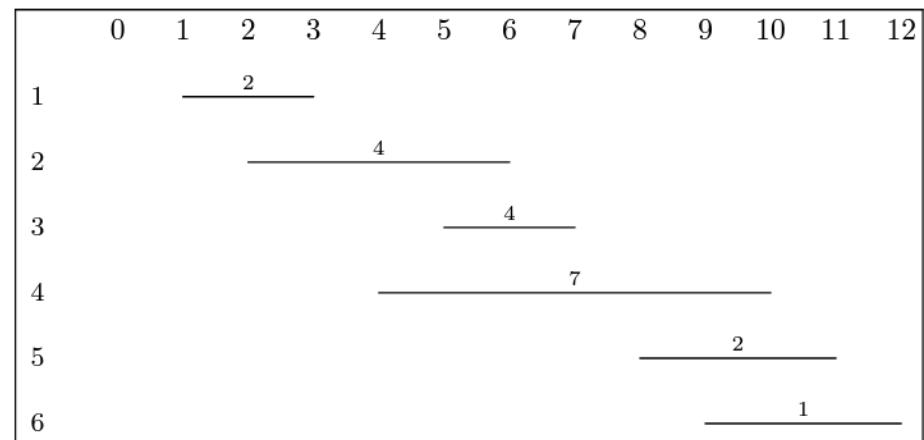


Lecture 10

Dynamic Programming II: Interval Scheduling, Longest Common Subsequence

CS 161 Design and Analysis of Algorithms

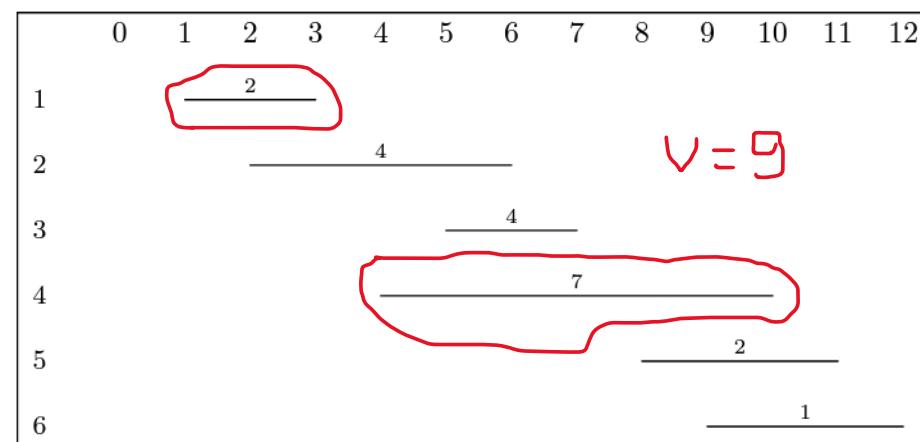

Ioannis Panageas

Case study IV: Interval Scheduling

Problem: You are given a collection of n intervals represented by start time, finish time, and value: (s_j, f_j, v_j) , sorted w.r.t f_j . Find a non-overlapping set of intervals with maximum total value.

Example:

j	$s(j)$	$f(j)$	$v(j)$
1	1	3	2
2	2	6	4
3	5	7	4
4	4	10	7
5	8	11	2
6	9	12	1



Case study IV: Interval Scheduling

Problem: You are given a collection of n intervals represented by start time, finish time, and value: (s_j, f_j, v_j) , sorted w.r.t f_j . Find a non-overlapping set of intervals with maximum total value.

Example:

j	$s(j)$	$f(j)$	$v(j)$
1	1	3	2
2	2	6	4
3	5	7	4
4	4	10	7
5	8	11	2
6	9	12	1

Case study IV: Interval Scheduling

Step 1: Define the problem and subproblems.

Answer: Let $DP[j]$ be the **maximum value** that can be obtained from a set of **non-overlapping** intervals with indices in the **range $\{1, \dots, j\}$**

Case study IV: Interval Scheduling

Step 1: Define the problem and subproblems.

Answer: Let $DP[j]$ be the **maximum value** that can be obtained from a set of **non-overlapping** intervals with indices in the **range** $\{1, \dots, j\}$

Step 2: Define the goal/output given Step 1.

It is $DP[n]$.

Case study IV: Interval Scheduling

Step 1: Define the problem and subproblems.

Answer: Let $DP[j]$ be the **maximum value** that can be obtained from a set of **non-overlapping** intervals with indices in the **range** $\{1, \dots, j\}$

Step 2: Define the goal/output given Step 1.

It is $DP[n]$.

Step 3: Define the base cases

It is $DP[0] = 0$.

Step 4: Define the recurrence

Case study IV: Interval Scheduling

Step 4: Define the recurrence

Interval j belongs to the optimal solution or **not**.

$$DP[j] = \max(DP[\$] + v_j, DP[j - 1])$$

What is $\$$?

Case study IV: Interval Scheduling

Step 4: Define the recurrence

Interval j belongs to the optimal solution or **not**.

$$DP[j] = \max(DP[\$] + v_j, DP[j - 1])$$

$\$$ should be the interval with highest index in $\{1, \dots, j - 1\}$ that does not intersect with j (since j is chosen).

Let $p[j]$ be the highest index in $\{1, \dots, j - 1\}$ that does not intersect with j . Then the recurrence becomes

$$DP[j] = \max(DP[p[j]] + v_j, DP[j - 1])$$

Case study IV: Interval Scheduling

Pseudocode:

Array DP[]

DP[0] \leftarrow 0

Initialization

For $k = 1$ to n **do**

 DP[k] \leftarrow max(DP[$k - 1$], DP[$p[k]$] + $v[k]$)

Bottom up filling DP

return DP[n]

Goal

Case study IV: Interval Scheduling

Pseudocode:

Array DP[]

DP[0] \leftarrow 0

Initialization

For $k = 1$ to n **do**

 DP[k] \leftarrow max(DP[$k - 1$], DP[$p[k]$] + $v[k]$)

Bottom up filling DP

return DP[n]

Goal

Question: How can we compute $p[j]$ for $1 \leq j \leq n$ in $\Theta(n \log n)$ time?

Case study IV: Interval Scheduling

Question: How can we compute $p[j]$ for $1 \leq j \leq n$ in $\Theta(n \log n)$ time?

Answer:

- Sort first the intervals in increasing order of finishing times.

Case study IV: Interval Scheduling

Question: How can we compute $p[j]$ for $1 \leq j \leq n$ in $\Theta(n \log n)$ time?

Answer:

- Sort first the intervals in increasing order of finishing times.
- For every j , do binary search to find the interval before j with finishing time at most s_j

Case study V: Longest Common Subsequence

Problem: You are given two **strings** $x = X_1 \dots X_n$ and $y = Y_1 \dots Y_m$ of sizes n, m and you are asked to find the size of a longest common substring z of x and y .

Example:

$$x = \text{HIEROGLYPHOLY}$$
$$y = \text{MICHELANGELO}$$

Case study V: Longest Common Subsequence

Problem: You are given two **strings** $x = X_1 \dots X_n$ and $y = Y_1 \dots Y_m$ of sizes n, m and you are asked to find the size of a longest common substring z of x and y .

Example:

$x = \text{HIEROGLYPHOLOGY}$

$y = \text{MICHELANGELO}$

$z = \text{HEGLO}$

Case study V: LCS

Step 1: Define the problem and subproblems.

Answer: Let $DP[i, j]$ be the longest common substring that can be obtained from substrings $X_1 X_2 \dots X_i$ and $Y_1 Y_2 \dots Y_j$.

Case study V: LCS

Step 1: Define the problem and subproblems.

Answer: Let $DP[i, j]$ be the **longest common substring** that can be obtained from substrings $X_1 X_2 \dots X_i$ and $Y_1 Y_2 \dots Y_j$.

Step 2: Define the goal/output given Step 1.

It is $DP[n, m]$.

Case study V: LCS

Step 1: Define the problem and subproblems.

Answer: Let $DP[i, j]$ be the **longest common substring** that can be obtained from substrings $X_1 X_2 \dots X_i$ and $Y_1 Y_2 \dots Y_j$.

Step 2: Define the goal/output given Step 1.

It is $DP[n, m]$.

Step 3: Define the base cases. “One of two strings is empty”. $DP[0, j] = 0$ for all j , $DP[i, 0] = 0$ for all i .

Case study V: LCS

Step 1: Define the problem and subproblems.

Answer: Let $DP[i, j]$ be the **longest common substring** that can be obtained from substrings $X_1 X_2 \dots X_i$ and $Y_1 Y_2 \dots Y_j$.

Step 2: Define the goal/output given Step 1.

It is $DP[n, m]$.

Step 3: Define the base cases. “One of two strings is empty”. $DP[0, j] = 0$ for all j , $DP[i, 0] = 0$ for all i .

Step 4: Define the recurrence

Case study V: LCS

Step 4: Define the recurrence

Case 1: $x_i = X_1 X_2 \dots X_{i-1} A$

$y_j = Y_1 Y_2 \dots Y_{j-1} A$

Question: What is the LCS of x_i, y_j ?

Case study V: LCS

Step 4: Define the recurrence

Case 1: $x_i = X_1 X_2 \dots X_{i-1} A$

$y_j = Y_1 Y_2 \dots Y_{j-1} A$

Question: What is the LCS of x_i, y_j ?

Answer: **1** + the LCS of x_{i-1}, y_{j-1}

Case study V: LCS

Step 4: Define the recurrence

Case 2: $x_i = X_1 X_2 \dots X_{i-1} A$

$y_j = Y_1 Y_2 \dots Y_{j-1} B$

Question: What is the LCS of x_i, y_j ?

Case study V: LCS

Step 4: Define the recurrence

Case 2: $x_i = X_1 X_2 \dots X_{i-1} A$

$y_j = Y_1 Y_2 \dots Y_{j-1} B$

Question: What is the LCS of x_i, y_j ?

Answer: the maximum of the
LCS of x_{i-1}, y_j and LCS of x_i, y_{j-1}

Case study V: LCS

Step 4: Define the recurrence

$$DP[i, j] = \begin{cases} \text{if } X_i == Y_j \text{ then } DP[i - 1, j - 1] + 1 & \text{(case 1)} \\ \text{if } X_i \neq Y_j \text{ then } \max(DP[i - 1, j], DP[i, j - 1]) & \text{(case 2)} \end{cases}$$

Case study V: LCS

Pseudocode:

```
Array DP[][], X[], Y[]
```

```
For  $i = 1$  to  $n$  do
```

```
    DP[ $i, 0$ ]  $\leftarrow 0$ 
```

```
For  $j = 1$  to  $m$  do
```

```
    DP[ $0, j$ ]  $\leftarrow 0$ 
```

```
For  $i = 1$  to  $n$  do
```

```
    For  $j = 1$  to  $m$  do
```

```
        If  $X[i] == Y[j]$  then
```

```
            DP[ $i, j$ ]  $\leftarrow$  DP[ $i - 1, j - 1$ ] + 1
```

```
        else DP[ $i, j$ ]  $\leftarrow$  max(DP[ $i - 1, j$ ], DP[ $i, j - 1$ ])
```

```
return DP[ $n, m$ ]
```

Initialization

Bottom up filling DP

Goal

Case study V: LCS

Example: x is the string "ABCBDAB" and y is the string "BDCABA".

Case study V: LCS

Example: x is the string "ABCBDAB" and y is the string "BDCABA".

	j	0	1	2	3	4	5	6
i		y_j	B	D	C	A	B	A
0	x_i	0	0	0	0	0	0	0
1	A	0						
2	B	0						
3	C	0						
4	B	0						
5	D	0						
6	A	0						
7	B	0						

Case study V: LCS

Example: x is the string "ABCBDAB" and y is the string "BDCABA".

	j	0	1	2	3	4	5	6
i		y_j	B	D	C	A	B	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0	0	0			
2	B	0						
3	C	0						
4	B	0						
5	D	0						
6	A	0						
7	B	0						

Case study V: LCS

Example: x is the string "ABCBDAB" and y is the string "BDCABA".

	j	0	1	2	3	4	5	6
i		y_j	B	D	C	A	B	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0	0	0	1		
2	B	0						
3	C	0						
4	B	0						
5	D	0						
6	A	0						
7	B	0						

Case study V: LCS

Example: x is the string "ABCBDAB" and y is the string "BDCABA".

	j	0	1	2	3	4	5	6
i		y_j	B	D	C	A	B	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1	
2	B	0						
3	C	0						
4	B	0						
5	D	0						
6	A	0						
7	B	0						

Case study V: LCS

Example: x is the string "ABCBDAB" and y is the string "BDCABA".

	j	0	1	2	3	4	5	6
i		y_j	B	D	C	A	B	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1	1
2	B	0						
3	C	0						
4	B	0						
5	D	0						
6	A	0						
7	B	0						

Case study V: LCS

Example: x is the string "ABCBDAB" and y is the string "BDCABA".

	j	0	1	2	3	4	5	6
i		y_j	B	D	C	A	B	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1	1
2	B	0	1					
3	C	0						
4	B	0						
5	D	0						
6	A	0						
7	B	0						

Case study V: LCS

Example: x is the string "ABCBDAB" and y is the string "BDCABA".

	j	0	1	2	3	4	5	6
i		y_j	B	D	C	A	B	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1	1
2	B	0	1	1				
3	C	0						
4	B	0						
5	D	0						
6	A	0						
7	B	0						

Case study V: LCS

Example: x is the string "ABCBDAB" and y is the string "BDCABA".

	j	0	1	2	3	4	5	6
i		y_j	B	D	C	A	B	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1	1
2	B	0	1	1	1			
3	C	0						
4	B	0						
5	D	0						
6	A	0						
7	B	0						

Case study V: LCS

Example: x is the string "ABCBDAB" and y is the string "BDCABA".

	j	0	1	2	3	4	5	6
i		y_j	B	D	C	A	B	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1	1
2	B	0	1	1	1	1		
3	C	0						
4	B	0						
5	D	0						
6	A	0						
7	B	0						

Case study V: LCS

Example: x is the string "ABCBDAB" and y is the string "BDCABA".

	j	0	1	2	3	4	5	6
i		y_j	B	D	C	A	B	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1	1
2	B	0	1	1	1	1	2	
3	C	0						
4	B	0						
5	D	0						
6	A	0						
7	B	0						

Case study V: LCS

Example: x is the string "ABCBDAB" and y is the string "BDCABA".

	j	0	1	2	3	4	5	6
i		y_j	B	D	C	A	B	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1	1
2	B	0	1	1	1	1	2	2
3	C	0						
4	B	0						
5	D	0						
6	A	0						
7	B	0						

Case study V: LCS

Example: x is the string "ABCBDAB" and y is the string "BDCABA".

	j	0	1	2	3	4	5	6
i		y_j	B	D	C	A	B	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1	1
2	B	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	B	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	A	0	1	2	2	3	3	4
7	B	0	1	2	2	3	4	4

Case study V: LCS

Example: x is the string "ABCBDAB" and y is the string "BDCABA".

	j	0	1	2	3	4	5	6
i		y_j	B	D	C	A	B	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1	1
2	B	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	B	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	A	0	1	2	2	3	3	4
7	B	0	1	2	2	3	4	4

Case study V: LCS

Example: x is the string "ABCBDAB" and y is the string "BDCABA".

	j	0	1	2	3	4	5	6
i	y_j	B	D	C	A	B	A	
0	x_i	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1	1
2	B	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	B	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	A	0	1	2	2	3	3	4
7	B	0	1	2	2	3	4	4

Case study V: LCS

Example: x is the string "ABCBDAB" and y is the string "BDCABA".

	j	0	1	2	3	4	5	6
i		y_j	B	D	C	A	B	A
0	x_i	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1	1
2	B	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	B	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	A	0	1	2	2	3	3	4
7	B	0	1	2	2	3	4	4

Case study V: LCS

Example: x is the string "ABCBDAB" and y is the string "BDCABA".

	j	0	1	2	3	4	5	6
i	y_j	B	D	C	A	B		A
0	x_i	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1	1
2	B	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	B	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	A	0	1	2	2	3	3	4
7	B	0	1	2	2	3	4	4