Lecture 3
Recap of basic data structures, binary search, insertion/selection sort

CS 161 Design and Analysis of Algorithms
Ioannis Panageas
Outline of these notes

▷ Review of basic data structures
▷ Searching in a sorted array/binary search: the algorithm, analysis, proof of optimality
▷ Sorting, part 1: insertion sort, selection sort
Basic Data structures

Prerequisite material. Review [GT Chapters 2–4, 6] as necessary

- Arrays, dynamic arrays
- Linked lists
- Stacks, queues
- Dictionaries, hash tables
- Binary trees
Arrays, Dynamic arrays, Linked lists

Arrays:
- Numbered collection of cells or entries
- Numbering usually starts at 0
- Fixed number of entries
- Each cell has an index which uniquely identifies it.
- Accessing or modifying the contents of a cell given its index: O(1) time.
- Inserting or deleting an item in the middle of an array is slow.

Dynamic arrays:
- Similar to arrays, but size can be increased or decreased
- ArrayList in Java, list in Python

Linked lists:
- Collection of nodes that form a linear ordering.
- The list has a first node and a last node
- Each node has a next node and a previous node (possibly null)
- Inserting or deleting an item in the middle of linked list is fast.
- Accessing a cell given its index (i.e., finding the kth item in the list) is slow.
Arrays, Dynamic arrays, Linked lists

- Arrays:
 - Numbered collection of cells or entries
 - Numbering usually starts at 0
 - Fixed number of entries
 - Each cell has an index which uniquely identifies it.
 - Accessing or modifying the contents of a cell given its index: $O(1)$ time.
 - Inserting or deleting an item in the middle of an array is slow.

- Dynamic arrays:
 - Similar to arrays, but size can be increased or decreased
 - ArrayList in Java, list in Python

- Linked lists:
 - Collection of nodes that form a linear ordering.
 - The list has a first node and a last node
 - Each node has a next node and a previous node (possibly null)
 - Inserting or deleting an item in the middle of linked list is fast.
 - Accessing a cell given its index (i.e., finding the kth item in the list) is slow.
Arrays, Dynamic arrays, Linked lists

- Arrays:
 - Numbered collection of cells or entries

- Dynamic arrays:
 - Similar to arrays, but size can be increased or decreased
 - "ArrayList" in Java, "list" in Python

- Linked lists:
 - Collection of nodes that form a linear ordering.
 - The list has a first node and a last node
 - Each node has a next node and a previous node (possibly null)
 - Inserting or deleting an item in the middle of linked list is fast.
 - Accessing a cell given its index (i.e., finding the kth item in the list) is slow.
Arrays, Dynamic arrays, Linked lists

- Arrays:
 - Numbered collection of cells or entries
 - Numbering usually starts at 0

- Dynamic arrays:
 - Similar to arrays, but size can be increased or decreased
 - ArrayList in Java, list in Python

- Linked lists:
 - Collection of nodes that form a linear ordering.
 - The list has a first node and a last node
 - Each node has a next node and a previous node (possibly null)
 - Inserting or deleting an item in the middle of linked list is fast.
 - Accessing a cell given its index (i.e., finding the kth item in the list) is slow.
Arrays, Dynamic arrays, Linked lists

- Arrays:
 - Numbered collection of **cells** or **entries**
 - Numbering usually starts at 0
 - Fixed number of entries

- Dynamic arrays:
 - Similar to arrays, but size can be increased or decreased
 - `ArrayList` in Java, `list` in Python

- Linked lists:
 - Collection of nodes that form a linear ordering.
 - The list has a first node and a last node
 - Each node has a next node and a previous node (possibly null)
 - Inserting or deleting an item in the middle of linked list is fast.
 - Accessing a cell given its index (i.e., finding the kth item in the list) is slow.
Arrays, Dynamic arrays, Linked lists

- Arrays:
 - Numbered collection of **cells** or **entries**
 - Numbering usually starts at 0
 - Fixed number of entries
 - Each cell has an **index** which uniquely identifies it.

- Dynamic arrays:
 - Similar to arrays, but size can be increased or decreased
 - ArrayList in Java, list in Python

- Linked lists:
 - Collection of nodes that form a linear ordering.
 - The list has a first node and a last node
 - Each node has a next node and a previous node (possibly null)
 - Inserting or deleting an item in the middle of linked list is fast.
 - Accessing a cell given its index (i.e., finding the kth item in the list) is slow.
Arrays, Dynamic arrays, Linked lists

- Arrays:
 - Numbered collection of **cells** or **entries**
 - Numbering usually starts at 0
 - Fixed number of entries
 - Each cell has an **index** which uniquely identifies it.
 - Accessing or modifying the contents of a cell given its index: $O(1)$ time.

- Dynamic arrays:
 - Similar to arrays, but size can be increased or decreased
 - `ArrayList` in Java, `list` in Python

- Linked lists:
 - Collection of nodes that form a linear ordering.
 - The list has a first node and a last node
 - Each node has a next node and a previous node (possibly null)
 - Inserting or deleting an item in the middle of linked list is fast.
 - Accessing a cell given its index (i.e., finding the kth item in the list) is slow.
Arrays, Dynamic arrays, Linked lists

- **Arrays:**
 - Numbered collection of **cells** or **entries**
 - Numbering usually starts at 0
 - Fixed number of entries
 - Each cell has an **index** which uniquely identifies it.
 - Accessing or modifying the contents of a cell given its index: $O(1)$ time.
 - Inserting or deleting an item in the middle of an array is slow.
Arrays, Dynamic arrays, Linked lists

- **Arrays:**
 - Numbered collection of **cells** or **entries**
 - Numbering usually starts at 0
 - Fixed number of entries
 - Each cell has an **index** which uniquely identifies it.
 - Accessing or modifying the contents of a cell given its index: \(O(1) \) time.
 - Inserting or deleting an item in the middle of an array is slow.

- **Dynamic arrays:**

- **Linked lists:**
 - Collection of nodes that form a linear ordering.
 - The list has a first node and a last node
 - Each node has a next node and a previous node (possibly null)
 - Inserting or deleting an item in the middle of a linked list is fast.
 - Accessing a cell given its index (i.e., finding the kth item in the list) is slow.
Arrays, Dynamic arrays, Linked lists

- **Arrays:**
 - Numbered collection of **cells** or **entries**
 - Numbering usually starts at 0
 - Fixed number of entries
 - Each cell has an **index** which uniquely identifies it.
 - Accessing or modifying the contents of a cell given its index: \(O(1) \) time.
 - Inserting or deleting an item in the middle of an array is slow.

- **Dynamic arrays:**
 - Similar to arrays, but size can be increased or decreased

- **Linked lists:**
 - Collection of nodes that form a linear ordering.
 - The list has a first node and a last node
 - Each node has a next node and a previous node (possibly null)
 - Inserting or deleting an item in the middle of a linked list is fast.
 - Accessing a cell given its index (i.e., finding the kth item in the list) is slow.
Arrays, Dynamic arrays, Linked lists

- **Arrays:**
 - Numbered collection of **cells** or **entries**
 - Numbering usually starts at 0
 - Fixed number of entries
 - Each cell has an **index** which uniquely identifies it.
 - Accessing or modifying the contents of a cell given its index: $O(1)$ time.
 - Inserting or deleting an item in the middle of an array is slow.

- **Dynamic arrays:**
 - Similar to arrays, but size can be increased or decreased
 - **ArrayList** in Java, **list** in Python
Arrays, Dynamic arrays, Linked lists

- **Arrays:**
 - Numbered collection of **cells or entries**
 - Numbering usually starts at 0
 - Fixed number of entries
 - Each cell has an **index** which uniquely identifies it.
 - Accessing or modifying the contents of a cell given its index: \(O(1) \) time.
 - Inserting or deleting an item in the middle of an array is slow.

- **Dynamic arrays:**
 - Similar to arrays, but size can be increased or decreased
 - **ArrayList** in Java, **list** in Python

- **Linked lists:**
Arrays, Dynamic arrays, Linked lists

- **Arrays:**
 - Numbered collection of **cells** or **entries**
 - Numbering usually starts at 0
 - Fixed number of entries
 - Each cell has an **index** which uniquely identifies it.
 - Accessing or modifying the contents of a cell given its index: $O(1)$ time.
 - Inserting or deleting an item in the middle of an array is slow.

- **Dynamic arrays:**
 - Similar to arrays, but size can be increased or decreased
 - **ArrayList** in Java, **list** in Python

- **Linked lists:**
 - Collection of nodes that form a linear ordering.
Arrays, Dynamic arrays, Linked lists

- **Arrays:**
 - Numbered collection of cells or entries
 - Numbering usually starts at 0
 - Fixed number of entries
 - Each cell has an **index** which uniquely identifies it.
 - Accessing or modifying the contents of a cell given its index: \(O(1) \) time.
 - Inserting or deleting an item in the middle of an array is slow.

- **Dynamic arrays:**
 - Similar to arrays, but size can be increased or decreased
 - `ArrayList` in Java, `list` in Python

- **Linked lists:**
 - Collection of nodes that form a linear ordering.
 - The list has a **first node** and a **last node**
Arrays, Dynamic arrays, Linked lists

- Arrays:
 - Numbered collection of cells or entries
 - Numbering usually starts at 0
 - Fixed number of entries
 - Each cell has an index which uniquely identifies it.
 - Accessing or modifying the contents of a cell given its index: $O(1)$ time.
 - Inserting or deleting an item in the middle of an array is slow.

- Dynamic arrays:
 - Similar to arrays, but size can be increased or decreased
 - `ArrayList` in Java, `list` in Python

- Linked lists:
 - Collection of nodes that form a linear ordering.
 - The list has a first node and a last node
 - Each node has a next node and a previous node (possibly null)
Arrays, Dynamic arrays, Linked lists

- **Arrays:**
 - Numbered collection of **cells** or **entries**
 - Numbering usually starts at 0
 - Fixed number of entries
 - Each cell has an **index** which uniquely identifies it.
 - Accessing or modifying the contents of a cell given its index: $O(1)$ time.
 - Inserting or deleting an item in the middle of an array is slow.

- **Dynamic arrays:**
 - Similar to arrays, but size can be increased or decreased
 - `ArrayList` in Java, `list` in Python

- **Linked lists:**
 - Collection of nodes that form a linear ordering.
 - The list has a **first node** and a **last node**
 - Each node has a **next node** and a **previous node** (possibly null)
 - Inserting or deleting an item in the middle of linked list is fast.
Arrays, Dynamic arrays, Linked lists

- **Arrays:**
 - Numbered collection of **cells** or **entries**
 - Numbering usually starts at 0
 - Fixed number of entries
 - Each cell has an **index** which uniquely identifies it.
 - Accessing or modifying the contents of a cell given its index: \(O(1)\) time.
 - Inserting or deleting an item in the middle of an array is slow.

- **Dynamic arrays:**
 - Similar to arrays, but size can be increased or decreased
 - **ArrayList** in Java, **list** in Python

- **Linked lists:**
 - Collection of nodes that form a linear ordering.
 - The list has a **first node** and a **last node**
 - Each node has a **next node** and a **previous node** (possibly null)
 - Inserting or deleting an item in the middle of linked list is fast.
 - Accessing a cell given its index (i.e., finding the kth item in the list) is slow.
Stacks and Queues

- **Stacks**: Container of objects that are inserted and removed according to Last-In First-Out (LIFO) principle:
 - Only the most-recently inserted object can be removed.
 - Insert and remove are usually called **push** and **pop**.

- **Queues** (often called FIFO Queues):
 - Container of objects that are inserted and removed according to First-In First-Out (FIFO) principle:
 - Only the element that has been in the queue the longest can be removed.
 - Insert and remove are usually called **enqueue** and **dequeue**.
 - Elements are inserted at the rear of the queue and are removed from the front.
Stacks and Queues

- Stacks:

- Queues (often called FIFO Queues):
 - Container of objects that are inserted and removed according to First-In First-Out (FIFO) principle:
 - Only the element that has been in the queue the longest can be removed.
 - Insert and remove are usually called enqueue and dequeue.
 - Elements are inserted at the rear of the queue and are removed from the front.
Stacks and Queues

- **Stacks:**
 - Container of objects that are inserted and removed according to Last-In First-Out (LIFO) principle:

- **Queues (often called FIFO Queues):**
 - Container of objects that are inserted and removed according to First-In First-Out (FIFO) principle:
 - Elements are inserted at the rear of the queue and are removed from the front.
Stacks and Queues

Stacks:
- Container of objects that are inserted and removed according to Last-In First-Out (LIFO) principle:
 - Only the most-recently inserted object can be removed.
Stacks and Queues

- **Stacks:**
 - Container of objects that are inserted and removed according to Last-In First-Out (LIFO) principle:
 - Only the most-recently inserted object can be removed.
 - Insert and remove are usually called **push** and **pop**

- **Queues (often called FIFO Queues):**
 - Container of objects that are inserted and removed according to First-In First-Out (FIFO) principle:
 - Only the element that has been in the queue the longest can be removed.
 - Insert and remove are usually called **enqueue** and **dequeue**
 - Elements are inserted at the rear of the queue and are removed from the front.
Stacks and Queues

- **Stacks:**
 - Container of objects that are inserted and removed according to **Last-In First-Out (LIFO)** principle:
 - Only the most-recently inserted object can be removed.
 - Insert and remove are usually called **push** and **pop**
 - Queues (often called **FIFO Queues**)

"CompSci 161—Fall 2021—©M. B. Dillencourt—University of California, Irvine"
Stacks and Queues

- **Stacks:**
 - Container of objects that are inserted and removed according to Last-In First-Out (LIFO) principle:
 - Only the most-recently inserted object can be removed.
 - Insert and remove are usually called **push** and **pop**

- **Queues (often called FIFO Queues):**
 - Container of objects that are inserted and removed according to First-In First-Out (FIFO) principle:
Stacks and Queues

- **Stacks:**
 - Container of objects that are inserted and removed according to Last-In First-Out (LIFO) principle:
 - Only the most-recently inserted object can be removed.
 - Insert and remove are usually called *push* and *pop*

- **Queues (often called FIFO Queues):**
 - Container of objects that are inserted and removed according to First-In First-Out (FIFO) principle:
 - Only the element that has been in the queue the longest can be removed.
Stacks and Queues

- **Stacks:**
 - Container of objects that are inserted and removed according to Last-In First-Out (LIFO) principle:
 - Only the most-recently inserted object can be removed.
 - Insert and remove are usually called **push** and **pop**

- **Queues (often called FIFO Queues):**
 - Container of objects that are inserted and removed according to First-In First-Out (FIFO) principle:
 - Only the element that has been in the queue the longest can be removed.
 - Insert and remove are usually called **enqueue** and **dequeue**
Stacks and Queues

- **Stacks:**
 - Container of objects that are inserted and removed according to Last-In First-Out (LIFO) principle:
 - Only the most-recently inserted object can be removed.
 - Insert and remove are usually called **push** and **pop**

- **Queues (often called FIFO Queues)**
 - Container of objects that are inserted and removed according to First-In First-Out (FIFO) principle:
 - Only the element that has been in the queue the longest can be removed.
 - Insert and remove are usually called **enqueue** and **dequeue**
 - Elements are inserted at the **rear** of the queue and are removed from the **front**
Dictionaries/Maps

A Dictionary (or Map) stores <key,value> pairs, which are often referred to as items.

- There can be at most one item with a given key.

Examples:
1. <Student ID, Student data>
2. <Object ID, Object data>
Dictionaries/Maps

- Dictionaries

A Dictionary (or Map) stores \langle key, value \rangle pairs, which are often referred to as items. There can be at most one item with a given key.

Examples:
1. \langle Student ID, Student data \rangle
2. \langle Object ID, Object data \rangle
Dictionaries/Maps

- Dictionaries
 - A Dictionary (or Map) stores \(<key, value>\) pairs, which are often referred to as items.
Dictionaries/Maps

- Dictionaries
 - A Dictionary (or Map) stores $<\text{key}, \text{value}>$ pairs, which are often referred to as items.
 - There can be at most one item with a given key.
Dictionaries/Maps

- Dictionaries
 - A Dictionary (or Map) stores `<key, value>` pairs, which are often referred to as items.
 - There can be at most one item with a given key.
 - Examples:
Dictionaries/Maps

- Dictionaries
 - A Dictionary (or Map) stores `<key, value>` pairs, which are often referred to as items.
 - There can be at most one item with a given key.
 - Examples:
 1. `<Student ID, Student data>`
Dictionaries/Maps

- **Dictionaries**
 - A *Dictionary* (or *Map*) stores `<key, value>` pairs, which are often referred to as *items*.
 - There can be at most item with a given key.
 - Examples:
 1. `<Student ID, Student data>`
 2. `<Object ID, Object data>`
Hashing

An efficient method for implementing a dictionary.

- **A hash table**, an array of size N.
- **A hash function**, which maps any key from the set of possible keys to an integer in the range $[0, N - 1]$.
- **A collision strategy**, which determines what to do when two keys are mapped to the same table location by the hash function.

Commonly used collision strategies are:
- **Chaining**
- **Open addressing**: linear probing, quadratic probing, double hashing
- **Cuckoo hashing**

Hashing is fast:
- $O(1)$ expected time for access, insertion
- Cuckoo hashing improves the access time to $O(1)$ worst-case time. Insertion time remains $O(1)$ expected time.

Disadvantages on next slide.
Hashing

An efficient method for implementing a dictionary.
Hashing

An efficient method for implementing a dictionary. Uses
Hashing

An efficient method for implementing a dictionary. Uses

- A hash table, an array of size N.

Commonly used collision strategies are:

- Chaining
- Open addressing: linear probing, quadratic probing, double hashing
- Cuckoo hashing

Hashing is fast:

- $O(1)$ expected time for access, insertion
- Cuckoo hashing improves the access time to $O(1)$ worst-case time. Insertion time remains $O(1)$ expected time.

Disadvantages on next slide.
Hashing

An efficient method for implementing a dictionary. Uses

- A hash table, an array of size N.
- A hash function, which maps any key from the set of possible keys to an integer in the range $[0, N - 1]$
Hashing

An efficient method for implementing a dictionary. Uses

- A hash table, an array of size N.
- A hash function, which maps any key from the set of possible keys to an integer in the range $[0, N - 1]$
- A collision strategy, which determines what to do when two keys are mapped to the same table location by the hash function.

Hashing is fast:

- $O(1)$ expected time for access, insertion
- Cuckoo hashing improves the access time to $O(1)$ worst-case time. Insertion time remains $O(1)$ expected time.

Disadvantages on next slide.
Hashing

An efficient method for implementing a dictionary. Uses

- A hash table, an array of size \(N \).
- A hash function, which maps any key from the set of possible keys to an integer in the range \([0, N - 1]\).
- A collision strategy, which determines what to do when two keys are mapped to the same table location by the hash function. Commonly used collision strategies are:

- Chaining
- Open addressing: linear probing, quadratic probing, double hashing
- Cuckoo hashing

Hashing is fast:

- \(O(1) \) expected time for access, insertion
- Cuckoo hashing improves the access time to \(O(1) \) worst-case time. Insertion time remains \(O(1) \) expected time.

Disadvantages on next slide.
Hashing

An efficient method for implementing a dictionary. Uses

- A hash table, an array of size N.
- A hash function, which maps any key from the set of possible keys to an integer in the range $[0, N - 1]$
- A collision strategy, which determines what to do when two keys are mapped to the same table location by the hash function. Commonly used collision strategies are:
 - Chaining
Hashing

An efficient method for implementing a dictionary. Uses

- A hash table, an array of size N.
- A hash function, which maps any key from the set of possible keys to an integer in the range $[0, N - 1]$.
- A collision strategy, which determines what to do when two keys are mapped to the same table location by the hash function. Commonly used collision strategies are:
 - Chaining
 - Open addressing: linear probing, quadratic probing, double hashing

Hashing is fast:

- $O(1)$ expected time for access, insertion
- Cuckoo hashing improves the access time to $O(1)$ worst-case time. Insertion time remains $O(1)$ expected time.
Hashing

An efficient method for implementing a dictionary. Uses

- A **hash table**, an array of size N.
- A **hash function**, which maps any key from the set of possible keys to an integer in the range $[0, N - 1]$.
- A **collision strategy**, which determines what to do when two keys are mapped to the same table location by the hash function. Commonly used collision strategies are:
 - Chaining
 - Open addressing: linear probing, quadratic probing, double hashing
 - Cuckoo hashing

Hashing is fast:
- $O(1)$ expected time for access, insertion
- Cuckoo hashing improves the access time to $O(1)$ worst-case time. Insertion time remains $O(1)$ expected time.

Disadvantages on next slide.
Hashing

An efficient method for implementing a dictionary. Uses

- A hash table, an array of size N.
- A hash function, which maps any key from the set of possible keys to an integer in the range $[0, N - 1]$.
- A collision strategy, which determines what to do when two keys are mapped to the same table location by the hash function. Commonly used collision strategies are:
 - Chaining
 - Open addressing: linear probing, quadratic probing, double hashing
 - Cuckoo hashing

Hashing is fast:
Hashing

An efficient method for implementing a dictionary. Uses

- A hash table, an array of size N.
- A hash function, which maps any key from the set of possible keys to an integer in the range $[0, N − 1]$
- A collision strategy, which determines what to do when two keys are mapped to the same table location by the hash function. Commonly used collision strategies are:
 - Chaining
 - Open addressing: linear probing, quadratic probing, double hashing
 - Cuckoo hashing

Hashing is fast:

- $O(1)$ expected time for access, insertion
Hashing

An efficient method for implementing a dictionary. Uses

- A hash table, an array of size N.
- A hash function, which maps any key from the set of possible keys to an integer in the range $[0, N - 1]$.
- A collision strategy, which determines what to do when two keys are mapped to the same table location by the hash function. Commonly used collision strategies are:
 - Chaining
 - Open addressing: linear probing, quadratic probing, double hashing
 - Cuckoo hashing

Hashing is fast:

- $O(1)$ expected time for access, insertion
- Cuckoo hashing improves the access time to $O(1)$ worst-case time. Insertion time remains $O(1)$ expected time.
Hashing

An efficient method for implementing a dictionary. Uses

- A hash table, an array of size N.
- A hash function, which maps any key from the set of possible keys to an integer in the range $[0, N - 1]$.
- A collision strategy, which determines what to do when two keys are mapped to the same table location by the hash function. Commonly used collision strategies are:
 - Chaining
 - Open addressing: linear probing, quadratic probing, double hashing
 - Cuckoo hashing

Hashing is fast:

- $O(1)$ expected time for access, insertion
- Cuckoo hashing improves the access time to $O(1)$ worst-case time. Insertion time remains $O(1)$ expected time.
Binary Trees: a quick review
Binary Trees: a quick review

We will use as a data structure and as a tool for analyzing algorithms.
Binary Trees: a quick review

We will use as a data structure and as a tool for analyzing algorithms.

The depth of a binary tree is the maximum of the levels of all its leaves.
Traversing binary trees

Preorder: root, left subtree (in preorder), right subtree (in preorder):
ABDGHCEF

Inorder: left subtree (in inorder), root, right subtree (in inorder):
GDHBAECF

Postorder: left subtree (in postorder), right subtree (in postorder), root:
GHDBEFCA

Breadth-first order (level order): level 0 left-to-right, then level 1 left-to-right, ...:
ABCDEFGH
Traversing binary trees

- **Preorder:** root, left subtree (in preorder), right subtree (in preorder): \textit{ABDGHCEF}
Traversing binary trees

- **Preorder**: root, left subtree (in preorder), right subtree (in preorder): \(ABDGHCEF \)
- **Inorder**: left subtree (in inorder), root, right subtree (in inorder): \(GDHBAECF \)
Traversing binary trees

- **Preorder**: root, left subtree (in preorder), right subtree (in preorder): $ABDGHCEF$
- **Inorder**: left subtree (in inorder), root, right subtree (in inorder): $GDHBAECF$
- **Postorder**: left subtree (in postorder), right subtree (in postorder), root: $GHDBEFCA$
Traversing binary trees

- **Preorder**: root, left subtree (in preorder), right subtree (in preorder): \textit{ABDGHCEF}
- **Inorder**: left subtree (in inorder), root, right subtree (in inorder): \textit{GDHBAECF}
- **Postorder**: left subtree (in postorder), right subtree (in postorder), root: \textit{GHDBEFCA}
- **Breadth-first order (level order)**: level 0 left-to-right, then level 1 left-to-right, . . . : \textit{ABCDEFGH}
Facts about binary trees

1. There are at most 2^k nodes at level k.
2. A binary tree with depth d has:
 - At most 2^d leaves.
 - At most $2^{d+1} - 1$ nodes.
3. A binary tree with n leaves has depth $\geq \lceil \log_2 n \rceil$.
4. A binary tree with n nodes has depth $\geq \lfloor \log_2 n \rfloor$.
Facts about binary trees

1. There are at most 2^k nodes at level k.
Facts about binary trees

1. There are at most 2^k nodes at level k.
2. A binary tree with depth d has:
 - At most 2^d leaves.
Facts about binary trees

1. There are at most 2^k nodes at level k.
2. A binary tree with depth d has:
 - At most 2^d leaves.
 - At most $2^{d+1} - 1$ nodes.
Facts about binary trees

1. There are at most 2^k nodes at level k.
2. A binary tree with depth d has:
 - At most 2^d leaves.
 - At most $2^{d+1} - 1$ nodes.
3. A binary tree with n leaves has depth $\geq \lceil \lg n \rceil$.
Facts about binary trees

1. There are at most 2^k nodes at level k.
2. A binary tree with depth d has:
 - At most 2^d leaves.
 - At most $2^{d+1} - 1$ nodes.
3. A binary tree with n leaves has depth $\geq \lceil \lg n \rceil$.
4. A binary tree with n nodes has depth $\geq \lfloor \lg n \rfloor$.
Binary search trees

- Function as ordered dictionaries. (Can find successors, predecessors)
- Find, insert, and remove can all be done in $O(h)$ time (h = tree height)
- AVL trees, Red-Black Trees, Weak AVL trees: $h = O(\log n)$, so find, insert, and remove can all be done in $O(\log n)$ time.
- Splay trees and Skip Lists: alternatives to balanced trees
- Can traverse the tree and list all items in $O(n)$ time.

[GT] Chapters 3–4 for details
Binary search trees

- Function as ordered dictionaries. (Can find successors, predecessors)
Binary search trees

- Function as ordered dictionaries. (Can find successors, predecessors)
- find, insert, and remove can all be done in $O(h)$ time ($h =$ tree height)
Binary search trees

- Function as ordered dictionaries. (Can find successors, predecessors)
- find, insert, and remove can all be done in $O(h)$ time ($h =$ tree height)
- AVL trees, Red-Black Trees, Weak AVL trees: $h = O(\log n)$, so find, insert, and remove can all be done in $O(\log n)$ time.
Binary search trees

- Function as ordered dictionaries. (Can find successors, predecessors)
- find, insert, and remove can all be done in $O(h)$ time ($h = \text{tree height}$)
- AVL trees, Red-Black Trees, Weak AVL trees: $h = O(\log n)$, so find, insert, and remove can all be done in $O(\log n)$ time.
- Splay trees and Skip Lists: alternatives to balanced trees
Binary search trees

- Function as ordered dictionaries. (Can find successors, predecessors)
- find, insert, and remove can all be done in $O(h)$ time ($h =$ tree height)
- AVL trees, Red-Black Trees, Weak AVL trees: $h = O(\log n)$, so find, insert, and remove can all be done in $O(\log n)$ time.
- Splay trees and Skip Lists: alternatives to balanced trees
- Can traverse the tree and list all items in $O(n)$ time.
Binary search trees

- Function as ordered dictionaries. (Can find successors, predecessors)
- find, insert, and remove can all be done in $O(h)$ time ($h =$ tree height)
- AVL trees, Red-Black Trees, Weak AVL trees: $h = O(\log n)$, so find, insert, and remove can all be done in $O(\log n)$ time.
- Splay trees and Skip Lists: alternatives to balanced trees
- Can traverse the tree and list all items in $O(n)$ time.
- [GT] Chapters 3–4 for details
Binary Search: Searching in a sorted array

Input is a sorted array \(A \) and an item \(x \). Problem is to locate \(x \) in the array.

Several variants of the problem, for example:

1. Determine whether \(x \) is stored in the array
2. Find the largest \(i \) such that \(A[i] \leq x \) (with a reasonable convention if \(x < A[0] \)).

We will focus on the first variant.

We will show that binary search is an optimal algorithm for solving this problem.
Binary Search: Searching in a sorted array

- Input is a sorted array A and an item x.
Binary Search: Searching in a sorted array

- Input is a sorted array A and an item x.
- Problem is to locate x in the array.
Binary Search: Searching in a sorted array

- Input is a sorted array A and an item x.
- Problem is to locate x in the array.
- Several variants of the problem, for example
Binary Search: Searching in a sorted array

- Input is a sorted array A and an item x.
- Problem is to locate x in the array.
- Several variants of the problem, for example...
 1. Determine whether x is stored in the array
Binary Search: Searching in a sorted array

- Input is a sorted array A and an item x.
- Problem is to locate x in the array.
- Several variants of the problem, for example...
 1. Determine whether x is stored in the array
 2. Find the largest i such that $A[i] \leq x$ (with a reasonable convention if $x < A[0]$).

We will focus on the first variant.

We will show that binary search is an optimal algorithm for solving this problem.
Binary Search: Searching in a sorted array

- Input is a sorted array A and an item x.
- Problem is to locate x in the array.
- Several variants of the problem, for example...
 1. Determine whether x is stored in the array
 2. Find the largest i such that $A[i] \leq x$ (with a reasonable convention if $x < A[0]$).

We will focus on the first variant.
Binary Search: Searching in a sorted array

- Input is a sorted array A and an item x.
- Problem is to locate x in the array.
- Several variants of the problem, for example...
 1. Determine whether x is stored in the array
 2. Find the largest i such that $A[i] \leq x$ (with a reasonable convention if $x < A[0]$).

We will focus on the first variant.

- We will show that binary search is an optimal algorithm for solving this problem.
Binary Search: Searching in a sorted array

Input:
- A: Sorted array with \(n \) entries \([0 \ldots n-1]\)
- x: Item we are seeking

Output:
- Location of \(x \), if \(x \) found
- \(-1\), if \(x \) not found

```python
def binarySearch(A, x, first, last):
    if first > last:
        return (-1)
    else:
        mid = \lfloor \frac{first + last}{2} \rfloor
        if x == A[mid]:
            return mid
        elif x < A[mid]:
            return binarySearch(A, x, first, mid - 1)
        else:
            return binarySearch(A, x, mid + 1, last)

binarySearch(A, x, 0, n-1)
```
Binary Search: Searching in a sorted array

Input:
- \(A \): Sorted array with \(n \) entries [0..\(n - 1 \)]
- \(x \): Item we are seeking

Output:
- Location of \(x \), if \(x \) found
- \(-1\), if \(x \) not found

```python
def binarySearch(A, x, first, last):
    if first > last:
        return (-1)
    else:
        mid = \lfloor (first + last) / 2 \rfloor
        if x == A[mid]:
            return mid
        elif x < A[mid]:
            return binarySearch(A, x, first, mid - 1)
        else:
            return binarySearch(A, x, mid + 1, last)

binarySearch(A, x, 0, n - 1)
```
Binary Search: Searching in a sorted array

Input:
A: Sorted array with \(n \) entries \([0..n - 1]\)
x: Item we are seeking

Output: Location of \(x \), if \(x \) found
-1, if \(x \) not found
Binary Search: Searching in a sorted array

Input:
A: Sorted array with \(n \) entries \([0..n - 1]\)
x: Item we are seeking

Output: Location of \(x \), if \(x \) found
-1, if \(x \) not found

```python
def binarySearch(A, x, first, last):
    if first > last:
        return (-1)
    else:
        mid = \lfloor (first+last)/2 \rfloor
        if x == A[mid]:
            return mid
        else if x < A[mid]:
            return binarySearch(A, x, first, mid-1)
        else:
            return binarySearch(A, x, mid+1, last)

binarySearch(A, x, 0, n-1)
```
Correctness of Binary Search

We need to prove two things:

1. If x is in the array, its location in the array (its index) is between \textit{first} and \textit{last}, inclusive.

 Note that this is equivalent to:

 Either x is not in the array, or its location is between \textit{first} and \textit{last}, inclusive.

2. On each recursive call, the difference $\textit{last} - \textit{first}$ gets strictly smaller.
Correctness of Binary Search

We need to prove two things:

1. If x is in the array, its location in the array (its index) is between \texttt{first} and \texttt{last}, inclusive. Note that this is equivalent to:
 \begin{align*}
 \text{Either } x \text{ is not in the array, or its location is between } \texttt{first} \text{ and } \texttt{last}, \text{ inclusive.}
 \end{align*}

2. On each recursive call, the difference $\texttt{last} - \texttt{first}$ gets strictly smaller.
Correctness of Binary Search

We need to prove two things:

1. If \(x \) is in the array, its location in the array (its index) is between \(first \) and \(last \), inclusive.
Correctness of Binary Search

We need to prove two things:

1. If x is in the array, its location in the array (its index) is between first and last, inclusive.

Note that this is equivalent to:

\[\text{Either } x \text{ is not in the array, or its location is between first and last, inclusive.} \]
Correctness of Binary Search

We need to prove two things:

1. If \(x \) is in the array, its location in the array (its index) is between \(\text{first} \) and \(\text{last} \), inclusive.
 Note that this is equivalent to:

 \[
 \text{Either } x \text{ is not in the array, or its location is between } \text{first} \text{ and } \text{last}, \text{ inclusive.}
 \]

2. On each recursive call, the difference \(\text{last} - \text{first} \) gets strictly smaller.
Correctness of Binary Search

To prove that the invariant continues to hold, we need to consider three cases.
Correctness of Binary Search

To prove that the invariant continues to hold, we need to consider three cases.

1. \(\text{last} \geq \text{first} + 2 \)
Correctness of Binary Search

To prove that the invariant continues to hold, we need to consider three cases.

1. \(\text{last } \geq \text{first } + 2 \)

2. \(\text{last } = \text{first } + 1 \)
Correctness of Binary Search

To prove that the invariant continues to hold, we need to consider three cases.

1. \(\text{last} \geq \text{first} + 2 \)

2. \(\text{last} = \text{first} + 1 \)

3. \(\text{last} = \text{first} \)
Binary Search: Analysis of Running Time

We will count the number of 3-way comparisons of x against elements of A. (also known as decisions)

Rationale:
1. This is the essentially the same as the number of recursive calls. Every recursive call, except for possibly the very last one, results in a 3-way comparison.
2. Gives us a way to compare binary search against other algorithms that solve the same problem: searching for an item in an array by comparing the item against array entries.
We will count the number of 3-way comparisons of x against elements of A. (also known as decisions)
Binary Search: Analysis of Running Time

- We will count the number of 3-way comparisons of x against elements of A. (also known as decisions)
- Rationale:
Binary Search: Analysis of Running Time

- We will count the number of 3-way comparisons of x against elements of A. (also known as decisions)
- Rationale:
 1. This is the essentially the same as the number of recursive calls. Every recursive call, except for possibly the very last one, results in a 3-way comparison.
Binary Search: Analysis of Running Time

- We will count the number of 3-way comparisons of x against elements of A. (also known as decisions)
- Rationale:
 1. This is the essentially the same as the number of recursive calls. Every recursive call, except for possibly the very last one, results in a 3-way comparison.
 2. Gives us a way to compare binary search against other algorithms that solve the same problem: searching for an item in an array by comparing the item against array entries.
Binary Search: Analysis of Running Time (continued)

Binary search in an array of size 1: 1 decision

Binary search in an array of size $n > 1$: after 1 decision, either we are done, or the problem is reduced to binary search in a subarray with a worst-case size of $\lfloor n/2 \rfloor$

So the worst-case time to do binary search on an array of size n is $T(n)$, where $T(n)$ satisfies the equation

$$T(n) = \begin{cases}
1 & \text{if } n = 1 \\
1 + T(\lfloor n/2 \rfloor) & \text{otherwise}
\end{cases}$$

The solution to this equation is:

$$T(n) = \lfloor \log_2 n \rfloor + 1$$

This can be proved by induction.

So binary search does $\lfloor \log_2 n \rfloor + 1$ 3-way comparisons on an array of size n, in the worst case.
Binary Search: Analysis of Running Time (continued)

- Binary search in an array of size 1: 1 decision
Binary Search: Analysis of Running Time (continued)

- Binary search in an array of size 1: 1 decision
- Binary search in an array of size $n > 1$: after 1 decision, either we are done, or the problem is reduced to binary search in a subarray with a worst-case size of $\lfloor n/2 \rfloor$
Binary Search: Analysis of Running Time (continued)

- Binary search in an array of size 1: 1 decision
- Binary search in an array of size $n > 1$: after 1 decision, either we are done, or the problem is reduced to binary search in a subarray with a worst-case size of $\lfloor n/2 \rfloor$
- So the worst-case time to do binary search on an array of size n is $T(n)$, where $T(n)$ satisfies the equation

$$T(n) = \begin{cases}
1 & \text{if } n = 1 \\
1 + T(\lfloor n/2 \rfloor) & \text{otherwise}
\end{cases}$$
Binary Search: Analysis of Running Time (continued)

- Binary search in an array of size 1: 1 decision
- Binary search in an array of size $n > 1$: after 1 decision, either we are done, or the problem is reduced to binary search in a subarray with a worst-case size of $\lfloor n/2 \rfloor$
- So the worst-case time to do binary search on an array of size n is $T(n)$, where $T(n)$ satisfies the equation

\[
T(n) = \begin{cases}
1 & \text{if } n = 1 \\
1 + T(\lfloor n/2 \rfloor) & \text{otherwise}
\end{cases}
\]

- The solution to this equation is:

\[
T(n) = \lfloor \lg n \rfloor + 1
\]

This can be proved by induction.
Binary Search: Analysis of Running Time (continued)

- Binary search in an array of size 1: 1 decision
- Binary search in an array of size $n > 1$: after 1 decision, either we are done, or the problem is reduced to binary search in a subarray with a worst-case size of $\lfloor n/2 \rfloor$
- So the worst-case time to do binary search on an array of size n is $T(n)$, where $T(n)$ satisfies the equation

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 1 + T(\lfloor n/2 \rfloor) & \text{otherwise} \end{cases}$$

- The solution to this equation is:

$$T(n) = \lfloor \lg n \rfloor + 1$$

This can be proved by induction.
- So binary search does $\lfloor \lg n \rfloor + 1$ 3-way comparisons on an array of size n, in the worst case.
Optimality of binary search

We will establish a lower bound on the worst-case number of decisions required to find an item in an array, using only 3-way comparisons of the item against array entries.

The lower bound we will establish is $\lceil \log_2 n \rceil + 1$ 3-way comparisons.

Since Binary Search performs within this bound, it is optimal.

Our lower bound is established using a Decision Tree model.

Note that the bound is exact (not just asymptotic).

Our lower bound is on the worst case.

It says: for every algorithm for finding an item in an array of size n, there is some input that forces it to perform $\lceil \log_2 n \rceil + 1$ comparisons.

It does not say: for every algorithm for finding an item in an array of size n, every input forces it to perform $\lceil \log_2 n \rceil + 1$ comparisons.
Optimality of binary search

- We will establish a lower bound on the worst-case number of decisions required to find an item in an array, using only 3-way comparisons of the item against array entries.
Optimality of binary search

- We will establish a lower bound on the worst-case number of decisions required to find an item in an array, using only 3-way comparisons of the item against array entries.
- The lower bound we will establish is \(\lceil \lg n \rceil + 1 \) 3-way comparisons.
- Since Binary Search performs within this bound, it is optimal.
- Our lower bound is established using a Decision Tree model.
- Note that the bound is exact (not just asymptotic).
- Our lower bound is on the worst case.
- It says: for every algorithm for finding an item in an array of size \(n \), there is some input that forces it to perform \(\lceil \lg n \rceil + 1 \) comparisons.
- It does not say: for every algorithm for finding an item in an array of size \(n \), every input forces it to perform \(\lceil \lg n \rceil + 1 \) comparisons.
Optimality of binary search

- We will establish a lower bound on the worst-case number of decisions required to find an item in an array, using only 3-way comparisons of the item against array entries.
- The lower bound we will establish is $\lceil \lg n \rceil + 1$ 3-way comparisons.
- Since Binary Search performs within this bound, it is optimal.
Optimality of binary search

- We will establish a lower bound on the worst-case number of decisions required to find an item in an array, using only 3-way comparisons of the item against array entries.
- The lower bound we will establish is $\lceil \lg n \rceil + 1$ 3-way comparisons.
- Since Binary Search performs within this bound, it is optimal.
- Our lower bound is established using a Decision Tree model.
Optimality of binary search

▶ We will establish a lower bound on the worst-case number of decisions required to find an item in an array, using only 3-way comparisons of the item against array entries.
▶ The lower bound we will establish is $\lceil \lg n \rceil + 1$ 3-way comparisons.
▶ Since Binary Search performs within this bound, it is optimal.
▶ Our lower bound is established using a Decision Tree model.
▶ Note that the bound is exact (not just asymptotic)
Optimality of binary search

- We will establish a lower bound on the worst-case number of decisions required to find an item in an array, using only 3-way comparisons of the item against array entries.
- The lower bound we will establish is \(\lfloor \log n \rfloor + 1 \) 3-way comparisons.
- Since Binary Search performs within this bound, it is optimal.
- Our lower bound is established using a Decision Tree model.
- Note that the bound is exact (not just asymptotic)
- Our lower bound is on the worst case
Optimality of binary search

- We will establish a lower bound on the worst-case number of decisions required to find an item in an array, using only 3-way comparisons of the item against array entries.
- The lower bound we will establish is $\lceil \lg n \rceil + 1$ 3-way comparisons.
- Since Binary Search performs within this bound, it is optimal.
- Our lower bound is established using a Decision Tree model.
- Note that the bound is exact (not just asymptotic).
- Our lower bound is on the worst case
 - It says: for every algorithm for finding an item in an array of size n, there is some input that forces it to perform $\lceil \lg n \rceil + 1$ comparisons.
Optimality of binary search

- We will establish a lower bound on the worst-case number of decisions required to find an item in an array, using only 3-way comparisons of the item against array entries.
- The lower bound we will establish is \(\lceil \lg n \rceil + 1 \) 3-way comparisons.
- Since Binary Search performs within this bound, it is optimal.
- Our lower bound is established using a Decision Tree model.
- Note that the bound is exact (not just asymptotic)
- Our lower bound is on the worst case
 - \textbf{It says:} for every algorithm for finding an item in an array of size \(n \), there is some input that forces it to perform \(\lceil \lg n \rceil + 1 \) comparisons.
 - \textbf{It does not say:} for every algorithm for finding an item in an array of size \(n \), every input forces it to perform \(\lceil \lg n \rceil + 1 \) comparisons.
The decision tree model for searching in an array

Consider any algorithm that searches for an item \(x \) in an array \(A \) of size \(n \) by comparing entries in \(A \) against \(x \). Any such algorithm can be modeled as a decision tree:

- Each node is labeled with an integer \(\in \{0, \ldots, n-1\} \).
- A node labeled \(i \) represents a 3-way comparison between \(x \) and \(A[i] \).
- The left subtree of a node labeled \(i \) describes the decision tree for what happens if \(x < A[i] \).
- The right subtree of a node labeled \(i \) describes the decision tree for what happens if \(x > A[i] \).

Example: Decision tree for binary search with \(n = 13 \):

```
  1 3 5 8 10 12
  0 4 7 11
  2 9
  6
```
The decision tree model for searching in an array

Consider any algorithm that searches for an item \(x \) in an array \(A \) of size \(n \) by comparing entries in \(A \) against \(x \). Any such algorithm can be modeled as a decision tree:

Example: Decision tree for binary search with \(n = 13 \):
The decision tree model for searching in an array

Consider any algorithm that searches for an item x in an array A of size n by comparing entries in A against x. Any such algorithm can be modeled as a decision tree:

- Each node is labeled with an integer $\in \{0 \ldots n - 1\}$.

Example: Decision tree for binary search with $n = 13$:
The decision tree model for searching in an array

Consider any algorithm that searches for an item x in an array A of size n by comparing entries in A against x. Any such algorithm can be modeled as a decision tree:

- Each node is labeled with an integer $\in \{0 \ldots n - 1\}$.
- A node labeled i represents a 3-way comparison between x and $A[i]$.

Example: Decision tree for binary search with $n = 13$:

![Decision tree diagram]
The decision tree model for searching in an array

Consider any algorithm that searches for an item x in an array A of size n by comparing entries in A against x. Any such algorithm can be modeled as a decision tree:

- Each node is labeled with an integer $\in \{0 \ldots n - 1\}$.
- A node labeled i represents a 3-way comparison between x and $A[i]$.
- The left subtree of a node labeled i describes the decision tree for what happens if $x < A[i]$.

Example: Decision tree for binary search with $n = 13$:

```
                          6
                         / \             / \   \
                        2   9         7   11
                       /   \           /   \   \
                      0     4       8     10
                     /     \       /     \   \
                    1      3     11      12
```

CompSci 161—Fall 2021—©M. B. Dillencourt—University of California, Irvine
The decision tree model for searching in an array

Consider any algorithm that searches for an item x in an array A of size n by comparing entries in A against x. Any such algorithm can be modeled as a decision tree:

- Each node is labeled with an integer $\in \{0\ldots n - 1\}$.
- A node labeled i represents a 3-way comparison between x and $A[i]$.
- The left subtree of a node labeled i describes the decision tree for what happens if $x < A[i]$.
- The right subtree of a node labeled i describes the decision tree for what happens if $x > A[i]$.

Example: Decision tree for binary search with $n = 13$:
Lower bound on locating an item in an array of size n

Any algorithm for searching an array of size n can be modeled by a decision tree with at least n nodes.

Since the decision tree is a binary tree with n nodes, the depth is at least $\lfloor \log_2 n \rfloor$.

The worst-case number of comparisons for the algorithm is the depth of the decision tree +1. (Remember, root has depth 0).

Hence any algorithm for locating an item in an array of size n using only comparisons must perform at least $\lfloor \log_2 n \rfloor + 1$ comparisons in the worst case.

So binary search is optimal with respect to worst-case performance.
Lower bound on locating an item in an array of size n

1. Any algorithm for searching an array of size n can be modeled by a decision tree with at least n nodes.
Lower bound on locating an item in an array of size n

1. Any algorithm for searching an array of size n can be modeled by a decision tree with at least n nodes.

2. Since the decision tree is a binary tree with n nodes, the depth is at least $\lceil \lg n \rceil$.
Lower bound on locating an item in an array of size n

1. Any algorithm for searching an array of size n can be modeled by a decision tree with at least n nodes.

2. Since the decision tree is a binary tree with n nodes, the depth is at least $\lceil \lg n \rceil$.

3. The worst-case number of comparisons for the algorithm is the depth of the decision tree $+ 1$. (Remember, root has depth 0).
Lower bound on locating an item in an array of size n

1. Any algorithm for searching an array of size n can be modeled by a decision tree with at least n nodes.

2. Since the decision tree is a binary tree with n nodes, the depth is at least $\lceil \lg n \rceil$.

3. The worst-case number of comparisons for the algorithm is the depth of the decision tree + 1. (Remember, root has depth 0).

Hence any algorithm for locating an item in an array of size n using only comparisons must perform at least $\lceil \lg n \rceil + 1$ comparisons in the worst case.
1. Any algorithm for searching an array of size n can be modeled by a decision tree with at least n nodes.

2. Since the decision tree is a binary tree with n nodes, the depth is at least $\lfloor \lg n \rfloor$.

3. The worst-case number of comparisons for the algorithm is the depth of the decision tree $+ 1$. (Remember, root has depth 0).

Hence any algorithm for locating an item in an array of size n using only comparisons must perform at least $\lfloor \lg n \rfloor + 1$ comparisons in the worst case.

So binary search is optimal with respect to worst-case performance.
Sorting

- Rearranging a list of items in nondescending order.
- Useful preprocessing step (e.g., for binary search).
- Important step in other algorithms.
- Illustrates more general algorithmic techniques.

We will discuss:
- Comparison-based sorting algorithms (Insertion sort, Selection Sort, Quicksort, Mergesort, Heapsort).
- Bucket-based sorting methods.
Sorting

- Rearranging a list of items in nondescending order.
Sorting

- Rearranging a list of items in nondescending order.
- Useful preprocessing step (e.g., for binary search)
Sorting

- Rearranging a list of items in nondescending order.
- Useful preprocessing step (e.g., for binary search)
- Important step in other algorithms
Sorting

- Rearranging a list of items in nondescending order.
- Useful preprocessing step (e.g., for binary search)
- Important step in other algorithms
- Illustrates more general algorithmic techniques
Sorting

- Rearranging a list of items in nondescending order.
- Useful preprocessing step (e.g., for binary search)
- Important step in other algorithms
- Illustrates more general algorithmic techniques

We will discuss

Comparison-based sorting algorithms (Insertion sort, Selection Sort, Quicksort, Mergesort, Heapsort)

Bucket-based sorting methods
Sorting

- Rearranging a list of items in nondescending order.
- Useful preprocessing step (e.g., for binary search)
- Important step in other algorithms
- Illustrates more general algorithmic techniques

We will discuss

- Comparison-based sorting algorithms (Insertion sort, Selection Sort, Quicksort, Mergesort, Heapsort)
Sorting

- Rearranging a list of items in nondescending order.
- Useful preprocessing step (e.g., for binary search)
- Important step in other algorithms
- Illustrates more general algorithmic techniques

We will discuss

- Comparison-based sorting algorithms (Insertion sort, Selection Sort, Quicksort, Mergesort, Heapsort)
- Bucket-based sorting methods
Sorting

- Rearranging a list of items in nondescending order.
- Useful preprocessing step (e.g., for binary search)
- Important step in other algorithms
- Illustrates more general algorithmic techniques

We will discuss in the class

- Comparison-based sorting algorithms (Insertion sort, Selection Sort, Quicksort, Mergesort, Heapsort)
- Bucket-based sorting methods
Comparison-based sorting

- Basic operation: compare two items.
Comparison-based sorting

- Basic operation: compare two items.
- Abstract model.
Comparison-based sorting

- Basic operation: compare two items.
- Abstract model.
- **Advantage**: doesn’t use specific properties of the data items. So same algorithm can be used for sorting integers, strings,
Comparison-based sorting

- Basic operation: compare two items.
- Abstract model.

- **Advantage:** doesn’t use specific properties of the data items. So same algorithm can be used for sorting integers, strings, etc.

- **Disadvantage:** under certain circumstances, specific properties of the data item can speed up the sorting process.
Comparison-based sorting

- Basic operation: compare two items.
- Abstract model.
- **Advantage:** doesn’t use specific properties of the data items. So same algorithm can be used for sorting integers, strings, etc.
- **Disadvantage:** under certain circumstances, specific properties of the data item can speed up the sorting process.
- Measure of time: number of comparisons

Comparison-based sorting has lower bound of $\Omega(n \log n)$ comparisons. (We will prove this.)
Comparison-based sorting

- Basic operation: compare two items.
- Abstract model.
- **Advantage:** doesn’t use specific properties of the data items. So same algorithm can be used for sorting integers, strings, etc.
- **Disadvantage:** under certain circumstances, specific properties of the data item can speed up the sorting process.
- **Measure of time:** number of comparisons
 - Consistent with philosophy of **counting basic operations**, discussed earlier.
Comparison-based sorting

- Basic operation: compare two items.
- Abstract model.
- **Advantage:** doesn’t use specific properties of the data items. So same algorithm can be used for sorting integers, strings, etc.
- **Disadvantage:** under certain circumstances, specific properties of the data item can speed up the sorting process.
- **Measure of time:** number of comparisons
 - Consistent with philosophy of counting basic operations, discussed earlier.
 - Misleading if other operations dominate (e.g., if we sort by moving items around without comparing them)
Comparison-based sorting

- Basic operation: compare two items.
- Abstract model.
- **Advantage**: doesn’t use specific properties of the data items. So same algorithm can be used for sorting integers, strings, etc.
- **Disadvantage**: under certain circumstances, specific properties of the data item can speed up the sorting process.
- **Measure of time**: number of comparisons
 - Consistent with philosophy of counting basic operations, discussed earlier.
 - Misleading if other operations dominate (e.g., if we sort by moving items around without comparing them)
- Comparison-based sorting has lower bound of $\Omega(n \log n)$ comparisons. (We will prove this.)
$\Theta(n \log n)$ work vs. quadratic ($\Theta(n^2)$) work

\[y = \binom{n}{2} \]

\[y = 10n \log n \]
Some terminology

A permutation of a sequence of items is a reordering of the sequence. A sequence of n items has $n!$ distinct permutations.

Note: Sorting is the problem of finding a particular distinguished permutation of a list.

An inversion in a sequence or list is a pair of items such that the larger one precedes the smaller one.

Example: The list $18 \ 29 \ 12 \ 15 \ 32 \ 10$ has 9 inversions:

$\{(18,12), (18,15), (18,10), (29,12), (29,15), (29,10), (12,10), (15,10), (32,10)\}$
Some terminology

- A permutation of a sequence of items is a reordering of the sequence. A sequence of n items has $n!$ distinct permutations.
Some terminology

- A permutation of a sequence of items is a reordering of the sequence. A sequence of \(n \) items has \(n! \) distinct permutations.

- **Note:** Sorting is the problem of finding a particular distinguished permutation of a list.
Some terminology

- A permutation of a sequence of items is a reordering of the sequence. A sequence of n items has $n!$ distinct permutations.
- **Note:** Sorting is the problem of finding a particular distinguished permutation of a list.
- An inversion in a sequence or list is a pair of items such that the larger one precedes the smaller one.
Some terminology

- A **permutation** of a sequence of items is a reordering of the sequence. A sequence of n items has $n!$ distinct permutations.
- **Note:** Sorting is the problem of finding a particular distinguished permutation of a list.
- An **inversion** in a sequence or list is a pair of items such that the larger one precedes the smaller one.

Example: The list

$$18 \ 29 \ 12 \ 15 \ 32 \ 10$$

has 9 inversions:

$$\{(18,12), \ (18,15), \ (18,10), \ (29,12), \ (29,15), \ (29,10), \ (12,10), \ (15,10), \ (32,10)\}$$
Insertion sort

- Work from left to right across array
- Insert each item in correct position with respect to (sorted) elements to its left

\[
\begin{aligned}
&\text{(Sorted)} \\
&\text{(Unsorted)} \\
&\text{(Sorted)}
\end{aligned}
\]
Insertion sort

0

(Sorted)

(Unsorted)

\(k \)

(Sorted) \(x \) (Unsorted)

\(n - 1 \)

(Sorted)
Insertion sort

- Work from left to right across array

<table>
<thead>
<tr>
<th>(Sorted)</th>
<th>x</th>
<th>(Unsorted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Sorted)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Insertion sort

- Work from left to right across array
- Insert each item in correct position with respect to (sorted) elements to its left

\[
\begin{array}{cccc}
0 & (\text{Unsorted}) \\
\hline
k & (\text{Sorted}) & x & (\text{Unsorted}) \\
\hline
n-1 & (\text{Sorted}) & \text{---} & \text{---} \\
\end{array}
\]
def insertionSort(n, A):
 for k = 1 to n-1:
 x = A[k]
 j = k-1
 while (j >= 0) and (A[j] > x):
 j = j-1
 A[j+1] = x
Insertion sort example

\[
\begin{array}{cccccc}
23 & 19 & 42 & 17 & 85 & 38 \\
23 & 19 & 42 & 17 & 85 & 38 \\
19 & 23 & 42 & 17 & 85 & 38 \\
19 & 23 & 42 & 17 & 85 & 38 \\
17 & 19 & 23 & 42 & 85 & 38 \\
17 & 19 & 23 & 42 & 85 & 38 \\
17 & 19 & 23 & 38 & 42 & 85
\end{array}
\]
Analysis of Insertion Sort

- **Worst-case running time:**

 - On the \(k \)th iteration of the outer loop, element \(A[k] \) is compared with at most \(k \) elements: \(A[k-1], A[k-2], \ldots, A[0] \).

 - Total number of comparisons over all iterations is at most:
 \[
 n - 1 \sum_{k=1}^{n} k = n(n-1)/2 = O(n^2)
 \]

- Insertion Sort is a bad choice when \(n \) is large. \(O(n^2) \) vs. \(O(n \log n) \).

- Insertion Sort is a good choice when \(n \) is small. (Constant hidden in the “big oh” is small).

- Insertion Sort is efficient if the input is “almost sorted”:
 \[
 \text{Time} \leq n - 1 + \text{(number of inversions)}
 \]

- **Storage:** in place: \(O(1) \) extra storage.
Analysis of Insertion Sort

- **Worst-case running time:**
 - On kth iteration of outer loop, element $A[k]$ is compared with at most k elements:
 $A[k - 1], A[k - 2], \ldots, A[0]$.

- Total number of comparisons over all iterations is at most:
 $n - 1 \sum_{k=1}^{n} k = n(n - 1)/2 = O(n^2)$.

- Insertion Sort is a bad choice when n is large. ($O(n^2)$ vs. $O(n \log n)$).

- Insertion Sort is a good choice when n is small. (Constant hidden in the “big oh” is small).

- Insertion Sort is efficient if the input is “almost sorted”:
 - Time $\leq n - 1 + (# \text{ inversions})$
Analysis of Insertion Sort

- **Worst-case running time:**
 - On kth iteration of outer loop, element $A[k]$ is compared with at most k elements: $A[k-1], A[k-2], \ldots, A[0]$.
 - Total number comparisons over all iterations is at most:
 \[
 \sum_{k=1}^{n-1} k = \frac{n(n-1)}{2} = O(n^2).
 \]
Analysis of Insertion Sort

- **Worst-case running time:**
 - On \(k \)th iteration of outer loop, element \(A[k] \) is compared with at most \(k \) elements:
 \[A[k - 1], A[k - 2], \ldots, A[0]. \]
 - Total number comparisons over all iterations is at most:
 \[
 \sum_{k=1}^{n-1} k = \frac{n(n - 1)}{2} = O(n^2).
 \]

- Insertion Sort is a bad choice when \(n \) is large. (\(O(n^2) \) vs. \(O(n \log n) \)).
Analysis of Insertion Sort

- **Worst-case running time:**
 - On kth iteration of outer loop, element $A[k]$ is compared with at most k elements:

 $A[k - 1], A[k - 2], \ldots, A[0]$.
 - Total number comparisons over all iterations is at most:

 \[
 \sum_{k=1}^{n-1} k = \frac{n(n - 1)}{2} = O(n^2).
 \]

- Insertion Sort is a bad choice when n is large. ($O(n^2)$ vs. $O(n \log n)$).
- Insertion Sort is a good choice when n is small. (Constant hidden in the "big oh" is small).
Analysis of Insertion Sort

- **Worst-case running time:**
 - On kth iteration of outer loop, element $A[k]$ is compared with at most k elements:
 - $A[k-1], A[k-2], \ldots, A[0]$.
 - Total number comparisons over all iterations is at most:
 \[
 \sum_{k=1}^{n-1} k = \frac{n(n-1)}{2} = O(n^2).
 \]

- Insertion Sort is a bad choice when n is large. ($O(n^2)$ vs. $O(n \log n)$).
- Insertion Sort is a good choice when n is small. (Constant hidden in the "big oh" is small).
- Insertion Sort is efficient if the input is “almost sorted”:
 \[
 \text{Time} \leq n - 1 + (\# \text{ inversions})
 \]
Analysis of Insertion Sort

- **Worst-case running time:**
 - On \(k \)th iteration of outer loop, element \(A[k] \) is compared with at most \(k \) elements:
 \[
 A[k-1], \ A[k-2], \ldots, A[0].
 \]
 - Total number comparisons over all iterations is at most:
 \[
 \sum_{k=1}^{n-1} k = \frac{n(n-1)}{2} = O(n^2).
 \]

- Insertion Sort is a bad choice when \(n \) is large. (\(O(n^2) \) vs. \(O(n \log n) \)).

- Insertion Sort is a good choice when \(n \) is small. (Constant hidden in the "big oh" is small).

- Insertion Sort is efficient if the input is “almost sorted”:
 \[
 \text{Time} \leq n - 1 + (\# \text{ inversions})
 \]

- **Storage:** in place: \(O(1) \) extra storage
Selection Sort

Two variants:
1. Repeatedly (for \(i\) from 0 to \(n - 1\)) find the minimum value, output it, delete it.
 - Values are output in sorted order
2. Repeatedly (for \(i\) from \(n - 1\) down to 1)
 - Find the maximum of \(A[0], A[1], \ldots, A[i]\).
 - Swap this value with \(A[i]\) (no-op if it is already \(A[i]\)).

Both variants run in \(O(n^2)\) time if we use the straightforward approach to finding the maximum/minimum.

They can be improved by treating the items \(A[0], A[1], \ldots, A[i]\) as items in an appropriately designed priority queue. (Next set of notes)
Selection Sort

- Two variants:
Selection Sort

- Two variants:
 1. Repeatedly (for i from 0 to $n - 1$) find the minimum value, output it, delete it.
 - Values are output in sorted order

- Both variants run in $O(n^2)$ time if we use the straightforward approach to finding the maximum/minimum.

- They can be improved by treating the items $A[0], A[1], \ldots, A[i]$ as items in an appropriately designed priority queue. (Next set of notes)
Selection Sort

- Two variants:
 1. Repeatedly (for \(i\) from 0 to \(n - 1\)) find the minimum value, output it, delete it.
 - Values are output in sorted order
 2. Repeatedly (for \(i\) from \(n - 1\) down to 1)
Selection Sort

- Two variants:
 1. Repeatedly (for i from 0 to $n - 1$) find the minimum value, output it, delete it.
 - Values are output in sorted order
 2. Repeatedly (for i from $n - 1$ down to 1)
 - Find the maximum of $A[0], A[1], \ldots, A[i]$.

Both variants run in $O(n^2)$ time if we use the straightforward approach to finding the maximum/minimum. They can be improved by treating the items $A[0], A[1], \ldots, A[i]$ as items in an appropriately designed priority queue.
Selection Sort

- Two variants:
 1. Repeatedly (for i from 0 to $n - 1$) find the minimum value, output it, delete it.
 - Values are output in sorted order
 2. Repeatedly (for i from $n - 1$ down to 1)
 - Find the maximum of $A[0], A[1], \ldots, A[i]$.
 - Swap this value with $A[i]$ (no-op if it is already $A[i]$).
Selection Sort

- Two variants:
 1. Repeatedly (for i from 0 to $n - 1$) find the minimum value, output it, delete it.
 - Values are output in sorted order
 2. Repeatedly (for i from $n - 1$ down to 1)
 - Find the maximum of $A[0], A[1], \ldots, A[i]$.
 - Swap this value with $A[i]$ (no-op if it is already $A[i]$).

- Both variants run in $O(n^2)$ time if we use the straightforward approach to finding the maximum/minimum.
Selection Sort

- Two variants:
 1. Repeatedly (for \(i\) from 0 to \(n - 1\)) find the minimum value, output it, delete it.
 - Values are output in sorted order
 2. Repeatedly (for \(i\) from \(n - 1\) down to 1)
 - Find the maximum of \(A[0], A[1], \ldots, A[i]\).
 - Swap this value with \(A[i]\) (no-op if it is already \(A[i]\)).

- Both variants run in \(O(n^2)\) time if we use the straightforward approach to finding the maximum/minimum.