Algorithms and Data Structures

- An **algorithm** is a step-by-step procedure for performing some task in a finite amount of time.
 - Typically, an algorithm takes input data and produces an output based upon it.

- A **data structure** is a systematic way of organizing and accessing data.
Most algorithms transform input objects into output objects.

The running time of an algorithm typically grows with the input size.

Average case time is often difficult to determine.

We focus primarily on the worst case running time.
- Easier to analyze
- Crucial to applications such as games, finance and robotics.
Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation.
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs.
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment.
Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues
Pseudocode Details

- **Control flow**
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces

- **Method declaration**
 - Algorithm *method* (arg [, arg...])
 - Input ...
 - Output ...

- **Method call**
 - *method* (arg [, arg...])

- **Return value**
 - return *expression*

- **Expressions:**
 - Assignment
 - \(\leftarrow \)
 - Equality testing
 - \(= \)
 - Superscripts and other mathematical formatting allowed
 - \(n^2 \)
Seven Important Functions

- Seven functions that often appear in algorithm analysis:
 - Constant \(\approx 1 \)
 - Logarithmic \(\approx \log n \)
 - Linear \(\approx n \)
 - N-Log-N \(\approx n \log n \)
 - Quadratic \(\approx n^2 \)
 - Cubic \(\approx n^3 \)
 - Exponential \(\approx 2^n \)

- In a log-log chart, the slope of the line corresponds to the growth rate.
Functions Graphed Using “Normal” Scale

- $g(n) = 1$
- $g(n) = n \log n$
- $g(n) = 2^n$
- $g(n) = \log n$
- $g(n) = n^2$
- $g(n) = n^3$

© 2015 Goodrich and Tamassia

Analysis of Algorithms

Slide by Matt Stallmann included with permission.
Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important

Examples:
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
Example: By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size.

```
Algorithm arrayMax(A, n):
    Input: An array A storing n ≥ 1 integers.
    Output: The maximum element in A.
    currentMax ← A[0]
    for i ← 1 to n − 1 do
        if currentMax < A[i] then
            currentMax ← A[i]
    return currentMax
```
Growth Rate of Running Time

- Changing the hardware/software environment
 - Affects $T(n)$ by a constant factor, but
 - Does not alter the growth rate of $T(n)$

- The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm arrayMax
Why Growth Rate Matters

<table>
<thead>
<tr>
<th>if runtime is...</th>
<th>time for n + 1</th>
<th>time for 2n</th>
<th>time for 4n</th>
</tr>
</thead>
<tbody>
<tr>
<td>(cn \lg n)</td>
<td>(c \lg (n + 1))</td>
<td>(c (\lg n + 1))</td>
<td>(c(\lg n + 2))</td>
</tr>
<tr>
<td>(cn)</td>
<td>(c (n + 1))</td>
<td>(2cn)</td>
<td>(4cn)</td>
</tr>
<tr>
<td>(cn \lg n)</td>
<td>(\sim c n \lg n + cn)</td>
<td>(2cn \lg n + 2cn)</td>
<td>(4cn \lg n + 4cn)</td>
</tr>
<tr>
<td>(c n^2)</td>
<td>(\sim c n^2 + 2cn)</td>
<td>4(c n^2)</td>
<td>(16cn^2)</td>
</tr>
<tr>
<td>(c n^3)</td>
<td>(\sim c n^3 + 3cn^2)</td>
<td>(8cn^3)</td>
<td>(64cn^3)</td>
</tr>
<tr>
<td>(c 2^n)</td>
<td>(c 2^{n+1})</td>
<td>(c 2^{2n})</td>
<td>(c 2^{4n})</td>
</tr>
</tbody>
</table>

Runtime quadruples when problem size doubles.
Constant Factors

- The growth rate is minimally affected by constant factors or lower-order terms.
- Examples
 - $10^2 n + 10^5$ is a linear function.
 - $10^5 n^2 + 10^8 n$ is a quadratic function.

© 2015 Goodrich and Tamassia
The asymptotic analysis of an algorithm determines the running time in big-Oh notation.

To perform the asymptotic analysis:
- We find the worst-case number of primitive operations executed as a function of the input size.
- We express this function with big-Oh notation.

Example:
- We say that algorithm arrayMax “runs in $O(n)$ time.”

Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations.
Big-Oh Rules

- If $f(n)$ is a polynomial of degree d, then $f(n)$ is $O(n^d)$, i.e.,
 1. Drop lower-order terms
 2. Drop constant factors
- Use the smallest possible class of functions
 - Say “$2n$ is $O(n)$” instead of “$2n$ is $O(n^2)$”
- Use the simplest expression of the class
 - Say “$3n + 5$ is $O(n)$” instead of “$3n + 5$ is $O(3n)$”
Analyzing Recursive Algorithms

Use a function, $T(n)$, to derive a recurrence relation that characterizes the running time of the algorithm in terms of smaller values of n.

Algorithm `recursiveMax(A, n)`:

- **Input:** An array A storing $n \geq 1$ integers.
- **Output:** The maximum element in A.

```plaintext
if $n = 1$ then
    return $A[0]$
return \(\max\{\text{recursiveMax}(A, n - 1), A[n - 1]\}\)
```

\[
T(n) = \begin{cases}
3 & \text{if } n = 1 \\
T(n - 1) + 7 & \text{otherwise},
\end{cases}
\]
Arithmetic Progression

- Assume the running time of P is $O(1 + 2 + \ldots + n)$
- The sum of the first n integers is $\frac{n(n + 1)}{2}$
 - There is a simple visual proof of this fact
- Thus, algorithm P runs in $O(n^2)$ time
Math you need to Review

- Summations
- Powers
- Logarithms
- Proof techniques
- Basic probability

Properties of powers:
- $a^{(b+c)} = a^b a^c$
- $a^{bc} = (a^b)^c$
- $a^b /a^c = a^{(b-c)}$
- $b = a^{\log_a b}$
- $b^c = a^{c \log_a b}$

Properties of logarithms:
- $\log_b(xy) = \log_b x + \log_b y$
- $\log_b (x/y) = \log_b x - \log_b y$
- $\log_b xa = a \log_b x$
- $\log_b a = \log_x a / \log_x b$
O ("big oh")
O (“big oh”)

Informally:
\(O \) ("big oh")

Informally:

\(g \in O(f) \) if \(g \) is bounded above by a constant multiple of \(f \) (for sufficiently large values of \(n \)).
Informally:

- \(g \in O(f) \) if \(g \) is bounded above by a constant multiple of \(f \) (for sufficiently large values of \(n \)).
- \(g \in O(f) \) if “\(g \) grows no faster than (a constant multiple of) \(f \).”
Informally:

- \(g \in O(f) \) if \(g \) is bounded above by a constant multiple of \(f \) (for sufficiently large values of \(n \)).
- \(g \in O(f) \) if “\(g \) grows no faster than (a constant multiple of) \(f \).”
- \(g \in O(f) \) if the ratio \(g/f \) is bounded above by a constant (for sufficiently values of \(n \)).
O ("big oh")

Formally:

$g \in O(f)$ if and only if:

$\exists C > 0 \exists n_0 > 0 \forall n > n_0 \ g(n) \leq C \cdot f(n)$.

Equivalently:

$g \in O(f)$ if and only if:

$\exists C > 0 \exists n_0 > 0 \forall n > n_0 \ g(n) \leq C \cdot f(n)$.

Sometimes we write:

$g = O(f)$ rather than $g \in O(f)$.
O (“big oh”)

Formally:

\[g \in O(f) \text{ if and only if:} \exists C > 0 \exists n_0 > 0 \forall n > n_0 \ g(n) \leq C \cdot f(n). \]

Equivalently:

\[g \in O(f) \text{ if and only if:} \exists C > 0 \exists n_0 > 0 \forall n > n_0 \ g(n) \leq C \cdot f(n). \]

Sometimes we write:

\[g = O(f) \text{ rather than } g \in O(f). \]
Formally:

- \(g \in O(f) \) if and only if:

\[
\exists C > 0 \ \exists n_0 > 0 \ \forall n > n_0 \ g(n) \leq C \cdot f(n).
\]
\(O \) ("big oh")

Formally:

- \(g \in O(f) \) if and only if:
 \[
 \exists C > 0 \ \exists n_0 > 0 \ \forall n > n_0 \ g(n) \leq C \cdot f(n).
 \]

- Equivalently: \(g \in O(f) \) if and only if:
 \[
 \exists C > 0 \ \exists n_0 > 0 \ \forall n > n_0 \ \frac{g(n)}{f(n)} \leq C.
 \]
O (“big oh”)

Formally:

$g \in O(f)$ if and only if:

$$\exists C > 0 \ \forall n > n_0 \ g(n) \leq C \cdot f(n).$$

Equivalently: $g \in O(f)$ if and only if:

$$\exists C > 0 \ \forall n > n_0 \ \frac{g(n)}{f(n)} \leq C.$$

Sometimes we write: $g = O(f)$ rather than $g \in O(f)$
Examples of O-notation:

Example 1: $f(n) = n$, $g(n) = 1000n$: $g \in O(f)$.
Examples of O-notation:

Example 1: $f(n) = n$, $g(n) = 1000n$: $g \in O(f)$.

Proof:
Examples of O-notation:

Example 1: $f(n) = n, g(n) = 1000n$: $g \in O(f)$.

Proof: Let $C = 1000$. Then $g(n) \leq C \cdot f(n)$ for all n.
Examples of O-notation:

Example 2: $f(n) = n^2$, $g(n) = n^3/2$. $g \in O(f)$.

Proof: \[
\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0.
\]
Hence for any $C > 0$ the ratio is less than C as long as n is sufficiently large.
(Of course, how large n must be to be "sufficiently large" depends on C).

Alternate Proof: If $n \geq 1$, $n^{1/2} \geq 1$, so $n^{3/2} \leq n^2$. Hence we can choose $C = 1$ and $n_0 = 1$.

CompSci 161—Spring 2021—©M. B. Dillencourt—University of California, Irvine
Examples of O-notation:

Example 2: $f(n) = n^2$, $g(n) = n^{3/2}$: $g \in O(f)$.
Examples of O-notation:

Example 2: $f(n) = n^2$, $g(n) = n^{3/2}$: $g \in O(f)$.

Proof:
Examples of O-notation:

Example 2: $f(n) = n^2$, $g(n) = n^{3/2}$: $g \in O(f)$.

Proof: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$.
Examples of O-notation:

Example 2: $f(n) = n^2, g(n) = n^{3/2}: g \in O(f)$.

Proof: \[\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0. \]
Hence for any $C > 0$ the ratio is less than C as long as n is sufficiently large.
Examples of O-notation:

Example 2: $f(n) = n^2$, $g(n) = n^{3/2}$: $g \in O(f)$.

Proof: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$.
Hence for any $C > 0$ the ratio is less than C as long as n is sufficiently large. (Of course, how large n must be to be “sufficiently large” depends on C).
Examples of O-notation:

Example 2: $f(n) = n^2$, $g(n) = n^{3/2}$: $g \in O(f)$.

Proof: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$.
Hence for any $C > 0$ the ratio is less than C as long as n is sufficiently large. (Of course, how large n must be to be “sufficiently large” depends on C).

Alternate Proof:
Examples of O-notation:

Example 2: $f(n) = n^2$, $g(n) = n^{3/2}$: $g \in O(f)$.

Proof: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$.
Hence for any $C > 0$ the ratio is less than C as long as n is
sufficiently large. (Of course, how large n must be to be “sufficiently
large” depends on C).

Alternate Proof: If $n \geq 1$, $n^{1/2} \geq 1$, so $n^{3/2} \leq n^2$.
Examples of O-notation:

Example 2: $f(n) = n^2$, $g(n) = n^{3/2}$: $g \in O(f)$.

Proof: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$.
Hence for any $C > 0$ the ratio is less than C as long as n is sufficiently large. (Of course, how large n must be to be “sufficiently large” depends on C).

Alternate Proof: If $n \geq 1$, $n^{1/2} \geq 1$, so $n^{3/2} \leq n^2$.
Hence we can choose $C = 1$ and $n_0 = 1$.

Examples of O-notation:

Example 3:
$f(n) = n^3$, $g(n) = n^4$.

Proof:
$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty.$$ Hence there is no $C > 0$ such that $g(n) \leq C \cdot f(n)$ for sufficiently large n.
Examples of O-notation:

Example 3: $f(n) = n^3, g(n) = n^4$: $g \notin O(f)$.

Proof:

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty.$$

Hence there is no $C > 0$ such that $g(n) \leq C \cdot f(n)$ for sufficiently large n.
Examples of O-notation:

Example 3: $f(n) = n^3$, $g(n) = n^4$: $g \notin O(f)$.

Proof:
Examples of O-notation:

Example 3: $f(n) = n^3$, $g(n) = n^4$: $g \notin O(f)$.

Proof: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$.

CompSci 161—Spring 2021—©M. B. Dillencourt—University of California, Irvine
Examples of O-notation:

Example 3: $f(n) = n^3$, $g(n) = n^4$: $g \notin O(f)$.

Proof: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$.

Hence there is no $C > 0$ such that $g(n) \leq C \cdot f(n)$ for sufficiently large n.
Examples of O-notation:

Example 4:

$f(n) = n^2$, $g(n) = 5n^2 + 23n + 2$:

$g \in O(f)$.

Proof:

If $n \geq 1$, then $n \leq n^2$ and $1 \leq n^2$.

Hence:

$g(n) = 5n^2 + 23n + 2 \leq 5n^2 + 23n^2 + 2n^2 \leq 30n^2 = 30f(n)$

So we can take $C = 30$, $n_0 = 1$.
Examples of O-notation:

Example 4: $f(n) = n^2$, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.
Examples of O-notation:

Example 4: $f(n) = n^2$, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Proof:
Examples of O-notation:

Example 4: $f(n) = n^2$, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Proof: If $n \geq 1$, then $n \leq n^2$ and $1 \leq n^2$.
Examples of O-notation:

Example 4: $f(n) = n^2$, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Proof: If $n \geq 1$, then $n \leq n^2$ and $1 \leq n^2$. Hence:
Examples of O-notation:

Example 4: $f(n) = n^2$, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Proof: If $n \geq 1$, then $n \leq n^2$ and $1 \leq n^2$. Hence:

$$g(n) = 5n^2 + 23n + 2$$
Examples of O-notation:

Example 4: $f(n) = n^2$, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Proof: If $n \geq 1$, then $n \leq n^2$ and $1 \leq n^2$. Hence:

$$g(n) = 5n^2 + 23n + 2$$
$$\leq 5n^2 + 23n^2 + 2n^2$$
Examples of O-notation:

Example 4: $f(n) = n^2$, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Proof: If $n \geq 1$, then $n \leq n^2$ and $1 \leq n^2$. Hence:

g(n) = 5n^2 + 23n + 2 \\
\leq 5n^2 + 23n^2 + 2n^2 \\
\leq 30n^2

Examples of O-notation:

Example 4: $f(n) = n^2$, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Proof: If $n \geq 1$, then $n \leq n^2$ and $1 \leq n^2$. Hence:

$$g(n) = 5n^2 + 23n + 2 \leq 5n^2 + 23n^2 + 2n^2 \leq 30n^2 \leq 30f(n)$$
Examples of O-notation:

Example 4: $f(n) = n^2$, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Proof: If $n \geq 1$, then $n \leq n^2$ and $1 \leq n^2$. Hence:

$$g(n) = 5n^2 + 23n + 2$$
$$\leq 5n^2 + 23n^2 + 2n^2$$
$$\leq 30n^2$$
$$= 30f(n)$$

So we can take $C = 30$, $n_0 = 1$.
More asymptotic notation:
\(o \) ("little oh"), \(\Omega \) ("big Omega")
More asymptotic notation:
\(o \) (“little oh”), \(\Omega \) (“big Omega”)

- \(o \) (“little oh”):
 \[
 g \in o(f) \text{ if and only if } \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0.
 \]

- \(\Omega \) (“big Omega”) (or just “Omega”)
 \[
 g \in \Omega(f) \text{ if and only if } \exists C > 0 \exists n_0 > 0 \forall n > n_0 \ g(n) \geq C \cdot f(n).
 \]

 Equivalently:
 \[
 g \in \Omega(f) \text{ if and only if } \exists C > 0 \exists n_0 > 0 \forall n > n_0 \ g(n) \cdot f(n) \geq C.
 \]
More asymptotic notation:
\(o \) ("little oh"), \(\Omega \) ("big Omega")

- \(o \) (‘little oh’):

\[
g \in o(f) \text{ if and only if } \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0.
\]

- \(\Omega \) (‘big Omega’)

\[
g \in \Omega(f) \text{ if and only if } \exists C > 0 \exists n_0 > 0 \forall n > n_0 \ g(n) \geq C \cdot f(n).
\]

Equivalently:

\[
g \in \Omega(f) \text{ if and only if } \exists C > 0 \exists n_0 > 0 \forall n > n_0 \ g(n) \geq C \cdot f(n).
\]
More asymptotic notation:
\(o \) ("little oh"), \(\Omega \) ("big Omega")

- \(o \) ("little oh"):
 \[
g \in o(f) \text{ if and only if } \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0.
\]

- \(\Omega \) ("big Omega") (or just "Omega")
More asymptotic notation:

\(\mathcal{o} \) ("little oh"), \(\Omega \) ("big Omega")

- \(\mathcal{o} \) ("little oh"):
 \[
 g \in \mathcal{o}(f) \text{ if and only if } \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0.
 \]

- \(\Omega \) ("big Omega") (or just "Omega")
 \[
 g \in \Omega(f) \text{ if and only if } \exists C > 0 \exists n_0 > 0 \forall n > n_0 \ g(n) \geq C \cdot f(n).
 \]
More asymptotic notation:
\(o \) (“little oh”), \(\Omega \) (“big Omega”)

- \(o \) (‘little oh’):

\[
g \in o(f) \quad \text{if and only if} \quad \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0.
\]

- \(\Omega \) (“big Omega”) (or just “Omega”)

\[
g \in \Omega(f) \quad \text{if and only if} \quad \exists C > 0 \ \exists n_0 > 0 \ \forall n > n_0 \ g(n) \geq C \cdot f(n).
\]

Equivalently:
More asymptotic notation:
\(o \) ("little oh"), \(\Omega \) ("big Omega")

- \(o \) ("little oh"): \(g \in o(f) \) if and only if \(\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0 \).

- \(\Omega \) ("big Omega") (or just "Omega")

 \(g \in \Omega(f) \) if and only if \(\exists C > 0 \ \exists n_0 > 0 \ \forall n > n_0 \ g(n) \geq C \cdot f(n) \).

 Equivalently:

 \(g \in \Omega(f) \) if and only if \(\exists C > 0 \ \exists n_0 > 0 \ \forall n > n_0 \ \frac{g(n)}{f(n)} \geq C \).
One more definition: \(\Theta \) ("Theta")

\[g \in \Theta(f) \text{ if and only if: } g \in O(f) \text{ and } g \in \Omega(f). \]

Equivalently, \(g \in \Theta(f) \text{ if and only if: } \exists C_1 > 0 \exists C_2 > 0 \exists n_0 > 0 \forall n > n_0 \ C_1 \leq g(n) f(n) \leq C_2. \]
One more definition:
\(\Theta ("\text{"Theta"}) \)

\[g \in \Theta(f) \text{ if and only if:} \]
\[g \in O(f) \text{ and } g \in \Omega(f). \]
One more definition:
Θ (“Theta”)

▶ $g \in \Theta(f)$ if and only if:

$$g \in O(f) \text{ and } g \in \Omega(f).$$

▶ Equivalently, $g \in \Theta(f)$ if and only if:

$$\exists C_1 > 0 \ \exists C_2 > 0 \ \exists n_0 > 0 \ \forall n > n_0 \ C_1 \leq \frac{g(n)}{f(n)} \leq C_2.$$
Examples of Asymptotic notation

Example 1:

\[f(n) = n, \quad g(n) = 1000n. \]

\(g \in \Omega(f), \quad g \in \Theta(f) \)

To see that \(g \in \Omega(f) \), we can take \(C = 1 \).

Then \(g(n) = 1000 \cdot n > 1 \cdot n = C \cdot f(n) \).

To see that \(g \in \Theta(f) \), we could argue that \(g \in O(f) \) (shown earlier) and \(g \in \Omega(f) \) (shown above).

Or we can take \(C_1 = 1, \quad C_2 = 1000 \). Then \(C_1 \leq g(n) \leq C_2 \).
Examples of Asymptotic notation

Example 1: \(f(n) = n, \ g(n) = 1000n. \)
Examples of Asymptotic notation

Example 1: $f(n) = n$, $g(n) = 1000n$.

$g \in \Omega(f)$, $g \in \Theta(f)$
Examples of Asymptotic notation

Example 1: $f(n) = n$, $g(n) = 1000n$.

$g \in \Omega(f)$, $g \in \Theta(f)$

To see that $g \in \Omega(f)$, we can take $C = 1$.
Examples of Asymptotic notation

Example 1: $f(n) = n$, $g(n) = 1000n$.

$g \in \Omega(f)$, $g \in \Theta(f)$

To see that $g \in \Omega(f)$, we can take $C = 1$.

Then $g(n) = 1000 \cdot n > 1 \cdot n = C \cdot f(n)$.
Examples of Asymptotic notation

Example 1: \(f(n) = n, \ g(n) = 1000n. \)

\(g \in \Omega(f), \ g \in \Theta(f) \)

To see that \(g \in \Omega(f) \), we can take \(C = 1 \).

Then \(g(n) = 1000 \cdot n > 1 \cdot n = C \cdot f(n) \).

To see that \(g \in \Theta(f) \), we could argue that \(g \in O(f) \) (shown earlier) and \(g \in \Omega(f) \) (shown above).
Examples of Asymptotic notation

Example 1: \(f(n) = n, \ g(n) = 1000n. \)

\(g \in \Omega(f), \ g \in \Theta(f) \)

To see that \(g \in \Omega(f) \), we can take \(C = 1. \)

Then \(g(n) = 1000 \cdot n > 1 \cdot n = C \cdot f(n). \)

To see that \(g \in \Theta(f) \), we could argue that \(g \in O(f) \) (shown earlier) and \(g \in \Omega(f) \) (shown above).

Or we can take \(C_1 = 1, \ C_2 = 1000. \) Then

\[
C_1 \leq \frac{g(n)}{f(n)} \leq C_2.
\]
Examples of Asymptotic notation

Example 2:

\[f(n) = n^2, \quad g(n) = \frac{n^3}{2} : \]

\[g \in \Theta(f) \]

Because \(\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0. \)
Examples of Asymptotic notation

Example 2: $f(n) = n^2$, $g(n) = n^{3/2}$.
Examples of Asymptotic notation

Example 2: \(f(n) = n^2, g(n) = n^{3/2} : \)

\[g \in o(f) \]
Examples of Asymptotic notation

Example 2: $f(n) = n^2$, $g(n) = n^{3/2}$:

$g \in o(f)$

Because $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$.
Examples of Asymptotic notation

Example 3:

\(f(n) = n^3, \quad g(n) = n^4 \):

\(g \in \Omega(f) \)

Because \(\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty \), so we can choose any \(C \) we want.
Examples of Asymptotic notation

Example 3: $f(n) = n^3$, $g(n) = n^4$: $g(n) \in \Omega(f(n))$.
Example 3: \(f(n) = n^3, \ g(n) = n^4: \)

\[g \in \Omega(f) \]
Examples of Asymptotic notation

Example 3: \(f(n) = n^3, \ g(n) = n^4: \)

\[g \in \Omega(f) \]

Because \(\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty, \) so we can choose any \(C \) we want.
Examples of Asymptotic notation

Example 4: \(f(n) = n^2 \), \(g(n) = 5n^2 - 23n + 2 \):

\[g \in \Omega(f). \]

Proof: If \(n \geq 23 \), then \(23 \leq n^2 \).

Hence if \(n \geq 23 \):

\[g(n) = 5n^2 - 23n + 2 \geq 5n^2 - n^2 = 4n^2 = 4f(n) \]

So we can take \(C = 4 \), \(n_0 = 23 \).
Examples of Asymptotic notation

Example 4: \(f(n) = n^2, \ g(n) = 5n^2 - 23n + 2: \)

\(g \in \Omega(f). \)
Examples of Asymptotic notation

Example 4: $f(n) = n^2$, $g(n) = 5n^2 - 23n + 2$:

$g \in \Omega(f)$.

Proof:
Examples of Asymptotic notation

Example 4: \(f(n) = n^2, \ g(n) = 5n^2 - 23n + 2: \)

\(g \in \Omega(f). \)

Proof: If \(n \geq 23 \), then \(23n \leq n^2. \)
Examples of Asymptotic notation

Example 4: \(f(n) = n^2, \ g(n) = 5n^2 - 23n + 2: \)

\(g \in \Omega(f). \)

Proof: If \(n \geq 23, \) then \(23n \leq n^2. \) Hence if \(n \geq 23: \)
Examples of Asymptotic notation

Example 4: \(f(n) = n^2, \ g(n) = 5n^2 - 23n + 2: \)

\(g \in \Omega(f). \)

Proof: If \(n \geq 23, \) then \(23n \leq n^2. \) Hence if \(n \geq 23: \)

\[
g(n) = 5n^2 - 23n + 2
\]
Examples of Asymptotic notation

Example 4: \(f(n) = n^2, \ g(n) = 5n^2 - 23n + 2: \)

\(g \in \Omega(f). \)

Proof: If \(n \geq 23 \), then \(23n \leq n^2 \). Hence if \(n \geq 23: \)

\[
\begin{align*}
g(n) &= 5n^2 - 23n + 2 \\
&\geq 5n^2 - n^2
\end{align*}
\]
Examples of Asymptotic notation

Example 4: $f(n) = n^2$, $g(n) = 5n^2 - 23n + 2$:

$g \in \Omega(f)$.

Proof: If $n \geq 23$, then $23n \leq n^2$. Hence if $n \geq 23$:

\[
\begin{align*}
g(n) &= 5n^2 - 23n + 2 \\
&\geq 5n^2 - n^2 \\
&\geq 4n^2
\end{align*}
\]
Examples of Asymptotic notation

Example 4: $f(n) = n^2$, $g(n) = 5n^2 - 23n + 2$:

$g \in \Omega(f)$.

Proof: If $n \geq 23$, then $23n \leq n^2$. Hence if $n \geq 23$:

\[
g(n) = 5n^2 - 23n + 2 \\
\geq 5n^2 - n^2 \\
\geq 4n^2 \\
= 4f(n)
\]
Examples of Asymptotic notation

Example 4: \(f(n) = n^2 \), \(g(n) = 5n^2 - 23n + 2 \):

\(g \in \Omega(f) \).

Proof: If \(n \geq 23 \), then \(23n \leq n^2 \). Hence if \(n \geq 23 \):

\[
\begin{align*}
g(n) & = 5n^2 - 23n + 2 \\
& \geq 5n^2 - n^2 \\
& \geq 4n^2 \\
& = 4f(n)
\end{align*}
\]

So we can take \(C = 4, \ n_0 = 23 \).
Another Example

Example 5: \(\ln n = o(n) \) \((n)\)

Proof:
Examine the ratio \(\frac{\ln n}{n} \) as \(n \to \infty \).

If we try to evaluate the limit directly, we obtain the "indeterminate form" \(\frac{\infty}{\infty} \).

We need to apply L'Hôpital's rule (from calculus). (Continued on next slide)
Example 5: $\ln n = o(n)$
Another Example

Example 5: $\ln n = o(n)$

Proof:
Another Example

Example 5: $\ln n = o(n)$

Proof:

Examine the ratio $\frac{\ln n}{n}$ as $n \to \infty$.
Another Example

Example 5: $\ln n = o(n)$

Proof:

Examine the ratio $\frac{\ln n}{n}$ as $n \to \infty$.

If we try to evaluate the limit directly, we obtain the “indeterminate form” $\frac{\infty}{\infty}$.
Another Example

Example 5: $\ln n = o(n)$

Proof:

Examine the ratio $\frac{\ln n}{n}$ as $n \to \infty$.

If we try to evaluate the limit directly, we obtain the “indeterminate form” $\frac{\infty}{\infty}$.

We need to apply L’Hôpital’s rule (from calculus).
Another Example

Example 5: $\ln n = o(n)$

Proof:

Examine the ratio $\frac{\ln n}{n}$ as $n \to \infty$.

If we try to evaluate the limit directly, we obtain the "indeterminate form" $\frac{\infty}{\infty}$.

We need to apply L’Hôpital’s rule (from calculus).

(Continued on next slide)
Example 5, continued:
\[\ln n = o(n) \]

L’Hôpital’s rule: If the ratio of limits

\[
\lim_{n \to \infty} \frac{g(n)}{f(n)}
\]

is an indeterminate form (i.e., \(\infty/\infty\) or \(0/0\)), then

\[
\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{g'(n)}{f'(n)}
\]

where \(f'\) and \(g'\) are, respectively, the derivatives of \(f\) and \(g\).
Example 5, continued:

\(\ln n = o(n) \)

Let \(f(n) = n \), \(g(n) = \ln n \).
Example 5, continued:

\[\ln n = o(n) \]

Let \(f(n) = n, \ g(n) = \ln n. \)

Then \(f'(n) = 1, \ g'(n) = 1/n. \)
Example 5, continued:

\(\ln n = \mathcal{o}(n) \)

Let \(f(n) = n, \ g(n) = \ln n \).

Then \(f'(n) = 1, \ g'(n) = 1/n \).

By L’Hôpital’s rule:
Example 5, continued:

\[\ln n = o(n) \]

Let \(f(n) = n \), \(g(n) = \ln n \).

Then \(f'(n) = 1 \), \(g'(n) = 1/n \).

By L’Hôpital’s rule:

\[
\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{g'(n)}{f'(n)}
\]
Example 5, continued:

$\ln n = o(n)$

Let $f(n) = n$, $g(n) = \ln n$.

Then $f'(n) = 1$, $g'(n) = 1/n$.

By L'Hôpital's rule:

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{g'(n)}{f'(n)}$$

$$= \lim_{n \to \infty} \frac{1/n}{1}$$

Hence $g(n) = o(f(n))$.
Example 5, continued:

$\ln n = o(n)$

Let $f(n) = n$, $g(n) = \ln n$.

Then $f'(n) = 1$, $g'(n) = 1/n$.

By L’Hôpital’s rule:

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{g'(n)}{f'(n)}$$

$$= \lim_{n \to \infty} \frac{1/n}{1}$$

$$= \lim_{n \to \infty} \frac{1}{n}$$
Example 5, continued:

\[
\ln n = o(n)
\]

Let \(f(n) = n, \ g(n) = \ln n. \)

Then \(f'(n) = 1, \ g'(n) = 1/n. \)

By L’Hôpital’s rule:

\[
\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{g'(n)}{f'(n)}
\]

\[
= \lim_{n \to \infty} \frac{1/n}{1}
\]

\[
= \lim_{n \to \infty} \frac{1}{n}
\]

\[
= 0.
\]
Example 5, continued:
\(\ln n = o(n) \)

Let \(f(n) = n, \ g(n) = \ln n \).

Then \(f'(n) = 1, \ g'(n) = 1/n \).

By L’Hôpital’s rule:

\[
\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{g'(n)}{f'(n)}
\]

\[
= \lim_{n \to \infty} \frac{1/n}{1}
\]

\[
= \lim_{n \to \infty} \frac{1}{n}
\]

\[
= 0.
\]

Hence \(g(n) = o(f(n)) \).
Math background
Math background

- Sums, Summations
Math background

- Sums, Summations
- Logarithms, Exponents Floors, Ceilings, Harmonic Numbers
Math background

- Sums, Summations
- Logarithms, Exponents Floors, Ceilings, Harmonic Numbers
- Proof Techniques
Math background

- Sums, Summations
- Logarithms, Exponents Floors, Ceilings, Harmonic Numbers
- Proof Techniques
- Basic Probability
Sums, Summations

Summation notation:

\[\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b) \]

Special cases:

What if \(a = b \)?

What if \(a > b \)?

If \(S = \{s_1, \ldots, s_n\} \) is a finite set:

\[\sum_{x \in S} f(x) = f(s_1) + f(s_2) + \cdots + f(s_n) \]
Sums, Summations

- Summation notation:

\[\sum_{i=1}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b) \]

- Special cases:
 - What if \(a = b \)?
 - What if \(a > b \)?

If \(S = \{s_1, \ldots, s_n\} \) is a finite set:

\[\sum_{x \in S} f(x) = f(s_1) + f(s_2) + \cdots + f(s_n) \]
Sums, Summations

- Summation notation:

\[\sum_{i=a}^{b} f(i) = f(a) + f(a + 1) + \cdots + f(b). \]
Sums, Summations

- Summation notation:

\[\sum_{i=a}^{b} f(i) = f(a) + f(a + 1) + \cdots + f(b). \]

- Special cases:
Sums, Summations

- Summation notation:

\[
\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).
\]

- Special cases:
 - What if \(a = b \)?
Sums, Summations

- Summation notation:

\[
\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).
\]

- Special cases:
 - What if \(a = b\)?
 - \(f(a)\)
Sums, Summations

▶ Summation notation:

\[
\sum_{i=a}^{b} f(i) = f(a) + f(a + 1) + \cdots + f(b).
\]

▶ Special cases:

- What if \(a = b \)? \(f(a) \)
- What if \(a > b \)?
Sums, Summations

- Summation notation:

\[\sum_{i=a}^{b} f(i) = f(a) + f(a + 1) + \cdots + f(b). \]

- Special cases:
 - What if \(a = b? \) \(f(a) \)
 - What if \(a > b? \) \(0 \)
Sums, Summations

- Summation notation:

\[
\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).
\]

- Special cases:
 - What if \(a = b? \) \(f(a) \)
 - What if \(a > b? \) \(0 \)

- If \(S = \{s_1, \ldots, s_n\} \) is a finite set:
Sums, Summations

- Summation notation:

\[\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b). \]

- Special cases:
 - What if \(a = b ? \) \(f(a) \)
 - What if \(a > b ? \) \(0 \)

- If \(S = \{s_1, \ldots, s_n\} \) is a finite set:

\[\sum_{x \in S} f(x) = f(s_1) + f(s_2) + \cdots + f(s_n). \]
Geometric sum

\[\sum_{i=0}^{n} a_i = 1 + a_1 + a_2 + \cdots + a_n = \frac{1 - a^{n+1}}{1 - a}, \]
provided that \(a \neq 1 \).

Previous formula holds for \(a = 0 \) because \(a^0 = 1 \) even when \(a = 0 \).

Special case of geometric sum:

\[\sum_{i=0}^{n} 2^i = 1 + 2 + 4 + 8 + \cdots + 2^n = 2^{n+1} - 1. \]
Geometric sum

- Geometric sum:
Geometric sum

- Geometric sum:

\[
\sum_{i=0}^{n} a^i = 1 + a^1 + a^2 + \cdots + a^n = \frac{1 - a^{n+1}}{1 - a},
\]

provided that \(a \neq 1 \).
Geometric sum

- Geometric sum:

\[\sum_{i=0}^{n} a^i = 1 + a^1 + a^2 + \cdots + a^n = \frac{1 - a^{n+1}}{1 - a}, \]

provided that \(a \neq 1 \).

- Previous formula holds for \(a = 0 \) because \(a^0 = 1 \) even when \(a = 0 \).
Geometric sum

- Geometric sum:

\[\sum_{i=0}^{n} a^i = 1 + a^1 + a^2 + \cdots + a^n = \frac{1 - a^{n+1}}{1 - a}, \]

provided that \(a \neq 1 \).

- Previous formula holds for \(a = 0 \) because \(a^0 = 1 \) even when \(a = 0 \).

- Special case of geometric sum:
Geometric sum

- Geometric sum:

\[
\sum_{i=0}^{n} a^i = 1 + a^1 + a^2 + \cdots + a^n = \frac{1 - a^{n+1}}{1 - a},
\]

provided that \(a \neq 1 \).

- Previous formula holds for \(a = 0 \) because \(a^0 = 1 \) even when \(a = 0 \).

- Special case of geometric sum:

\[
\sum_{i=0}^{n} 2^i = 1 + 2 + 4 + 8 + \cdots + 2^n = 2^{n+1} - 1.
\]
Infinite Geometric sum

From the previous slide:

\[\sum_{i=0}^{n} a_i = 1 + a_1 + a_2 + \cdots + a_n = 1 - a_{n+1}, \]

provided that \(a \neq 1. \)

If \(|a| < 1, \) we can take the limit as \(n \to \infty: \)

\[\sum_{i=0}^{\infty} a_i = 1 + a_1 + a_2 + \cdots = \frac{1}{1-a}, \]

Special case of infinite geometric sum:

\[\sum_{i=0}^{\infty} \frac{1}{2^i} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = 2. \]
Infinite Geometric sum

From the previous slide:

\[\sum_{i=0}^{n} a^i = 1 + a^1 + a^2 + \cdots + a^n = \frac{1 - a^{n+1}}{1 - a}, \]

provided that \(a \neq 1 \).
Infinite Geometric sum

- From the previous slide:

\[\sum_{i=0}^{n} a^i = 1 + a^1 + a^2 + \cdots + a^n = \frac{1 - a^{n+1}}{1 - a}, \]

provided that \(a \neq 1 \).

- If \(|a| < 1 \), we can take the limit as \(n \to \infty \):
Infinite Geometric sum

From the previous slide:

\[
\sum_{i=0}^{n} a^i = 1 + a^1 + a^2 + \cdots + a^n = \frac{1 - a^{n+1}}{1 - a},
\]

provided that \(a \neq 1\).

If \(|a| < 1\), we can take the limit as \(n \to \infty\):

\[
\sum_{i=0}^{\infty} a^i = 1 + a^1 + a^2 + \cdots = \frac{1}{1 - a},
\]
Infinite Geometric sum

- From the previous slide:

\[\sum_{i=0}^{n} a^i = 1 + a^1 + a^2 + \cdots + a^n = \frac{1 - a^{n+1}}{1 - a} , \]

provided that \(a \neq 1 \).

- If \(|a| < 1 \), we can take the limit as \(n \to \infty \):

\[\sum_{i=0}^{\infty} a^i = 1 + a^1 + a^2 + \cdots = \frac{1}{1 - a} , \]

- Special case of infinite geometric sum:
Infinite Geometric sum

- From the previous slide:

\[\sum_{i=0}^{n} a^i = 1 + a^1 + a^2 + \cdots + a^n = \frac{1 - a^{n+1}}{1 - a}, \]

provided that \(a \neq 1 \).

- If \(|a| < 1 \), we can take the limit as \(n \to \infty \):

\[\sum_{i=0}^{\infty} a^i = 1 + a^1 + a^2 + \cdots = \frac{1}{1 - a}, \]

- Special case of infinite geometric sum:

\[\sum_{i=0}^{\infty} \frac{1}{2^i} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = 2. \]
Other Summations

- Sum of first n integers:
 $$\sum_{i=1}^{n} i = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2} = \Theta(n^2)$$

- Sum of first n squares:
 $$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6} = \Theta(n^3)$$

- In general, for any fixed positive integer k:
 $$\sum_{i=1}^{n} i^k = 1^k + 2^k + 3^k + \cdots + n^k = \Theta(n^{k+1})$$
Other Summations

- Sum of first n integers

\[
\sum_{i=1}^{n} i = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2} = \Theta(n^2)
\]

- Sum of first n squares

\[
\sum_{i=1}^{n} i^2 = 1 + 4 + 9 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6} = \Theta(n^3)
\]

- In general, for any fixed positive integer k:

\[
\sum_{i=1}^{n} i^k = 1 + 2^k + 3^k + \cdots + n^k = \Theta(n^{k+1})
\]
Other Summations

- Sum of first n integers

\[
\sum_{i=1}^{n} i = 1 + 2 + 3 + \cdots + n = \frac{n(n + 1)}{2} = \Theta(n^2)
\]
Other Summations

- Sum of first n integers

$$
\sum_{i=1}^{n} i = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2} = \Theta(n^2)
$$

- Sum of first n squares

...
Other Summations

- **Sum of first** n **integers**

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \cdots + n = \frac{n(n + 1)}{2} = \Theta(n^2)$$

- **Sum of first** n **squares**

$$\sum_{i=1}^{n} i^2 = 1 + 4 + 9 + \cdots + n^2 = \frac{n(n + 1)(2n + 1)}{6} = \Theta(n^3)$$
Other Summations

- Sum of first n integers

\[
\sum_{i=1}^{n} i = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2} = \Theta(n^2)
\]

- Sum of first n squares

\[
\sum_{i=1}^{n} i^2 = 1 + 4 + 9 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6} = \Theta(n^3)
\]

- In general, for any fixed positive integer k:

\[
\sum_{i=1}^{n} i^k = \Theta(n^{k+1})
\]
Other Summations

- Sum of first n integers

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2} = \Theta(n^2)$$

- Sum of first n squares

$$\sum_{i=1}^{n} i^2 = 1 + 4 + 9 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6} = \Theta(n^3)$$

- In general, for any fixed positive integer k:

$$\sum_{i=1}^{n} i^k = 1 + 2^k + 3^k + \cdots + n^k = \Theta(n^{k+1})$$
Logarithms

Definition: $\log_b x = y$ if and only if $b^y = x$.

Some useful properties:

1. $\log_b 1 = 0$.
2. $\log_b b^a = a$.
3. $\log_b (xy) = \log_b x + \log_b y$.
4. $\log_b (x^a) = a \log_b x$.
5. $x \log_b y = y \log_b x$.
6. $\log_x b = \frac{1}{\log_b x}$.
7. $\log_a x = \frac{1}{\log_b a} \log_b x$.
8. $\log_a x = (\log_b x)(\log_a b)$.

Exercise: Prove the above properties.
Definition: $\log_b x = y$ if and only if $b^y = x$.

Some useful properties:

1. $\log_b 1 = 0$.
2. $\log_b b^a = a$.
3. $\log_b (xy) = \log_b x + \log_b y$.
4. $\log_b (x^a) = a \log_b x$.
5. $x \log_b y = y \log_b x$.
6. $\log_x b = \frac{1}{\log_b x}$.
7. $\log_a x = \frac{\log_b x}{\log_b a}$.
8. $\log_a x = (\log_b x)(\log_a b)$.

Exercise: Prove the above properties.
Logarithms

Definition: $\log_b x = y$ if and only if $b^y = x$.

Some useful properties:
Logarithms

Definition: \(\log_b x = y \) if and only if \(b^y = x \).

Some useful properties:

1. \(\log_b 1 = 0 \).
2. \(\log_b b^a = a \).
3. \(\log_b(xy) = \log_b x + \log_b y \).
4. \(\log_b(x^a) = a \log_b x \).
5. \(x^{\log_b y} = y^{\log_b x} \).
6. \(\log_x b = \frac{1}{\log_b x} \).
7. \(\log_a x = \frac{\log_b x}{\log_b a} \).
8. \(\log_a x = (\log_b x)(\log_a b) \).
Logarithms

Definition: \(\log_b x = y \) if and only if \(b^y = x \).

Some useful properties:

1. \(\log_b 1 = 0 \).
2. \(\log_b b^a = a \).
3. \(\log_b (xy) = \log_b x + \log_b y \).
4. \(\log_b (x^a) = a \log_b x \).
5. \(x^{\log_b y} = y^{\log_b x} \).
6. \(\log_x b = \frac{1}{\log_b x} \).
7. \(\log_a x = \frac{\log_b x}{\log_b a} \).
8. \(\log_a x = (\log_b x)(\log_a b) \).

Exercise: Prove the above properties.
Logarithms

Example (#2): Prove \(\log_b a = x \).

Solution: Let \(y = \log_b a \) [by definition of log]

\[y = b^x \]

CompSci 161—Spring 2021—©M. B. Dillencourt—University of California, Irvine
Logarithms

Example (#2): Prove $\log_b b^a = a$.
Logarithms

Example (#2): Prove $\log_b b^a = a$.

Solution: Let $y = \log_b b^a$
Logarithms

Example (#2): Prove $\log_b b^a = a$.

Solution: Let $y = \log_b b^a$

$by = b^a$ [by definition of log]
Example (#2): Prove $\log_b b^a = a$.

Solution: Let $y = \log_b b^a$

\[b^y = b^a \quad \text{[by definition of log]} \]

\[y = a \]
Logarithms

Special Notations:

▶ \(\ln x = \log_e x \)
\(e = 2.71828... \)

▶ \(\lg x = \log_2 x \)

Some conversions (from Rules #7 and #8 on previous slides):

▶ \(\ln x = (\log_2 x)(\log_e 2) = 0.693 \lg x \)

▶ \(\lg x = \log_e x \log_e 2 = \ln x / 0.693 = 1.44 \ln x \)
Logarithms

Special Notations:

- $\ln x = \log_e x \ (e = 2.71828 \ldots)$
Logarithms

Special Notations:

- $\ln x = \log_e x \ (e = 2.71828\ldots)$
- $\lg x = \log_2 x$
Logarithms

Special Notations:
- \(\ln x = \log_e x \) \((e = 2.71828\ldots)\)
- \(\lg x = \log_2 x \)

Some conversions (from Rules #7 and #8 on previous slides):
Logarithms

Special Notations:

- $\ln x = \log_e x$ ($e = 2.71828 \ldots$)
- $\lg x = \log_2 x$

Some conversions (from Rules #7 and #8 on previous slides):

- $\ln x = (\log_2 x)(\log_e 2) = 0.693 \lg x$.
Logarithms

Special Notations:

- $\ln x = \log_e x \quad (e = 2.71828 \ldots)$
- $\lg x = \log_2 x$

Some conversions (from Rules #7 and #8 on previous slides):

- $\ln x = (\log_2 x)(\log_e 2) = 0.693 \lg x.$
- $\lg x = \frac{\log_e x}{\log_e 2} = \frac{\ln x}{0.693} = 1.44 \ln x.$
Floors and ceilings
Floors and ceilings

$\lfloor x \rfloor = \text{largest integer } \leq x$. (Read as Floor of x)
Floors and ceilings

- $\lfloor x \rfloor =$ largest integer $\leq x$. (Read as Floor of x)
- $\lceil x \rceil =$ smallest integer $\geq x$ (Read as Ceiling of x)
Factorials

\[n! = 1 \cdot 2 \cdots n \]
Factorials

- \(n! = 1 \cdot 2 \cdots n \)
- \(n! \) represents the number of distinct permutations of \(n \) objects.
Factorials

- \(n! = 1 \cdot 2 \cdots n \)
- \(n! \) represents the number of distinct permutations of \(n \) objects.

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & 3 & 2 \\
2 & 1 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2 \\
3 & 2 & 1 \\
\end{array}
\]
Combinations

$\binom{n}{k} =$ The number of different ways of choosing k objects from a collection of n objects. (Pronounced "n choose $k".")

Example: $\binom{5}{2} = 10$

$\{1, 2\}$ $\{1, 3\}$ $\{1, 4\}$ $\{1, 5\}$ $\{2, 3\}$ $\{2, 4\}$ $\{2, 5\}$ $\{3, 4\}$ $\{3, 5\}$ $\{4, 5\}$

Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Special cases:
- $\binom{n}{0} = 1$
- $\binom{n}{1} = n$
- $\binom{n}{2} = \frac{n(n-1)}{2}$
Combinations

$\binom{n}{k} = \text{The number of different ways of choosing } k \text{ objects from a collection of } n \text{ objects. (Pronounced \textquotedblleft } n \text{ choose } k \text{	extquotedblright.)}$
Combinations

\[\binom{n}{k} = \text{The number of different ways of choosing } k \text{ objects from a collection of } n \text{ objects. (Pronounced “} n \text{ choose } k\text{”.)} \]

Example: \(\binom{5}{2} = 10 \)
Combinations

\[\binom{n}{k} = \text{The number of different ways of choosing } k \text{ objects from a collection of } n \text{ objects. (Pronounced “}n \text{ choose } k\text{”.)} \]

Example: \(\binom{5}{2} = 10 \)

\[
\begin{align*}
\{1, 2\} & \quad \{1, 3\} & \quad \{1, 4\} & \quad \{1, 5\} & \quad \{2, 3\} \\
\{2, 4\} & \quad \{2, 5\} & \quad \{3, 4\} & \quad \{3, 5\} & \quad \{4, 5\}
\end{align*}
\]
Combinations

\(\binom{n}{k} = \) The number of different ways of choosing \(k \) objects from a collection of \(n \) objects. (Pronounced “\(n \) choose \(k \”).)

Example: \(\binom{5}{2} = 10 \)

\[\{1, 2\} \quad \{1, 3\} \quad \{1, 4\} \quad \{1, 5\} \quad \{2, 3\} \quad \{2, 4\} \quad \{2, 5\} \quad \{3, 4\} \quad \{3, 5\} \quad \{4, 5\} \]

Formula: \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \)
Combinations

\(\binom{n}{k} = \) The number of different ways of choosing \(k \) objects from a collection of \(n \) objects. (Pronounced “\(n \) choose \(k \).”)

Example: \(\binom{5}{2} = 10 \)

\[
\begin{align*}
\{1, 2\} & \quad \{1, 3\} & \quad \{1, 4\} & \quad \{1, 5\} & \quad \{2, 3\} \\
\{2, 4\} & \quad \{2, 5\} & \quad \{3, 4\} & \quad \{3, 5\} & \quad \{4, 5\}
\end{align*}
\]

Formula: \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \)

Special cases: \(\binom{n}{0} = 1, \binom{n}{1} = n, \binom{n}{2} = \frac{n(n-1)}{2} \)
Harmonic Numbers

The nth Harmonic number is the sum:

$$H_n = \sum_{i=1}^{n} \frac{1}{i}$$

These numbers go to infinity:

$$\lim_{n \to \infty} H_n = \infty$$
Harmonic Numbers

The nth Harmonic number is the sum:

$$H_n = \sum_{i=1}^{n} \frac{1}{i}$$
Harmonic Numbers

The nth Harmonic number is the sum:

$$H_n = \sum_{i=1}^{n} \frac{1}{i}$$

These numbers go to infinity:

$$\lim_{n \to \infty} H_n = \sum_{i=1}^{\infty} \frac{1}{i} = \infty$$
Harmonic Numbers

The harmonic numbers are closely related to logs.
Harmonic Numbers

The harmonic numbers are closely related to logs. Recall:

$$\ln x = \int_{1}^{x} \frac{1}{t} \, dt$$
Harmonic Numbers

The harmonic numbers are closely related to logs. Recall:

$$\ln x = \int_1^x \frac{1}{t} \, dt$$

$$y = \frac{1}{x}$$
Harmonic Numbers

The harmonic numbers are closely related to logs. Recall:

\[\ln x = \int_1^x \frac{1}{t} \, dt \]

We will show that \(H_n = \Theta(\log n) \).
Harmonic Numbers

\[y = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \ldots + \frac{1}{n} < \ln n < \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{n} - 1 \]

\(H_n - \frac{1}{n} < \ln n < H_n - 1 \), so \(H_n = \Theta(\log n) \).
Harmonic Numbers

\[y = \frac{1}{x} \]
Harmonic Numbers

\[\frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} < \ln n < 1 + \frac{1}{2} + \ldots + \frac{1}{n-1} \]
Harmonic Numbers

\begin{align*}
\frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} &< \ln n < 1 + \frac{1}{2} + \ldots + \frac{1}{n-1} \\
H_n - 1 &< \ln n < H_n - \frac{1}{n}
\end{align*}
Harmonic Numbers

\[\frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \quad < \quad \ln n \quad < \quad 1 + \frac{1}{2} + \ldots + \frac{1}{n-1}\]

\[H_n - 1 \quad < \quad \ln n \quad < \quad H_n - \frac{1}{n}\]

Hence \(\ln n + \frac{1}{n} < H_n < \ln n + 1\), so \(H_n = \Theta(\log n)\).
Proof/Justification Techniques

Proof by Example

A statement of the form "There exists..." is true.
A statement of the form "For all..." is false.
A statement of the form "If P then Q" is false.

Illustration:
Consider the statement:

All numbers of the form $2^k - 1$ are prime.

This statement is False: $2^4 - 1 = 15 = 3 \cdot 5$.

Note: The statement can be rewritten as:
If n is an integer of the form $2^k - 1$, then n is prime.
Proof/Justification Techniques

- **Proof by Example** Can be used to prove

 Consider the statement:

 All numbers of the form $2^k - 1$ are prime.

 This statement is False: $2^4 - 1 = 15 = 3 \cdot 5$
Proof/Justification Techniques

- **Proof by Example** Can be used to prove
 - A statement of the form “There exists…” is true.

Illustration:
Consider the statement:
All numbers of the form $2^k - 1$ are prime.
This statement is False: $2^4 - 1 = 15 = 3 \cdot 5$.

Note: The statement can be rewritten as:
If n is an integer of the form $2^k - 1$, then n is prime.
Proof/Justification Techniques

- **Proof by Example** Can be used to prove
 - A statement of the form “There exists...” is **true**.
 - A statement of the form “For all...” is **false**.

Illustration:
Consider the statement:
All numbers of the form $2^k - 1$ are prime.

This statement is **false**: $2^4 - 1 = 15 = 3 \cdot 5$.
Proof/Justification Techniques

- **Proof by Example** Can be used to prove
 - A statement of the form “There exists...” is true.
 - A statement of the form “For all...” is false.
 - A statement of the form “If P then Q” is false.

Illustration:
Consider the statement:
All numbers of the form $2^k - 1$ are prime.
This statement is False: $2^4 - 1 = 15 = 3 \cdot 5$.
Proof/Justification Techniques

- **Proof by Example** Can be used to prove
 - A statement of the form “There exists...” is true.
 - A statement of the form “For all...” is false.
 - A statement of the form “If P then Q” is false.

- **Illustration:**

 Consider the statement:

 All numbers of the form $2^k - 1$ are prime.

 This statement is False: $2^4 - 1 = 15 = 3 \times 5$.
Proof/Justification Techniques

- **Proof by Example** Can be used to prove
 - A statement of the form “There exists…” is true.
 - A statement of the form “For all…” is false.
 - A statement of the form “If P then Q” is false.

- **Illustration**: Consider the statement:
 \[
 \text{All numbers of the form } 2^k - 1 \text{ are prime.}
 \]
Proof/Justification Techniques

- **Proof by Example** Can be used to prove
 - A statement of the form “There exists...” is true.
 - A statement of the form “For all...” is false.
 - A statement of the form “If P then Q” is false.

- **Illustration:** Consider the statement:

 All numbers of the form \(2^k - 1\) are prime.

 This statement is **False:** \(2^4 - 1 = 15 = 3 \cdot 5\)
Proof/Justification Techniques

- **Proof by Example** Can be used to prove
 - A statement of the form “There exists...” is true.
 - A statement of the form “For all...” is false.
 - A statement of the form “If P then Q” is false.

- **Illustration**: Consider the statement:

 All numbers of the form $2^k - 1$ are prime.

 This statement is **False**: $2^4 - 1 = 15 = 3 \cdot 5$

- **Note**: The statement can be rewritten as:

 If n is an integer of the form $2^k - 1$, then n is prime.
Proof/Justification Techniques

- Suppose we want to prove a statement of the form “If P then Q” is true.
Proof/Justification Techniques

- Suppose we want to prove a statement of the form “If P then Q” is true. There are three approaches:
Proof/Justification Techniques

Suppose we want to prove a statement of the form "If P then Q" is true. There are three approaches:

1. Direct proof: Assume P is true. Show that Q must be true.

2. Indirect proof: Assume Q is false. Show that P must be false. This is also known as a proof by contraposition.

3. Proof by contradiction: Assume P is true and Q is false. Show that there is a contradiction.

See [GT] Section 1.3.3 for examples.
Proof/Justification Techniques

Suppose we want to prove a statement of the form “If P then Q” is true. There are three approaches:

1. **Direct proof:** Assume P is true. Show that Q must be true.
2. **Indirect proof:** Assume Q is false. Show that P must be false.
3. **Proof by contradiction:** Assume P is true and Q is false. Show that there is a contradiction.

See [GT] Section 1.3.3 for examples.
Suppose we want to prove a statement of the form “If P then Q” is true.

There are three approaches:

1. **Direct proof:** Assume P is true. Show that Q must be true.
2. **Indirect proof:** Assume Q is false. Show that P must be false. This is also known as a proof by contraposition.
3. **Proof by contradiction:** Assume P is true and Q is false. Show that there is a contradiction.
Proof/Justification Techniques

- Suppose we want to prove a statement of the form “If P then Q” is true.

There are three approaches:

1. **Direct proof**: Assume P is true. Show that Q must be true.
2. **Indirect proof**: Assume Q is false. Show that P must be false. This is also known as a proof by contraposition.
3. **Proof by contradiction**: Assume P is true and Q is false. Show that there is a contradiction.

See [GT] Section 1.3.3 for examples.
Proof/Justification Techniques: Induction
Proof/Justification Techniques: Induction

- A technique for proving theorems about the positive (or nonnegative) integers.
Proof/Justification Techniques: Induction

- A technique for proving theorems about the positive (or nonnegative) integers.
- Let $P(n)$ be a statement with an integer parameter, n.
 Mathematical induction is a technique for proving that $P(n)$ is true for all integers \geq some base value b.
Proof/Justification Techniques: Induction

- A technique for proving theorems about the positive (or nonnegative) integers.
- Let $P(n)$ be a statement with an integer parameter, n. **Mathematical induction** is a technique for proving that $P(n)$ is true for all integers \geq some base value b.
- Usually, the base value is 0 or 1.
Proof/Justification Techniques: Induction

- A technique for proving theorems about the positive (or nonnegative) integers.
- Let $P(n)$ be a statement with an integer parameter, n. Mathematical induction is a technique for proving that $P(n)$ is true for all integers \geq some base value b.
- Usually, the base value is 0 or 1.
- To show $P(n)$ holds for all $n \geq b$, we must show two things:
Proof/Justification Techniques: Induction

- A technique for proving theorems about the positive (or nonnegative) integers.
- Let $P(n)$ be a statement with an integer parameter, n. Mathematical induction is a technique for proving that $P(n)$ is true for all integers \geq some base value b.
- Usually, the base value is 0 or 1.
- To show $P(n)$ holds for all $n \geq b$, we must show two things:
 1. Base Case: $P(b)$ is true (where b is the base value).
Proof/Justification Techniques:
Induction

- A technique for proving theorems about the positive (or nonnegative) integers.
- Let $P(n)$ be a statement with an integer parameter, n. Mathematical induction is a technique for proving that $P(n)$ is true for all integers \geq some base value b.
- Usually, the base value is 0 or 1.
- To show $P(n)$ holds for all $n \geq b$, we must show two things:
 1. Base Case: $P(b)$ is true (where b is the base value).
 2. Inductive step: If $P(k)$ is true, then $P(k + 1)$ is true.
Example: Show that for all $n \geq 1$

$$\sum_{i=1}^{n} i \cdot 2^i = (n - 1) \cdot 2^{(n+1)} + 2$$
Induction Example

Example: Show that for all \(n \geq 1 \)

\[
\sum_{i=1}^{n} i \cdot 2^i = (n - 1) \cdot 2^{(n+1)} + 2
\]

Base Case: \((n = 1) \)
Induction Example

Example: Show that for all $n \geq 1$

$$\sum_{i=1}^{n} i \cdot 2^i = (n - 1) \cdot 2^{n+1} + 2$$

Base Case: $(n = 1)$

LHS
Induction Example

Example: Show that for all $n \geq 1$

$$\sum_{i=1}^{n} i \cdot 2^i = (n - 1) \cdot 2^{(n+1)} + 2$$

Base Case: ($n = 1$)

$$\text{LHS} = \sum_{i=1}^{1} i \cdot 2^i = 1 \cdot 2^1 = 2.$$
Example: Show that for all \(n \geq 1 \)

\[
\sum_{i=1}^{n} i \cdot 2^i = (n - 1) \cdot 2^{(n+1)} + 2
\]

Base Case: \((n = 1) \)

\[
\text{LHS} = \sum_{i=1}^{1} i \cdot 2^i = 1 \cdot 2^1 = 2.
\]

RHS
Induction Example

Example: Show that for all $n \geq 1$

$$\sum_{i=1}^{n} i \cdot 2^i = (n - 1) \cdot 2^{(n+1)} + 2$$

Base Case: $(n = 1)$

LHS \hspace{1cm} RHS

$$\begin{align*}
\text{LHS} &= \sum_{i=1}^{1} i \cdot 2^i = 1 \cdot 2^1 = 2. \\
\text{RHS} &= (1 - 1) \cdot 2^{1+1} + 2 = 0 + 2 = 2.
\end{align*}$$
Induction Example

Example: Show that for all $n \geq 1$

$$\sum_{i=1}^{n} i \cdot 2^i = (n - 1) \cdot 2^{(n+1)} + 2$$

Base Case: $(n = 1)$

$$\text{LHS} = \sum_{i=1}^{1} i \cdot 2^i = 1 \cdot 2^1 = 2.$$
$$\text{RHS} = (1 - 1) \cdot 2^{1+1} + 2 = 0 + 2 = 2.$$
LHS
Induction Example

Example: Show that for all $n \geq 1$

$$\sum_{i=1}^{n} i \cdot 2^i = (n - 1) \cdot 2^{(n+1)} + 2$$

Base Case: $(n = 1)$

$$\text{LHS} = \sum_{i=1}^{1} i \cdot 2^i = 1 \cdot 2^1 = 2.$$

$$\text{RHS} = (1 - 1) \cdot 2^{1+1} + 2 = 0 + 2 = 2.$$

LHS = RHS

✓
Induction Example, continued

Inductive Step:

Assume $P(k)$ is true:

$$\sum_{i=1}^{k} i \cdot 2^i = (k-1) \cdot 2^{(k+1)} + 2.$$

Show $P(k+1)$ is true:

$$\sum_{i=1}^{k+1} i \cdot 2^i = k \cdot 2^{(k+2)} + 2.$$
Induction Example, continued

Inductive Step:
Assume $P(k)$ is true:

$$\sum_{i=1}^{k} i \cdot 2^i = (k - 1) \cdot 2^{(k+1)} + 2.$$
Induction Example, continued

Inductive Step:
Assume $P(k)$ is true:

\[\sum_{i=1}^{k} i \cdot 2^i = (k - 1) \cdot 2^{(k+1)} + 2. \]

Show $P(k + 1)$ is true:

\[\sum_{i=1}^{k+1} i \cdot 2^i = k \cdot 2^{(k+2)} + 2. \]
Induction Example, continued

Assume: \[\sum_{i=1}^{k} i \cdot 2^i = (k - 1) \cdot 2^{(k+1)} + 2. \]

Show: \[\sum_{i=1}^{k+1} i \cdot 2^i = k \cdot 2^{(k+2)} + 2. \]
Induction Example, continued

Assume: \(\sum_{i=1}^{k} i \cdot 2^i = (k - 1) \cdot 2^{(k+1)} + 2. \)

Show: \(\sum_{i=1}^{k+1} i \cdot 2^i = k \cdot 2^{(k+2)} + 2. \)
Induction Example, continued

Assume: \[\sum_{i=1}^{k} i \cdot 2^i = (k - 1) \cdot 2^{(k+1)} + 2. \]

Show: \[\sum_{i=1}^{k+1} i \cdot 2^i = k \cdot 2^{(k+2)} + 2. \]

\[\sum_{i=1}^{k+1} i \cdot 2^i = \sum_{i=1}^{k} i \cdot 2^i + (k + 1) \cdot 2^{(k+1)} \]
Induction Example, continued

Assume: \(\sum_{i=1}^{k} i \cdot 2^i = (k - 1) \cdot 2^{(k+1)} + 2. \)

Show: \(\sum_{i=1}^{k+1} i \cdot 2^i = k \cdot 2^{(k+2)} + 2. \)

\[
\begin{align*}
\sum_{i=1}^{k+1} i \cdot 2^i &= \sum_{i=1}^{k} i \cdot 2^i + (k + 1) \cdot 2^{(k+1)} \\
&= (k - 1) \cdot 2^{(k+1)} + 2 + (k + 1) \cdot 2^{(k+1)} \\
&= k \cdot 2^{(k+2)} + 2
\end{align*}
\]
Induction Example, continued

Assume: \(\sum_{i=1}^{k} i \cdot 2^i = (k - 1) \cdot 2^{(k+1)} + 2. \)

Show: \(\sum_{i=1}^{k+1} i \cdot 2^i = k \cdot 2^{(k+2)} + 2. \)

\[
\begin{align*}
\sum_{i=1}^{k+1} i \cdot 2^i &= \sum_{i=1}^{k} i \cdot 2^i + (k + 1) \cdot 2^{(k+1)} \\
&= (k - 1) \cdot 2^{(k+1)} + 2 + (k + 1) \cdot 2^{(k+1)} \\
&= 2k \cdot 2^{(k+1)} + 2
\end{align*}
\]
Induction Example, continued

Assume: \[\sum_{i=1}^{k} i \cdot 2^i = (k - 1) \cdot 2^{(k+1)} + 2. \]

Show: \[\sum_{i=1}^{k+1} i \cdot 2^i = k \cdot 2^{(k+2)} + 2. \]

\[
\sum_{i=1}^{k+1} i \cdot 2^i = \sum_{i=1}^{k} i \cdot 2^i + (k + 1) \cdot 2^{(k+1)}
\]
\[
= (k - 1) \cdot 2^{(k+1)} + 2 + (k + 1) \cdot 2^{(k+1)}
\]
\[
= 2k \cdot 2^{(k+1)} + 2
\]
\[
= k \cdot 2^{(k+2)} + 2
\]

QED
Induction Example, continued

Assume: \[\sum_{i=1}^{k} i \cdot 2^i = (k - 1) \cdot 2^{(k+1)} + 2. \]

Show: \[\sum_{i=1}^{k+1} i \cdot 2^i = k \cdot 2^{(k+2)} + 2. \]

\[
\begin{align*}
\sum_{i=1}^{k+1} i \cdot 2^i &= \sum_{i=1}^{k} i \cdot 2^i + (k + 1) \cdot 2^{(k+1)} \\
&= (k - 1) \cdot 2^{(k+1)} + 2 + (k + 1) \cdot 2^{(k+1)} \\
&= 2k \cdot 2^{(k+1)} + 2 \\
&= k \cdot 2^{(k+2)} + 2 \quad \text{QED}
\end{align*}
\]
Probability

Defined in terms of a sample space, S.

Sample space consists of a finite set of outcomes, also called elementary events.

An event is a subset of the sample space. (So an event is a set of outcomes).

Sample space can be infinite, even uncountable. In this course, it will generally be finite.

Example: (2-coin example.) Flip two coins.

Sample space $S = \{HH, HT, TH, TT\}$.

The event "first coin is heads" is the subset $\{HH, HT\}$.
Probability

- Defined in terms of a sample space, S.

Sample space consists of a finite set of outcomes, also called elementary events. An event is a subset of the sample space. (So an event is a set of outcomes). Sample space can be infinite, even uncountable. In this course, it will generally be finite. Example: (2-coin example.) Flip two coins. Sample space $S = \{HH, HT, TH, TT\}$. The event "first coin is heads" is the subset $\{HH, HT\}$.
Probability

- Defined in terms of a sample space, S.
- Sample space consists of a finite set of outcomes, also called elementary events.
Probability

- Defined in terms of a sample space, S.
- Sample space consists of a finite set of outcomes, also called elementary events.
- An event is a subset of the sample space. (So an event is a set of outcomes).
Probability

- Defined in terms of a sample space, S.
- Sample space consists of a finite set of outcomes, also called elementary events.
- An event is a subset of the sample space. (So an event is a set of outcomes).
- Sample space can be infinite, even uncountable. In this course, it will generally be finite.
Probability

- Defined in terms of a sample space, S.
- Sample space consists of a finite set of outcomes, also called elementary events.
- An event is a subset of the sample space. (So an event is a set of outcomes).
- Sample space can be infinite, even uncountable. In this course, it will generally be finite.

Example: (2-coin example.) Flip two coins.
Probability

- Defined in terms of a **sample space**, S.
- Sample space consists of a finite set of **outcomes**, also called **elementary events**.
- An **event** is a subset of the sample space. (So an event is a set of outcomes).
- Sample space can be infinite, even uncountable. In this course, it will generally be finite.

Example: (2-coin example.) Flip two coins.

- Sample space $S = \{HH, HT, TH, TT\}$.

Probability

- Defined in terms of a sample space, \(S \).
- Sample space consists of a finite set of outcomes, also called elementary events.
- An event is a subset of the sample space. (So an event is a set of outcomes).
- Sample space can be infinite, even uncountable. In this course, it will generally be finite.

Example: (2-coin example.) Flip two coins.

- Sample space \(S = \{HH, HT, TH, TT\} \).
- The event “first coin is heads” is the subset \(\{HH, HT\} \).
Probability function

A probability function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:

1. $P(\emptyset) = 0$.
2. $P(S) = 1$.
3. For every event A, $0 \leq P(A) \leq 1$.
4. If $A, B \subseteq S$ and $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$.

Note: Property 4 implies that if $A \subseteq B$ then $P(A) \leq P(B)$.
A probability function is a function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:

1. $P(\emptyset) = 0$.
2. $P(S) = 1$.
3. For every event A, $0 \leq P(A) \leq 1$.
4. If $A, B \subseteq S$ and $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$.

Note: Property 4 implies that if $A \subseteq B$ then $P(A) \leq P(B)$.
A probability function is a function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:
1. $P(\emptyset) = 0.$
A probability function is a function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:

1. $P(\emptyset) = 0$.
2. $P(S) = 1$.
A probability function is a function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:

1. $P(\emptyset) = 0$.
2. $P(S) = 1$.
3. For every event A, $0 \leq P(A) \leq 1$.

Note: Property 4 implies that if $A \subseteq B$ then $P(A) \leq P(B)$.
A probability function is a function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:

1. $P(\emptyset) = 0$.
2. $P(S) = 1$.
3. For every event A, $0 \leq P(A) \leq 1$.
4. If $A, B \subseteq S$ and $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$.
Probability function

A probability function is a function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:

1. $P(\emptyset) = 0$.
2. $P(S) = 1$.
3. For every event A, $0 \leq P(A) \leq 1$.
4. If $A, B \subseteq S$ and $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$.

Note: Property 4 implies that if $A \subseteq B$ then $P(A) \leq P(B)$.
Probability function (continued)

For finite sample spaces, this can be simplified:

- Sample space $S = \{s_1, \ldots, s_k\}$
- Each outcome S_i is assigned a probability $P(s_i)$, with $\sum_{i=1}^{k} P(s_i) = 1$.

The probability of an event $E \subseteq S$ is:

$$P(E) = \sum_{s_i \in E} P(s_i).$$

Example: (2-coin example, continued). Define $P(HH) = P(HT) = P(TH) = P(TT) = \frac{1}{4}$.

Then P (first coin is heads) = $P(HH) + P(HT) = \frac{1}{2}$.
Probability function (continued)

For finite sample spaces, this can be simplified:

Sample space $S = \{s_1, \ldots, s_k\}$,

Each outcome s_i is assigned a probability $P(s_i)$, with $k \sum_{i=1}^{k} P(s_i) = 1$.

The probability of an event $E \subseteq S$ is:

$$P(E) = \sum_{s_i \in E} P(s_i).$$

Example: (2-coin example, continued). Define $P(HH) = P(HT) = P(TH) = P(TT) = \frac{1}{4}$.

Then $P($first coin is heads$) = P(HH) + P(HT) = \frac{1}{2}$.
Probability function (continued)

For finite sample spaces, this can be simplified:

- Sample space $S = \{s_1, \ldots, s_k\}$,
Probability function (continued)

For finite sample spaces, this can be simplified:

- Sample space $S = \{s_1, \ldots, s_k\}$,
- Each outcome S_i is assigned a probability $P(s_i)$, with

\[
\sum_{i=1}^{k} P(s_i) = 1.
\]
Probability function (continued)

For finite sample spaces, this can be simplified:

- Sample space $S = \{s_1, \ldots, s_k\}$,
- Each outcome S_i is assigned a probability $P(s_i)$, with

$$\sum_{i=1}^{k} P(s_i) = 1.$$

- The probability of an event $E \subseteq S$ is:

$$P(E) = \sum_{s_i \in E} P(s_i).$$
Probability function (continued)

For finite sample spaces, this can be simplified:

- Sample space \(S = \{s_1, \ldots, s_k\} \),
- Each outcome \(S_i \) is assigned a probability \(P(s_i) \), with

\[
\sum_{i=1}^{k} P(s_i) = 1.
\]

- The probability of an event \(E \subseteq S \) is:

\[
P(E) = \sum_{s_i \in E} P(s_i).
\]

Example: (2-coin example, continued). Define

\[
P(HH) = P(HT) = P(TH) = P(TT) = \frac{1}{4}.
\]
Probability function (continued)

For finite sample spaces, this can be simplified:

- Sample space $S = \{s_1, \ldots, s_k\}$,
- Each outcome S_i is assigned a probability $P(s_i)$, with

\[
\sum_{i=1}^{k} P(s_i) = 1.
\]

- The probability of an event $E \subseteq S$ is:

\[
P(E) = \sum_{s_i \in E} P(s_i).
\]

Example: (2-coin example, continued). Define

\[
P(\text{HH}) = P(\text{HT}) = P(\text{TH}) = P(\text{TT}) = \frac{1}{4}.
\]

Then

\[
P(\text{first coin is heads}) = P(\text{HH}) + P(\text{HT}) = \frac{1}{2}.
\]
Random variables

Intuitive definition: a random variable is a variable whose value depends on the outcome of some experiment.

Formal definition: a random variable is a function that maps outcomes in a sample space S to real numbers.

Special case: An indicator variable is a random variable that is always either 0 or 1.
Random variables

- **Intuitive definition:** a random variable is a variable whose value depends on the outcome of some experiment.
Random variables

- **Intuitive definition:** a random variable is a variable whose value depends on the outcome of some experiment.
- **Formal definition:** a random variable is a function that maps outcomes in a sample space S to real numbers.
Random variables

- **Intuitive definition:** A random variable is a variable whose value depends on the outcome of some experiment.
- **Formal definition:** A random variable is a function that maps outcomes in a sample space S to real numbers.
- **Special case:** An Indicator variable is a random variable that is always either 0 or 1.
Expectation

The expected value, or expectation, of a random variable X represents its "average value". Formally: Let X be a random variable with a finite set of possible values $V = \{x_1, \ldots, x_k\}$. Then $E(X) = \sum_{x \in V} x \cdot P(X = x)$.

Example: (2-coin example, continued). Let X be the number of heads when two coins are thrown. Then $E(X) = 0 \cdot P(X = 0) + 1 \cdot P(X = 1) + 2 \cdot P(X = 2) = 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} = 1$.
Expectation

- The expected value, or expectation, of a random variable X represents its “average value”.

Formally: Let X be a random variable with a finite set of possible values $V = \{x_1, \ldots, x_k\}$. Then $E(X) = \sum_{x \in V} x \cdot P(X = x)$.

Example: (2-coin example, continued). Let X be the number of heads when two coins are thrown. Then $E(X) = 0 \cdot P(X = 0) + 1 \cdot P(X = 1) + 2 \cdot P(X = 2) = 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} = 1$.
Expectation

- The expected value, or expectation, of a random variable X represents its “average value”.

- Formally: Let X be a random variable with a finite set of possible values $V = \{x_1, \ldots, x_k\}$. Then

$$E(X) = \sum_{x \in V} x \cdot P(X = x).$$
Expectation

- The expected value, or expectation, of a random variable X represents its “average value”.

- Formally: Let X be a random variable with a finite set of possible values $V = \{x_1, \ldots, x_k\}$. Then

$$E(X) = \sum_{x \in V} x \cdot P(X = x).$$

Example: (2-coin example, continued). Let X be the number of heads when two coins are thrown. Then

$$E(X) = 0 \cdot P(X = 0) + 1 \cdot P(X = 1) + 2 \cdot P(X = 2)$$

$$= 0 \cdot \left(\frac{1}{4}\right) + 1 \cdot \left(\frac{1}{2}\right) + 2 \cdot \left(\frac{1}{4}\right)$$

$$= 1$$
Expectation

Example: Throw a single six-sided die. Assume the die is fair, so each possible throw has a probability of $\frac{1}{6}$.

The expected value of the throw is:

\[
1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5.
\]
Expectation

Example: Throw a single six-sided die. Assume the die is fair, so each possible throw has a probability of $1/6$.

The expected value of the throw is:

$$1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$
Expectation

Example: Throw a single six-sided die. Assume the die is fair, so each possible throw has a probability of $1/6$.

The expected value of the throw is:

$$1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$
Linearity of Expectation

For any two random variables X and Y,

$$E(X + Y) = E(X) + E(Y).$$

Proof: see [GT], 1.3.4

Very useful, because usually it is easier to compute $E(X)$ and $E(Y)$ and apply the formula than to compute $E(X + Y)$ directly.

Example 1: Throw two six-sided dice. Let X be the sum of the values. Then

$$E(X) = E(X_1 + X_2) = E(X_1) + E(X_2) = 3.5 + 3.5 = 7,$$

where X_i is the value on die i ($i = 1, 2$).

Example 2: Throw 100 six-sided dice. Let Y be the sum of the values. Then

$$E(Y) = 100 \cdot 3.5 = 350.$$
Linearity of Expectation

- For any two random variables X and Y,

$$E(X + Y) = E(X) + E(Y).$$
Linearity of Expectation

For any two random variables X and Y,

$$E(X + Y) = E(X) + E(Y).$$

Proof: see [GT], 1.3.4
Linearity of Expectation

- For any two random variables X and Y,

\[E(X + Y) = E(X) + E(Y). \]

- Proof: see [GT], 1.3.4

- Very useful, because usually it is easier to compute $E(X)$ and $E(Y)$ and apply the formula than to compute $E(X + Y)$ directly.

Example 1: Throw two six-sided dice. Let X be the sum of the values. Then

\[E(X) = E(X_1 + X_2) = E(X_1) + E(X_2) = 3.5 + 3.5 = 7, \]

where X_i is the value on die i ($i = 1, 2$).

Example 2: Throw 100 six-sided dice. Let Y be the sum of the values. Then

\[E(Y) = 100 \cdot 3.5 = 350. \]
Linearity of Expectation

- For any two random variables X and Y,

$$E(X + Y) = E(X) + E(Y).$$

- Proof: see [GT], 1.3.4

- Very useful, because usually it is easier to compute $E(X)$ and $E(Y)$ and apply the formula than to compute $E(X + Y)$ directly.

Example 1: Throw two six-sided dice. Let X be the sum of the values. Then

$$E(X) = E(X_1 + X_2) = E(X_1) + E(X_2) = 3.5 + 3.5 = 7,$$

where X_i is the value on die i ($i = 1, 2$).
Linearity of Expectation

For any two random variables X and Y,

$$E(X + Y) = E(X) + E(Y).$$

Proof: see [GT], 1.3.4

Very useful, because usually it is easier to compute $E(X)$ and $E(Y)$ and apply the formula than to compute $E(X + Y)$ directly.

Example 1: Throw two six-sided dice. Let X be the sum of the values. Then

$$E(X) = E(X_1 + X_2) = E(X_1) + E(X_2) = 3.5 + 3.5 = 7,$$

where X_i is the value on die i ($i = 1, 2$).

Example 2: Throw 100 six-sided dice. Let Y be the sum of the values. Then

$$E(Y) = 100 \cdot 3.5 = 350.$$
Independent events

Two events A_1 and A_2 are independent iff

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2).$$

Example: (2-coin example, continued).

Let $A_1 = \text{coin 1 is heads} = \{HH, HT\}$

$A_2 = \text{coin 2 is tails} = \{HT, TT\}$

Then

$$P(A_1) = \frac{1}{2}, \quad P(A_2) = \frac{1}{2}, \quad \text{and} \quad P(A_1 \cap A_2) = P(HT) = \frac{1}{4} = P(A_1) \cdot P(A_2).$$

So A_1 and A_2 are independent.
Independent events

- Two events A_1 and A_2 are independent iff

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2).$$

Example: (2-coin example, continued).

Let $A_1 = \text{coin 1 is heads} = \{\text{HH}, \text{HT}\}$

$A_2 = \text{coin 2 is tails} = \{\text{HT}, \text{TT}\}$

Then $P(A_1) = \frac{1}{2}$, $P(A_2) = \frac{1}{2}$, and

$$P(A_1 \cap A_2) = P(\text{HT}) = \frac{1}{4} = P(A_1) \cdot P(A_2).$$

So A_1 and A_2 are independent.
Independent events

- Two events A_1 and A_2 are independent iff

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2).$$

Example: (2-coin example, continued). Let

- $A_1 = \text{coin 1 is heads} = \{\text{HH, HT}\}$
- $A_2 = \text{coin 2 is tails} = \{\text{HT, TT}\}$
Independent events

- Two events A_1 and A_2 are independent iff

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2).$$

Example: (2-coin example, continued). Let

- $A_1 = \text{coin 1 is heads} = \{\text{HH}, \text{HT}\}$
- $A_2 = \text{coin 2 is tails} = \{\text{HT}, \text{TT}\}$

Then $P(A_1) = \frac{1}{2}$, $P(A_2) = \frac{1}{2}$, and

$$P(A_1 \cap A_2) = P(\text{HT}) = \frac{1}{4} = P(A_1) \cdot P(A_2).$$

So A_1 and A_2 are independent.
Independent events

A collection of \(n \) events \(C = \{ A_1, A_2, \ldots, A_n \} \) is mutually independent (or simply independent) if:

\[
P(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdots P(A_{i_k}).
\]

Example: Suppose we flip 10 coins. Suppose the flips are fair \((P(H) = P(T) = 1/2) \) and independent. Then the probability of any particular sequence of flips (e.g., HHTTTHTHTH) is \(1/(2^{10}) \).
Independent events

A collection of \(n \) events \(C = \{A_1, A_2, \ldots, A_n\} \) is mutually independent (or simply independent) if:

For every subset \(\{A_{i_1}, A_{i_2}, \ldots, A_{i_k}\} \subseteq C \):

\[
P(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdots P(A_{i_k}).
\]

Example: Suppose we flip 10 coins. Suppose the flips are fair (\(P(H) = P(T) = 1/2 \)) and independent. Then the probability of any particular sequence of flips (e.g., HHTTTHTHTH) is \(1/2^{10} \).
Independent events

A collection of n events $C = \{A_1, A_2, \ldots, A_n\}$ is mutually independent (or simply independent) if:

For every subset $\{A_{i_1}, A_{i_2}, \ldots, A_{i_k}\} \subseteq C$:

$$P(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdots P(A_{i_k}).$$

Example: Suppose we flip 10 coins. Suppose the flips are fair ($P(H) = P(T) = 1/2$) and independent. Then the probability of any particular sequence of flips (e.g., $HHTTTHTHTH$) is $1/(2^{10})$.
Example: Probability and counting

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and independent. What is the probability of getting exactly 7 heads out of the 10 flips?

Solution:

▶ The outcomes consist of the set of possible sequences of 10 flips (e.g., HHTTTHTHTH).
▶ The probability of each outcome is $1/2^{10}$.
▶ The number of successful outcomes is $\binom{10}{7}$.
▶ Hence the probability of getting exactly 7 heads is:

$$\binom{10}{7} \cdot 2^{10} = 120 \cdot 1024 = 0.117.$$
Example: Probability and counting

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and independent. What is the probability of getting exactly 7 heads out of the 10 flips?
Example: Probability and counting

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and independent. What is the probability of getting exactly 7 heads out of the 10 flips?

Solution:

- The outcomes consist of the set of possible sequences of 10 flips (e.g., HHTTTHTHTH).
Example: Probability and counting

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and independent. What is the probability of getting exactly 7 heads out of the 10 flips?

Solution:

- The outcomes consist of the set of possible sequences of 10 flips (e.g., \texttt{HHTTTHTHTH}).
- The probability of each outcome is \(\frac{1}{2^{10}} \).
Example: Probability and counting

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and independent. What is the probability of getting exactly 7 heads out of the 10 flips?

Solution:

- The outcomes consist of the set of possible sequences of 10 flips (e.g., HHTTHTHTTH).
- The probability of each outcome is $1/(2^{10})$.
- The number of successful outcomes is $\binom{10}{7}$.
Example: Probability and counting

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and independent. What is the probability of getting exactly 7 heads out of the 10 flips?

Solution:

- The outcomes consist of the set of possible sequences of 10 flips (e.g., HHTTTHTHTH).
- The probability of each outcome is $1/(2^{10})$.
- The number of successful outcomes is $\binom{10}{7}$.
- Hence the probability of getting exactly 7 heads is:

$$\frac{\binom{10}{7}}{2^{10}} = \frac{120}{1024} = 0.117.$$
An average-case result about finding the maximum

An algorithm to find the maximum:

\[v = -\infty \]

\[
\begin{align*}
&\text{for } i = 0 \text{ to } n-1: \\
&\quad \text{if } A[i] > v: \\
&\qquad v = A[i]
\end{align*}
\]

return \(v \)

▶ Worst-case number of comparisons is \(n \).
▶ This can be reduced to \(n - 1 \).

How many times is the running maximum updated?

In the worst case \(n \).

What about the average case? . . .
An average-case result about finding the maximum

\[
v = -\infty \\
\text{for } i = 0 \text{ to } n-1: \\
\quad \text{if } A[i] > v:\ \\
\quad \quad v = A[i] \\
\text{return } v
\]
An average-case result about finding the maximum

\[
v = -\infty \\
\text{for } i = 0 \text{ to } n-1: \\
\quad \text{if } A[i] > v: \\
\quad \quad v = A[i] \\
\text{return } v
\]

- Worst-case number of comparisons is \(n \).
An average-case result about finding the maximum

\[
v = -\infty \\
\text{for } i = 0 \text{ to } n-1: \\
\quad \text{if } A[i] > v: \\
\quad \quad v = A[i] \\
\text{return } v
\]

- Worst-case number of comparisons is \(n \).
- This can be reduced to \(n - 1 \).
An average-case result about finding the maximum

\[
v = -\infty \\
\text{for } i = 0 \text{ to } n-1: \\
\quad \text{if } A[i] > v: \\
\quad \quad v = A[i] \\
\text{return } v
\]

- Worst-case number of comparisons is \(n \).
- This can be reduced to \(n - 1 \).
- How many times is the running maximum updated?
An average-case result about finding the maximum

\[
v = -\infty
\]

\[
\text{for } i = 0 \text{ to } n-1:\n\hspace{1cm} \text{if } A[i] > v:\n\hspace{2cm} v = A[i]\n\]

\[
\text{return } v
\]

- Worst-case number of comparisons is \(n \).
- This can be reduced to \(n - 1 \).
- How many times is the running maximum updated?
 - In the worst case \(n \).
An average-case result about finding the maximum

\[
v = -\infty \\
\text{for } i = 0 \text{ to } n-1: \\
\quad \text{if } A[i] > v: \\
\quad \quad v = A[i] \\
\text{return } v
\]

- Worst-case number of comparisons is \(n\).
- This can be reduced to \(n - 1\).
- How many times is the running maximum updated?
 - In the worst case \(n\).
 - What about the average case? ...
Average number of updates to the running maximum

Assume all possible orderings (permutations) of A are equally likely.

All n elements of A are distinct.

The running maximum gets updated on iteration i of the loop iff $\max\{A[0], \ldots, A[i]\} = A[i]$.

The probability of this happening is $1 / (i + 1)$.

Define indicator variables X_i: $X_i = \begin{cases} 1 & \text{if } v \text{ gets updated on iteration } i \\ 0 & \text{if } v \text{ does not get updated on iteration } i \end{cases}$

Then $E(X_i) = 1 / (i + 1)$.

The total number of times that v gets updated is:

$$X = n - 1 \sum_{i=0}^{n-1} X_i$$
Average number of updates to the running maximum

- Assume
 - all possible orderings (permutations) of A are equally likely
 - all n elements of A are distinct.
Average number of updates to the running maximum

- Assume
 - all possible orderings (permutations) of A are equally likely
 - all n elements of A are distinct.

- The running maximum gets updated on iteration i of the loop iff
 $\max\{A[0], \ldots, A[i]\} = A[i]$.
Average number of updates to the running maximum

- Assume
 - all possible orderings (permutations) of A are equally likely
 - all n elements of A are distinct.
- The running maximum gets updated on iteration i of the loop iff
 \[\max\{A[0], \ldots, A[i]\} = A[i]. \]
- The probability of this happening is $1/(i + 1)$.
Average number of updates to the running maximum

- Assume
 - all possible orderings (permutations) of A are equally likely
 - all n elements of A are distinct.
- The running maximum gets updated on iteration i of the loop iff
 \[\max\{A[0], \ldots, A[i]\} = A[i]. \]
- The probability of this happening is $1/(i + 1)$.
- Define indicator variables X_i:
 \[
 X_i = \begin{cases}
 1 & \text{if v gets updated on iteration } \#i \\
 0 & \text{if v does not get updated on iteration } \#i
 \end{cases}
 \]
Average number of updates to the running maximum

- Assume
 - all possible orderings (permutations) of \(A \) are equally likely
 - all \(n \) elements of \(A \) are distinct.

- The running maximum gets updated on iteration \(i \) of the loop iff
 \[\max\{A[0], \ldots, A[i]\} = A[i]. \]

- The probability of this happening is \(1/(i+1) \).

- Define indicator variables \(X_i \):

 \[
 X_i = \begin{cases}
 1 & \text{if } v \text{ gets updated on iteration } \#i \\
 0 & \text{if } v \text{ does not get updated on iteration } \#i
 \end{cases}
 \]

 Then \(E(X_i) = \frac{1}{i+1} \)
Average number of updates to the running maximum

- Assume
 - all possible orderings (permutations) of A are equally likely
 - all n elements of A are distinct.

- The running maximum gets updated on iteration i of the loop iff
 \[\max\{A[0], \ldots, A[i]\} = A[i]. \]

- The probability of this happening is $1/(i + 1)$.

- Define indicator variables X_i:
 \[
 X_i = \begin{cases}
 1 & \text{if } v \text{ gets updated on iteration } #i \\
 0 & \text{if } v \text{ does not get updated on iteration } #i
 \end{cases}
 \]

 Then $E(X_i) = \frac{1}{i+1}$

- The total number of times that v gets updated is:
 \[
 X = \sum_{i=0}^{n-1} X_i
 \]
Average number of updates to the running maximum (continued)

The expected total number of times that v gets updated is:

$$E(X) = E(n - 1 \sum_{i=0}^{n-1} X_i) = n - 1 \sum_{i=0}^{n-1} E(X_i) = n - 1 \sum_{i=1}^{n} \frac{1}{i} = H_n = O(\log n)$$

It can be shown that $H_n = \ln n + \gamma + o(1)$, where $\gamma = 0.5772157\ldots$

If there are 30,000 elements in the list, the expected update count is about 10.9

If there are 3,000,000,000 elements in the list, the expected update count is about 22.4
Average number of updates to the running maximum (continued)

The expected total number of times that v gets updated is:

$$E(X)$$
Average number of updates to the running maximum (continued)

The expected total number of times that \(v \) gets updated is:

\[
E(X) = E \left(\sum_{i=0}^{n-1} X_i \right)
\]

It can be shown that

\[
H_n = \ln n + \gamma + o(1),
\]

where \(\gamma = 0.5772157 \ldots \)

If there are 30,000 elements in the list, the expected update count is about 10.9
If there are 3,000,000,000 elements in the list, the expected update count is about 22.4
The expected total number of times that v gets updated is:

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E(X_i)$$
Average number of updates to the running maximum (continued)

The expected total number of times that \(v \) gets updated is:

\[
E(X) = E \left(\sum_{i=0}^{n-1} X_i \right) = \sum_{i=0}^{n-1} E(X_i) = \sum_{i=0}^{n-1} \frac{1}{i + 1}
\]

It can be shown that \(H_n = \ln n + \gamma + o(1) \), where \(\gamma = 0.5772157 \ldots \).

If there are 30,000 elements in the list, the expected update count is about 10.9.
If there are 3,000,000,000 elements in the list, the expected update count is about 22.4.
Average number of updates to the running maximum (continued)

The expected total number of times that v gets updated is:

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E(X_i) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i}$$

If there are 30,000 elements in the list, the expected update count is about 10.9

If there are 3,000,000,000 elements in the list, the expected update count is about 22.4
Average number of updates to the running maximum (continued)

The expected total number of times that \(v \) gets updated is:

\[
E(X) = E \left(\sum_{i=0}^{n-1} X_i \right) = \sum_{i=0}^{n-1} E(X_i) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i} = H_n
\]

It can be shown that \(H_n = \ln n + \gamma + o(1) \), where \(\gamma = 0.5772157 \ldots \)

If there are 30,000 elements in the list, the expected update count is about 10.9

If there are 3,000,000,000 elements in the list, the expected update count is about 22.4
The expected total number of times that ν gets updated is:

$$E(X) = E \left(\sum_{i=0}^{n-1} X_i \right) = \sum_{i=0}^{n-1} E(X_i) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i} = H_n = O(\log n)$$

It can be shown that $H_n = \ln n + \gamma + o(1)$, where $\gamma = 0.5772157...$
Average number of updates to the running maximum (continued)

The expected total number of times that \(v \) gets updated is:

\[
E(X) = E\left(\sum_{i=0}^{n-1} X_i \right) = \sum_{i=0}^{n-1} E(X_i) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i} = H_n = O(\log n)
\]

It can be shown that

\[
H_n = \ln n + \gamma + o(1), \quad \text{where } \gamma = 0.5772157\ldots
\]
The expected total number of times that v gets updated is:

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E(X_i) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i} = H_n = O(\log n)$$

It can be shown that

$$H_n = \ln n + \gamma + o(1), \quad \text{where } \gamma = 0.5772157\ldots$$

If there are 30,000 elements in the list, the expected update count is about 10.9
Average number of updates to the running maximum (continued)

The expected total number of times that \(v \) gets updated is:

\[
E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E(X_i) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i} = H_n = O(\log n)
\]

It can be shown that

\[
H_n = \ln n + \gamma + o(1), \quad \text{where } \gamma = 0.5772157 \ldots
\]

If there are 30,000 elements in the list, the expected update count is about 10.9

If there are 3,000,000,000 elements in the list, the expected update count is about 22.4