



## Lecture 6

Divide and Conquer IV: integer multiplication, further examples

CS 161 Design and Analysis of Algorithms

Ioannis Panageas

# Divide and Conquer (recap)

Steps of method:

- **Divide** input into parts (**smaller problems**)
- **Conquer** (solve) each part **recursively**
- **Combine** results to obtain solution of original

$$T(n) = \text{divide time} + T(n_1) + T(n_2) + \dots + T(n_k) + \text{combine time}$$

# Case study VII: Computing powers

**Problem:** Given two positive integers numbers  $a, n$  compute  $a^n$  .

Example:  $a = 3, n = 4$ . Answer: 81.

# Case study VII: Computing powers

**Problem:** Given two positive integers numbers  $a, n$  compute  $a^n$  .

Example:  $a = 3, n = 4$ . Answer: 81.

Obvious approach:

```
ans ← 1
```

$\Theta(n)$  operations

```
For  $i = 1$  to  $n$  do
```

Can we do better?

```
    ans ←  $a \cdot$  ans
```

```
return ans
```

# Case study VII: Computing powers

**Problem:** Given two positive integers numbers  $a, n$  compute  $a^n$  .

Example:  $a = 3, n = 4$ . Answer: 81.

**Idea:** Divide and Conquer.

Divide  $n$  in  $n/2$  and  $n/2$ . Compute  $x = a^{n/2}$  recursively. Return  $x^2$ .

Be careful on the **parity** of  $n$ .

# Case study VII: Computing powers

**Problem:** Given two positive integers numbers  $a, n$  compute  $a^n$  .

Example:  $a = 3, n = 4$ . Answer: 81.

**Idea:** Divide and Conquer.

Power( $a, n$ )

**If**  $n == 1$  **then return** a

$x \leftarrow \text{Pow}(a, \lfloor n/2 \rfloor)$

**If**  $n \bmod 2 == 0$  **then**

**return**  $x \cdot x$

**else return**  $a \cdot x \cdot x$

# Case study VII: Computing powers

**Problem:** Given two positive integers numbers  $a, n$  compute  $a^n$  .

Example:  $a = 3, n = 4$ . Answer: 81.

**Idea:** Divide and Conquer.

Power( $a, n$ )

**If**  $n == 1$  **then return** a

$x \leftarrow \text{Pow}(a, \lfloor n/2 \rfloor)$

**If**  $n \bmod 2 == 0$  **then**

**return**  $x \cdot x$

**else return**  $a \cdot x \cdot x$

Base case

Divide + Conquer

Combine

# Case study VII: Computing powers

**Problem:** Given two positive integers numbers  $a, n$  compute  $a^n$  .

Example:  $a = 3, n = 4$ . Answer: 81.

**Idea:** Divide and Conquer.

Power( $a, n$ )

**If**  $n == 1$  **then return** a

$x \leftarrow \text{Pow}(a, \lfloor n/2 \rfloor)$

**If**  $n \bmod 2 == 0$  **then**

**return**  $x \cdot x$

**else return**  $a \cdot x \cdot x$

Base case

Divide + Conquer

Combine

**Running time:**  $T(n) = T\left(\frac{n}{2}\right) + \Theta(1) \rightarrow \Theta(\log n)$  by Master thm

# Case study VII: Computing powers

**Problem:** Given two positive integers numbers  $a, n$  compute  $a^n$  .

Example:  $a = 3, n = 4$ . Answer: 81.

**Idea:** Divide and Conquer.

**Remark:** Same works for **powers of Matrices**.

Power( $a, n$ )

**If**  $n == 1$  **then return** a

$x \leftarrow \text{Pow}(a, \lfloor n/2 \rfloor)$

**If**  $n \bmod 2 == 0$  **then**

**return**  $x \cdot x$

**else return**  $a \cdot x \cdot x$

Base case

Divide + Conquer

Combine

**Running time:**  $T(n) = T\left(\frac{n}{2}\right) + \Theta(1) \rightarrow \Theta(\log n)$  by Master thm

# Case study VIII: Fibonacci sequence

**Problem:** Given a positive integer numbers  $n$ , compute Fibonacci  $F_n$  .

**Definition:**  $F_1 = F_2 = 1$  and  $F_n = F_{n-1} + F_{n-2}$ .

First 10 numbers of sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

# Case study VIII: Fibonacci sequence

**Problem:** Given a positive integer numbers  $n$ , compute Fibonacci  $F_n$  .

**Definition:**  $F_1 = F_2 = 1$  and  $F_n = F_{n-1} + F_{n-2}$ .

First 10 numbers of sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

**Obvious approach:**

```
ans1 ← 1
ans2 ← 1
If  $n \leq 2$  then return 1
For  $i = 3$  to  $n$  do
    temp ← ans1
    ans1 ← ans1 + ans2
    ans2 ← temp
return ans
```

# Case study VIII: Fibonacci sequence

**Problem:** Given a positive integer numbers  $n$ , compute Fibonacci  $F_n$  .

**Definition:**  $F_1 = F_2 = 1$  and  $F_n = F_{n-1} + F_{n-2}$ .

First 10 numbers of sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

**Obvious approach:**

$\Theta(n)$  operations

```
ans1 ← 1  
ans2 ← 1
```

Can we do better?

**If**  $n \leq 2$  **then return** 1

**For**  $i = 3$  to  $n$  **do**

```
    temp ← ans1  
    ans1 ← ans1 + ans2  
    ans2 ← temp
```

**return** ans

# Case study VIII: Fibonacci sequence

**Problem:** Given a positive integer numbers  $n$ , compute Fibonacci  $F_n$  .

**Definition:**  $F_1 = F_2 = 1$  and  $F_n = F_{n-1} + F_{n-2}$ .

First 10 numbers of sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

**Idea:** Express  $F_n$  as a power of a Matrix.

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}$$

# Case study VIII: Fibonacci sequence

**Problem:** Given a positive integer numbers  $n$ , compute Fibonacci  $F_n$  .

**Idea:** Express  $F_n$  as a power of a Matrix.

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}$$

$$\begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} F_{n-2} \\ F_{n-3} \end{pmatrix}$$

⋮

$$\begin{pmatrix} F_3 \\ F_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} F_2 \\ F_1 \end{pmatrix}$$

# Case study VIII: Fibonacci sequence

**Problem:** Given a positive integer numbers  $n$ , compute Fibonacci  $F_n$  .

**Idea:** Express  $F_n$  as a power of a Matrix.

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-2} \begin{pmatrix} F_2 \\ F_1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

# Case study VIII: Fibonacci sequence

**Problem:** Given a positive integer numbers  $n$ , compute Fibonacci  $F_n$ .

**Idea:** Express  $F_n$  as a power of a Matrix.

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-2} \begin{pmatrix} F_2 \\ F_1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$F_n$  is  $a + b$  and  $F_{n-1}$  is  $c + d$ !

# Case study VIII: Fibonacci sequence

**Problem:** Given a positive integer numbers  $n$ , compute Fibonacci  $F_n$  .

**Solution:**

Compute matrix  $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-2}$  in  $\Theta(\log n)$  time.

Return the sum of the entries of first row.

# Case study IX: From practice problems

**Problem:** Suppose you have an array  $A$  of  $n$  intervals  $(x_1, y_1), \dots, (x_n, y_n)$ , where  $x_i, y_i$  are positive integers such that  $x_i \leq y_i$ . The interval  $(x_i, y_i)$  represents the **set of integers between  $x_i$  and  $y_i$** . For example, the interval  $(3, 8)$  represents the set  $\{3, 4, 5, 6, 7, 8\}$ .

Define the **overlap** of two intervals to be the number of integers that are members of **both intervals**. For example  $(3, 8)$  and  $(4, 9)$  have overlap 5 (numbers 4, 5, 6, 7, 8) and  $(1, 2)$  and  $(3, 4)$  have overlap 0. Find the size of maximum overlap among all possible pairs of intervals.

Example:  $(1, 2), (3, 4), (3, 8), (4, 9)$ . Answer: 5.

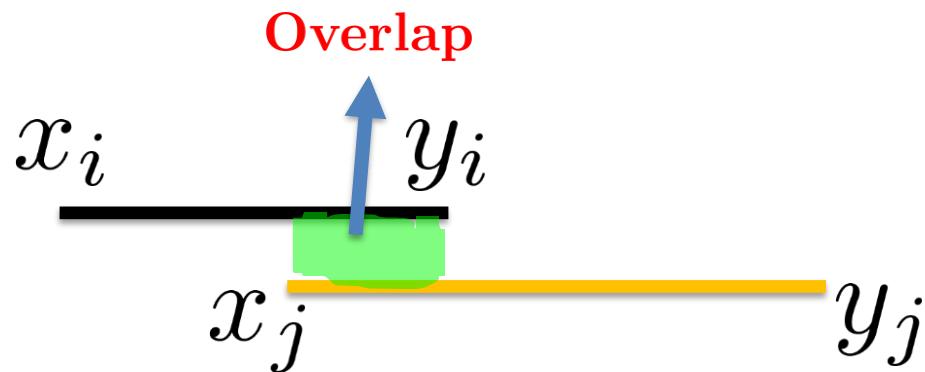
# Case study IX: From practice problems

Obvious approach: For every pair  $i, j$  of intervals, find the overlap. Keep the maximum.

Suppose  $x_i \leq x_j$ .

$(x_i, y_i)$  and  $(x_j, y_j)$  have overlap

$$\max (\min(y_i, y_j) - x_j + 1, 0).$$



# Case study IX: From practice problems

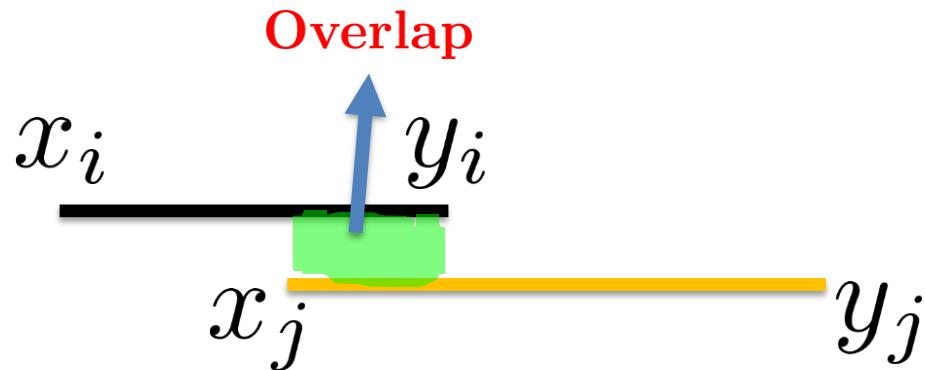
Obvious approach: For every pair  $i, j$  of intervals, find the overlap. Keep the maximum.

Suppose  $x_i \leq x_j$ .

$(x_i, y_i)$  and  $(x_j, y_j)$  have overlap

$\Theta(n^2)$  running time

$$\max (\min(y_i, y_j) - x_j + 1, 0).$$



Can we do better?

# Case study IX: From practice problems

**Idea:** Use divide and conquer. Suppose we first sort the intervals in increasing order of  $x$ -coordinate.

# Case study IX: From practice problems

**Idea:** Use divide and conquer. Suppose we first sort the intervals in increasing order of  $x$ -coordinate.

- **Divide** the intervals in two parts  $L$  and  $R$ .
- **Recursively** find max overlap for each part  $\text{maxL}$  and  $\text{maxR}$ .
- **Combine** step?

# Case study IX: From practice problems

**Idea:** Use divide and conquer. Suppose we first sort the intervals in increasing order of  $x$ -coordinate.

- **Divide** the intervals in two parts  $L$  and  $R$ .
- **Recursively** find max overlap for each part  $\text{maxL}$  and  $\text{maxR}$ .
- **Combine step:** maximum of  $\text{maxL}$  and  $\text{maxR}$ ?

# Case study IX: From practice problems

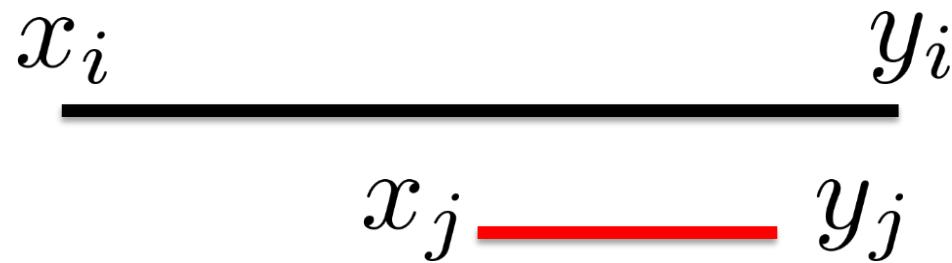
**Idea:** Use divide and conquer. Suppose we first sort the intervals in increasing order of  $x$ -coordinate.

- **Divide** the intervals in two parts  $L$  and  $R$ .
- **Recursively** find max overlap for each part  $\text{maxL}$  and  $\text{maxR}$ .
- **Combine step:** Check overlap between **an interval in  $L$  and an interval in  $R$** . This should be in  $\Theta(n)$ .

We will scan the intervals **once**. One **index** for  $L$  and one **index** for  $R$ .

# Case study IX: From practice problems

Combine step: Black is in  $L$ , red in  $R$ .



Overlap is  $(y_j - x_j + 1)$ . We can remove interval  $j$  from  $R$ .

# Case study IX: From practice problems

Combine step: Black is in  $L$ , red in  $R$ .



Overlap is  $(y_i - x_j + 1)$ . We can remove interval  $i$  from  $L$ .

# Case study IX: From practice problems

Combine step: Black is in  $L$ , red in  $R$ .



Overlap is  $(y_i - x_j + 1)$ . We can remove interval  $i$  from  $L$ .

All intervals after  $j$  in  $R$  will not give larger overlap with interval  $i$ .

# Case study IX: From practice problems

## Pseudocode:

```
Maxoverlap( $A[1 : n]$ )
  If  $n == 1$  return 0
  maxL  $\leftarrow$  Maxoverlap( $A[1 : n/2]$ )
  maxR  $\leftarrow$  Maxoverlap( $A[n/2 + 1 : n]$ )
  maxComb  $\leftarrow 0$ 
   $i \leftarrow 1, j \leftarrow n/2 + 1$ 
  While  $i \leq n/2$  and  $j \leq n$  do
    If  $\text{maxComb} < \text{overlap}(i, j)$  then
       $\text{maxComb} = \text{overlap}(i, j)$ 
    If case 1 then  $j \leftarrow j + 1$ 
    else If case 2 then  $i \leftarrow i + 1$ 
  return maximum of  $\text{maxL}$ ,  $\text{maxR}$  and  $\text{maxComb}$ 
```

# Case study IX: From practice problems

## Pseudocode:

```
Maxoverlap( $A[1 : n]$ )
```

```
  If  $n == 1$  return 0
```

```
  maxL  $\leftarrow$  Maxoverlap( $A[1 : n/2]$ )
```

$T(n/2)$  Running time

```
  maxR  $\leftarrow$  Maxoverlap( $A[n/2 + 1 : n]$ )
```

$T(n/2)$  Running time

```
  maxComb  $\leftarrow$  0
```

```
   $i \leftarrow 1, j \leftarrow n/2 + 1$ 
```

```
  While  $i \leq n/2$  and  $j \leq n$  do
```

$\Theta(n)$  Running time

```
    If  $\text{maxComb} < \text{overlap}(i, j)$  then
```

```
       $\text{maxComb} = \text{overlap}(i, j)$ 
```

```
    If case 1 then  $j \leftarrow j + 1$ 
```

```
    else If case 2 then  $i \leftarrow i + 1$ 
```

```
  return maximum of  $\text{maxL}$ ,  $\text{maxR}$  and  $\text{maxComb}$ 
```

# Case study IX: From practice problems

Pseudocode:

```
Maxoverlap( $A[1 : n]$ )
```

```
    If  $n == 1$  return 0
```

```
    maxL  $\leftarrow$  Maxoverlap( $A[1 : n/2]$ )
```

```
    maxR  $\leftarrow$  Maxoverlap( $A[n/2 + 1 : n]$ )
```

```
    maxComb  $\leftarrow$  0
```

```
     $i \leftarrow 1, j \leftarrow n/2 + 1$ 
```

```
    While  $i \leq n/2$  and  $j \leq n$  do
```

```
        If  $\text{maxComb} < \text{overlap}(i, j)$  then
```

```
            maxComb =  $\text{overlap}(i, j)$ 
```

```
        If case 1 then  $j \leftarrow j + 1$ 
```

```
        else If case 2 then  $i \leftarrow i + 1$ 
```

```
    return maximum of  $\text{maxL}$ ,  $\text{maxR}$  and  $\text{maxComb}$ 
```

$\Theta(n \log n)$  Running time

$T(n/2)$  Running time

$T(n/2)$  Running time

$\Theta(n)$  Running time

# Case study X: Median from sorted

**Exercise:** Given two sorted arrays  $A, B$  of size  $n$  each, find the median of among the  $2n$  numbers in  $O(\log n)$  time.

**Hint:** Compare  $A[n/2]$  with  $B[n/2]$ .