has lower bound of Q(nlog n)
comparisons. (We will prove this.)

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-23

O(nlog n) work vs. quadratic (©(n?)) work

Yy
700000 —§
600000 —|
500000 —|
400000 —|
300000 —|
200000 —|

100000 —

y=10nlgn

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-24

Some terminology

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-24

Some terminology

» A permutation of a sequence of items is a reordering of the
sequence. A sequence of n items has n! distinct permutations.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-24

Some terminology

» A permutation of a sequence of items is a reordering of the
sequence. A sequence of n items has n! distinct permutations.

» Note: Sorting is the problem of finding a particular
distinguished permutation of a list.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-24

Some terminology

» A permutation of a sequence of items is a reordering of the
sequence. A sequence of n items has n! distinct permutations.

» Note: Sorting is the problem of finding a particular
distinguished permutation of a list.

> An inversion in a sequence or list is a pair of items such that
the larger one precedes the smaller one.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-24

Some terminology

» A permutation of a sequence of items is a reordering of the
sequence. A sequence of n items has n! distinct permutations.

» Note: Sorting is the problem of finding a particular
distinguished permutation of a list.

> An inversion in a sequence or list is a pair of items such that
the larger one precedes the smaller one.

Example: The list
18 29 12 15 32 10
has 9 inversions:

{(18,12), (18,15), (18,10), (29,12), (29,15),
(29,10), (12,10), (15,10), (32,10)}

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-25

Insertion sort

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Insertion sort

(Unsorted)

(Sorted) z

(Unsorted)

(Sorted)

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Insertion sort
» Work from |

2-25

eft to right across array

(Unsorted)

(Sorted) z (Unsorted)

(Sorted) ‘

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Insertion sort

» Work from left to right across array
» Insert each item in correct position with respect to (sorted)

elements to its left

(Unsorted)

(Sorted) z

(Unsorted)

(Sorted)

2-25

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-26

Insertion sort pseudocode

f |

<z >z >x x

N NN

def insertionSort(n, A):
for k = 1 to n-1:

x = A[k]

j = k-1

while (j >= 0) and (A[j] > x):
Alj+1]1 = A[j]
3 =31

A[j+1] = x

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Insertion sort example

‘ 23 ‘ 19 42 ‘ 17 ‘ 85 ‘ 38 ‘
‘ 23 ‘ 19 42 ‘ 17 ‘ 85 ‘ 38 ‘
19 23 12 17 85 ‘ 38
‘ 19 ‘ 23 42 ‘ 17 ‘ 85 ‘ 38 ‘
‘ 17 ‘ 19 23 ‘ 42 ‘ 85 ‘ 38 ‘
‘ 17 ‘ 19 23 ‘ 42 ‘ 85 ‘ 38 ‘

23 ‘ 38 ‘ 42 85

2-27

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-28
Analysis of Insertion Sort

» Worst-case running time:

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-28
Analysis of Insertion Sort

» Worst-case running time:
» On kth iteration of outer loop, element A[k] is compared with

at most k elements:
Alk —1], Alk—2], ..., A0].

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Analysis of Insertion Sort

» Worst-case running time:
» On kth iteration of outer loop, element A[k] is compared with
at most k elements:
Alk —1], Alk—2], ..., A0].
» Total number comparisons over all iterations is at most:

Y k= nMn=1) _ o(n2).

2-28

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-28

Analysis of Insertion Sort

» Worst-case running time:
» On kth iteration of outer loop, element A[k] is compared with
at most k elements:
Alk —1], Alk—2], ..., A0].
» Total number comparisons over all iterations is at most:

Y k= nMn=1) _ o(n2).

> Insertion Sort is a bad choice when n is large. (O(n?)
vs. O(nlogn)).

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

Analysis of Insertion Sort

» Worst-case running time:

» On kth iteration of outer loop, element A[k] is compared with
at most k elements:
Alk —1], Alk—2], ..., A0].
» Total number comparisons over all iterations is at most:

Y k= nMn=1) _ o(n2).

> Insertion Sort is a bad choice when n is large. (O(n?)
vs. O(nlogn)).

» Insertion Sort is a good choice when n is small. (Constant
hidden in the "big oh” is small).

2-28

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-28
Analysis of Insertion Sort

» Worst-case running time:

» On kth iteration of outer loop, element A[k] is compared with
at most k elements:
Alk —1], Alk—2], ..., A0].
» Total number comparisons over all iterations is at most:

Y k= nMn=1) _ o(n2).

> Insertion Sort is a bad choice when n is large. (O(n?)
vs. O(nlogn)).

» Insertion Sort is a good choice when n is small. (Constant
hidden in the "big oh” is small).

» Insertion Sort is efficient if the input is “almost sorted"”:

Time < n— 1+ (# inversions)

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-28
Analysis of Insertion Sort

» Worst-case running time:

» On kth iteration of outer loop, element A[k] is compared with
at most k elements:
Alk —1], Alk—2], ..., A0].
» Total number comparisons over all iterations is at most:

Y k= nMn=1) _ o(n2).

> Insertion Sort is a bad choice when n is large. (O(n?)
vs. O(nlogn)).

» Insertion Sort is a good choice when n is small. (Constant
hidden in the "big oh” is small).

» Insertion Sort is efficient if the input is “almost sorted"”:

Time < n— 1+ (# inversions)

» Storage: in place: O(1) extra storage

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-29

Selection Sort

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-29

Selection Sort

» Two variants:

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-29

Selection Sort

» Two variants:

1. Repeatedly (for i from 0 to n — 1) find the minimum value,
output it, delete it.

> Values are output in sorted order

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

2-29

Selection Sort

» Two variants:

1. Repeatedly (for i from 0 to n — 1) find the minimum value,
output it, delete it.

> Values are output in sorted order
2. Repeatedly (for i from n — 1 down to 1)

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-29

Selection Sort

» Two variants:

1. Repeatedly (for i from 0 to n — 1) find the minimum value,
output it, delete it.

> Values are output in sorted order
2. Repeatedly (for i from n — 1 down to 1)
» Find the maximum of A[0],A[1],... ,A[].

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-29

Selection Sort

» Two variants:

1. Repeatedly (for i from 0 to n — 1) find the minimum value,
output it, delete it.

> Values are output in sorted order
2. Repeatedly (for i from n — 1 down to 1)
» Find the maximum of A[0],A[1],... ,A[].
> Swap this value with A[i] (no-op if it is already A[/]).

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-29

Selection Sort

» Two variants:

1. Repeatedly (for i from 0 to n — 1) find the minimum value,
output it, delete it.

> Values are output in sorted order
2. Repeatedly (for i from n — 1 down to 1)
» Find the maximum of A[0],A[1],... ,A[].
> Swap this value with A[i] (no-op if it is already A[/]).
» Both variants run in O(n?) time if we use the straightforward
approach to finding the maximum /minimum.

CompSci 161—Fall 2021— @M. B. Dillencourt—University of California, Irvine

2-29

Selection Sort

» Two variants:

1. Repeatedly (for i from 0 to n — 1) find the minimum value,
output it, delete it.

> Values are output in sorted order
2. Repeatedly (for i from n — 1 down to 1)
» Find the maximum of A[0],A[1],... ,A[].
> Swap this value with A[i] (no-op if it is already A[/]).
» Both variants run in O(n?) time if we use the straightforward
approach to finding the maximum /minimum.

CompSci 161—Fall 2021—@©M. B. Dillencourt—University of California, Irvine

