TxT
4

Divide and Conquer |V: integer
multiplication, further examples

Lecture 6

CS 161 Design and Analysis of Algorithms

loannis Panageas

Divide and Conquer (recap)

Steps of method:
— Divide input into parts (smaller problems)
— Conquer (solve) each part recursively

results to obtain solution of original

T'(n)=divide time
+T(n)+T(n,)+..+T(n,)

+ combine time

Design and Analysis of Algorithms

Case study VII: Computing powers

Problem: Given two positive integers numbers a,n compute a™ .

Example: a = 3, n = 4. Answer: 81.

Design and Analysis of Algorithms

Case study VII: Computing powers

Problem: Given two positive integers numbers a,n compute a™ .

Example: a = 3, n = 4. Answer: 81.

Obvious approach:

ans <« 1 ®(n) operations
For =1 ton do
ans < a - ans Can we do better?

return ans

Design and Analysis of Algorithms

Case study VII: Computing powers

Problem: Given two positive integers numbers a,n compute a™ .

Example: a = 3, n = 4. Answer: 81.

Idea: Divide and Conquer.

n/2

Divide ninn/2 and n/2. Compute x = a™# recursively. Return x?2.

Be careful on the parity of n.

Design and Analysis of Algorithms

Case study VII: Computing powers

Problem: Given two positive integers numbers a,n compute a™ .

Example: a = 3, n = 4. Answer: 81.

Idea: Divide and Conquer.

Power(a,n)
If n == 1 then return a
x <Pow(a, |[n/2|)

If n mod 2 == 0 then
return x - x

else return a- -z -z

Design and Analysis of Algorithms

Case study VII: Computing powers

Problem: Given two positive integers numbers a,n compute a™ .

Example: a = 3, n = 4. Answer: 81.

Idea: Divide and Conquer.

Power(a,n)

If n ==1 then return a
z <Pow(a, [n/2]) Divide + Conquer

If n mod 2 == 0 then
return xz - x Combine

else return a- -z -z

Design and Analysis of Algorithms

Case study VII: Computing powers

Problem: Given two positive integers numbers a,n compute a™ .

Example: a = 3, n = 4. Answer: 81.

Idea: Divide and Conquer.

Power(a,n)

If n == 1 then return a Base case
z <Pow(a, [n/2]) Divide + Conquer
If n mod 2 == 0 then

return = - x Combine
else return a -1 -z

Runningtime: T(n) =T (g) + 0(1) » 0(logn) by Master thm

Design and Analysis of Algorithms

Case study VII: Computing powers

Problem: Given two positive integers numbers a,n compute a™ .

Example: a = 3, n = 4. Answer: 81.

Power(a,n)

If n ==1 then return a
z <Pow(a, [n/2]) Divide + Conquer

If n mod 2 == 0 then
return xz - x Combine
else return a- -2 -x

Runningtime: T(n) =T (g) + 0(1) » 0(logn) by Master thm

Design and Analysis of Algorithms

Case study VIII: Fibonacci sequence

Problem: Given a positive integer numbers n, compute Fibonacci F, .
Definition: F;, = F, =1and F, = F,,_; + F,,_,.

First 10 numbers of sequence: 1,1, 2,3,5,8,13,21, 34,55

Design and Analysis of Algorithms

Case study VIIl: Fibonacci sequence

Problem: Given a positive integer numbers n, compute Fibonacci F, .
Definition: F;, = F, =1and F, = F,,_; + F,,_,.

First 10 numbers of sequence: 1,1,2,3,5,8,13,21,34,55

Obvious approach:

ansl «+ 1
ans2 <+ 1

If n <2 then return 1

For : = 3 to n do
temp < ansl
ansl <« ansl + ans2
ans2 < temp
return ans

Design and Analysis of Algorithms

Case study VIII: Fibonacci sequence

Problem: Given a positive integer numbers n, compute Fibonacci F, .
Definition: F;, = F, =1and F, = F,,_; + F,,_,.
First 10 numbers of sequence: 1,1, 2,3,5,8,13,21, 34,55

Obvious approach: ®(n) operations

ansl «+ 1

ans2 «— 1 Can we do better?

If n <2 then return 1

For : = 3 ton do

temp < ansl

ansl < ansl + ans2

ans2 < temp
return ans

Design and Analysis of Algorithms

Case study VIIl: Fibonacci sequence

Problem: Given a positive integer numbers n, compute Fibonacci F, .
Definition: F;, = F, =1and F, = F,,_; + F,,_,.
First 10 numbers of sequence: 1,1,2,3,5,8,13,21,34,55

ldea: Express FE,, as a power of a Matrix.
(Fy):(1 1).(Fn—1)
Fn—l 1 0 Fn—z

Design and Analysis of Algorithms

Case study VIIl: Fibonacci sequence

Problem: Given a positive integer numbers n, compute Fibonacci F, .

ldea: Express F,, as a power of a Matrix.

(F::) - G
(52:;) - (3
() =G

0 (77)
0 (772)
o) ()

Design and Analysis of Algorithms

Case study VIIl: Fibonacci sequence

Problem: Given a positive integer numbers n, compute Fibonacci F, .
ldea: Express F,, as a power of a Matrix.

() =G o) (2)
-G o O

Design and Analysis of Algorithms

Case study VIIl: Fibonacci sequence

Problem: Given a positive integer numbers n, compute Fibonacci F, .
ldea: Express F,, as a power of a Matrix.

n—2
() =G o) (7)
n—2
- o &)
{
-z 20
E isa+bandF,,_;isc+ d!

Design and Analysis of Algorithms

Case study VIII: Fibonacci sequence

Problem: Given a positive integer numbers n, compute Fibonacci F, .
Solution:

n—2
1 O) in ®(log n) time.
Return the sum of the entries of first row.

Compute matrix (

Design and Analysis of Algorithms

Case study IX: From practice problems

Problem: Suppose you have an array A of n intervals

(x1,Y1), -, (X5, V), Where x;, y; are positive integers such that

x; < y;. The interval (x;, y;) represents the set of integers between
x; and y;. For example, the interval (3, 8) represents the set

{3,4,5,6,7,8}.

Define the overlap of two intervals to be the number of integers that
are members of both intervals. For example (3, 8) and (4, 9) have
overlap 5 (humbers 4,5,6,7,8) and (1, 2) and (3, 4) have overlap 0.
Find the size of maximum overlap among all possible pairs of
intervals.

Example: (1, 2), (3,4), (3,8),(4,9). Answer: 5.

Design and Analysis of Algorithms

Case study IX: From practice problems

Obvious approach: For every pair i, j of intervals,
find the overlap. Keep the maximum.

Suppose x; < X;.

(x;, ¥;) and (x;,y;) have overlap

max (min(y;, y;) —x; + 1, 0).

Overlap

Lj Yj

Design and Analysis of Algorithms

Case study IX: From practice problems

Obvious approach: For every pair i, j of intervals,
find the overlap. Keep the maximum.

Suppose x; < X;.

(x;, ¥;) and (x;,y;) have overlap

max (min(y;, y;) —x; +1,0).
Overlap
Ly Yj

Design and Analysis of Algorithms

Case study IX: From practice problems

ldea: Use divide and conquer. Suppose we first sort
the intervals in increasing order of x-coordinate.

Design and Analysis of Algorithms

Case study IX: From practice problems

ldea: Use divide and conquer. Suppose we first sort
the intervals in increasing order of x-coordinate.

* Divide the intervals in two parts L and R.

* Recursively find max overlap for each part maxL
and maxR.

* Combine step?

Design and Analysis of Algorithms

Case study IX: From practice problems

ldea: Use divide and conquer. Suppose we first sort
the intervals in increasing order of x-coordinate.

* Divide the intervals in two parts L and R.

* Recursively find max overlap for each part maxL
and maxR.

 Combine step: maximum of maxL and maxR?

Design and Analysis of Algorithms

Case study IX: From practice problems

ldea: Use divide and conquer. Suppose we first sort the
intervals in increasing order of x-coordinate.

* Divide the intervals in two parts L and R.

e Recursively find max overlap for each part maxL and
maxR.

 Combine step: Check overlap between an interval in
L and an interval in R. This should be in ®(n).

We will scan the intervals once. One index for L and
one index for R.

Design and Analysis of Algorithms

Case study IX: From practice problems

Combine step: Black isin L, red in R.

X Yi

L j e Y

Overlap is (y; —x; + 1). We can remove interval j from R.

Design and Analysis of Algorithms

Case study IX: From practice problems

Combine step: Black isin L, red in R.

X Yi

L j e Y

Overlap is (y; — x; + 1). We can remove interval ¢ from L.

Design and Analysis of Algorithms

Case study IX: From practice problems

Combine step: Black isin L, red in R.

X Yi

L j e Y
Overlap is (y; — x; + 1). We can remove interval ¢ from L.

All intervals after j in R will not give larger overlap
with interval i.

Design and Analysis of Algorithms

Case study IX: From practice problems

Pseudocode:
Maxoverlap(A[l : n])
If n==1 return 0

maxL <Maxoverlap(A[l : n/2])
maxR <Maxoverlap(A[n/2 + 1 : n])
maxComb < 0
i< 1,5+ n/24+1
While i <n/2 and j <n do

If maxComb < overlap(i,j) then

maxComb = overlap(, j)
If case 1 then j <+ 7+ 1

else If case 2 then 7 «+— 1+ 1
return maximum of maxL, maxR and maxComb

Design and Analysis of Algorithms

Case study IX: From practice problems

Pseudocode:
Maxoverlap(A[l : n])
If n==1 return 0

maxL <Maxoverlap(A[l : n/2])
maxR. «Maxoverlap(A[n/2 + 1 : n]) L0

maxComb < 0
i< 1,5+ n/24+1

While i < n/2 and j <n do

If maxComb < overlap(i,j) then
maxComb = overlap(, j)
If case 1 then j <+ 7+ 1
else If case 2 then 7 < 1+ 1
return maximum of maxL, maxR and maxComb

Design and Analysis of Algorithms

Case study IX: From practice problems

Pseudocode: O(nlogn) Running time
Maxoverlap(A[l : n])
If n==1return 0
maxL <Maxoverlap(A[l : n/2])
maxR «Maxoverlap(A[n/2 + 1 : n|)f MR
maxComb <« 0
i< 1,5+ n/24+1

While i < n/2 and j <n do

If maxComb < overlap(i,j) then
maxComb = overlap(, j)
If case 1 then j <+ 7+ 1
else If case 2 then 7 < 1+ 1
return maximum of maxL, maxR and maxComb

T (n/2) Running time

Design and Analysis of Algorithms

Case study X: Median from sorted

Exercise: Given two sorted arrays A, B of size n each, find the
median of among the 2n numbers in O(log n) time.

Hint: Compare A[n/2] with B[n/2].

Design and Analysis of Algorithms

	Slide 1: Lecture 6 Divide and Conquer IV: integer multiplication, further examples
	Slide 2: Divide and Conquer (recap)
	Slide 3: Case study VII: Computing powers
	Slide 4: Case study VII: Computing powers
	Slide 5: Case study VII: Computing powers
	Slide 6: Case study VII: Computing powers
	Slide 7: Case study VII: Computing powers
	Slide 8: Case study VII: Computing powers
	Slide 9: Case study VII: Computing powers
	Slide 10: Case study VIII: Fibonacci sequence
	Slide 11: Case study VIII: Fibonacci sequence
	Slide 12: Case study VIII: Fibonacci sequence
	Slide 13: Case study VIII: Fibonacci sequence
	Slide 14: Case study VIII: Fibonacci sequence
	Slide 15: Case study VIII: Fibonacci sequence
	Slide 16: Case study VIII: Fibonacci sequence
	Slide 17: Case study VIII: Fibonacci sequence
	Slide 18: Case study IX: From practice problems
	Slide 19: Case study IX: From practice problems
	Slide 20: Case study IX: From practice problems
	Slide 21: Case study IX: From practice problems
	Slide 22: Case study IX: From practice problems
	Slide 23: Case study IX: From practice problems
	Slide 24: Case study IX: From practice problems
	Slide 25: Case study IX: From practice problems
	Slide 26: Case study IX: From practice problems
	Slide 27: Case study IX: From practice problems
	Slide 28: Case study IX: From practice problems
	Slide 29: Case study IX: From practice problems
	Slide 30: Case study IX: From practice problems
	Slide 31: Case study X: Median from sorted

