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Ioannis Panageas

Lecture 4

Divide and Conquer II: Counting 
inversions, counting intersections, 
max subarray, maxima set



Divide and conquer method 

Steps of method: 

– Divide input into parts (smaller problems)

– Conquer (solve) each part recursively

– Combine results to obtain solution of original

T (n) = divide time

+ T (n1)+T (n2 )+ ...+T (nk )

+ combine time
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  Case study I: Counting inversions

Given numbers 𝐴1, … , 𝐴𝑛 in an array 𝐴, compute 
the number of inversions.

  (𝑖, 𝑗) is an inversion: 𝐴𝑖 > 𝐴𝑗 and 𝑖 <  𝑗.

Example [18, 29, 12, 15, 32, 10] has 9 inversions:

(18,12), (18,15), (18,10), (29,12), (29,15), (29,10), 
(12,10), (15,10), (32,10)
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● Solution: Use Divide and conquer. Tricky part the combine step.

Run a modification of Mergesort that has a counter that counts 

inversions during merge steps.

● Question: Assume that 𝐵1, … , 𝐵𝑘 and 𝐶1, … , 𝐶𝑙 are both sorted. Can 

you compute the number of inversions of the concatenated sequence 

𝐵1, … , 𝐵𝑘 , 𝐶1, … , 𝐶𝑙?

  Case study I: Counting inversions
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● Question: Assume that 𝐵1, … , 𝐵𝑘and 𝐶1, … , 𝐶𝑙 are both sorted. Can 

you compute the number of inversions of the sequence 

𝐵1, … , 𝐵𝑘 , 𝐶1, … , 𝐶𝑙?

    If 𝐵𝑖  > 𝐶𝑗 ≥ 𝐵𝑖−1 there are 

     𝑘 − 𝑖 + 1 including 𝐶𝑗  

       
𝐵1, … , 𝐵𝑖 , … , 𝐵𝑘 𝐶1, … , 𝐶𝑗 , … , 𝐶𝑙

  Case study I: Counting inversions
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   If 𝐵𝑖  > 𝐶𝑗 ≥ 𝐵𝑖−1 there are 

     𝑘 − 𝑖 + 1 including 𝐶𝑗  

       𝐵1, … , 𝐵𝑖 , … , 𝐵𝑘 𝐶1, … , 𝐶𝑗 , … , 𝐶𝑙

  Case study I: Counting inversions

1 3 4 9 220  2 3 5 7 8 10 Concatenated: 

2 3 5 7 8 10 1 3 4 9 220  

8 participates in 2 inversions. 𝑘 = 5, 𝑖 =  4
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Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted 
array and count number of inversions simultaneously. 

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.  

1 3 4 9 220  2 3 5 7 8 10 

  Case study I: Counting inversions
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  Case study I: Counting inversions 
Pseudocode: 
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  Case study II: Counting intersections 

Design and Analysis of Algorithms

Problem: Given 𝑛 distinct lines in the plane, none of which are vertical and 
two vertical lines 𝑥 = 𝑎 and 𝑥 =  𝑏, find the number of intersections. We 
assume that each line 𝑖 is described by its endpoints (𝑎, 𝑦𝑖1) and (𝑏, 𝑦𝑖2).

Example: 6 lines (8 intersections)



  Case study II: Counting intersections 

Design and Analysis of Algorithms

Problem: Given 𝑛 distinct lines in the plane, none of which are vertical and 
two vertical lines 𝑥 = 𝑎 and 𝑥 =  𝑏, find the number of intersections. We 
assume that each line 𝑖 is described by its endpoints (𝑎, 𝑦𝑖1) and (𝑏, 𝑦𝑖2).

Question: When two lines 𝑖, 𝑗 intersect?



  Case study II: Counting intersections 

Design and Analysis of Algorithms

Problem: Given 𝑛 distinct lines in the plane, none of which are vertical and 
two vertical lines 𝑥 = 𝑎 and 𝑥 =  𝑏, find the number of intersections. We 
assume that each line 𝑖 is described by its endpoints (𝑎, 𝑦𝑖1) and (𝑏, 𝑦𝑖2).

Question: When two lines 𝑖, 𝑗 intersect? 

If 𝒚𝒊𝟏 > 𝒚𝒋𝟏 then 𝒚𝒊𝟐 < 𝒚𝒋𝟐 or If 𝒚𝒊𝟏 < 𝒚𝒋𝟏 then 𝒚𝒊𝟐 > 𝒚𝒋𝟐



  Case study II: Counting intersections 

Design and Analysis of Algorithms

For all pairs 𝑖, 𝑗 with 𝑖 < 𝑗, count number of intersections

Pseudocode: 



  Case study II: Counting intersections 

Design and Analysis of Algorithms

For all pairs 𝑖, 𝑗 with 𝑖 < 𝑗, count number of intersections

Pseudocode: 

Can we do better?

Running time 𝚯(𝐧𝟐)



  Case study II: Counting intersections 

Design and Analysis of Algorithms

Idea: Let’s sort the lines with respect to 𝑦 on 𝑎. Check the inverse 
permutation of the indices of the lines on 𝑏.

Example: 4, 6, 1, 3, 2, 5



  Case study II: Counting intersections 

Design and Analysis of Algorithms

Idea: Let’s sort the lines with respect to 𝑦 on 𝑎. Check the inverse 
permutation of the indices of the lines on 𝑏.

Example: 4, 6, 1, 3, 2, 5

Key observation: Number of inversions is equal to number of 
intersections. In example (4, 1), (4,3), (4,2), (6,1), (6,3), (6,2), (6,5), 
(3,2)



  Case study II: Counting intersections 

Design and Analysis of Algorithms

Solution: Sort the lines with respect to 𝑦 on 𝑎. Run modified 
mergesort to find number of inversions. Running time Θ(𝑛 log 𝑛). 

Idea: Let’s sort the lines with respect to 𝑦 on 𝑎. Check the inverse 
permutation of the indices of the lines on 𝑏.

Example: 4, 6, 1, 3, 2, 5



  Case study III: Maximum subarray 

Design and Analysis of Algorithms

Problem (Leetcode, question in interviews): Given an array 𝐴 of 𝑛 
numbers (positive and negative), find the subarray with the 
maximum sum.

Example: 𝐴 =  [−2, −5, 6, −2, −3, 1, 5, −6]



  Case study III: Maximum subarray 

Design and Analysis of Algorithms

Problem (Leetcode, question in interviews): Given an array 𝐴 of 𝑛 
numbers (positive and negative), find the subarray with the 
maximum sum.

Example: 𝐴 =  [−2, −5, 6, −2, −3, 1, 5, −6]

Solution of example: 

[−2, −5, 𝟔, −𝟐, −𝟑, 𝟏, 𝟓, −6] with sum 7.



  Case study III: Maximum subarray 

Design and Analysis of Algorithms

For all 𝑖, 𝑗 with 𝑖 ≤ 𝑗, compute 𝐴𝑖 + 𝐴𝑖+1 + ⋯ + 𝐴𝑗. Keep the 

maximum from all sums. Total number of computations is… 
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Design and Analysis of Algorithms

For all 𝑖, 𝑗 with 𝑖 ≤ 𝑗, compute 𝐴𝑖 + 𝐴𝑖+1 + ⋯ + 𝐴𝑗. Keep the 

maximum from all sums. Total number of computations is… 

Pseudocode: 



  Case study III: Maximum subarray 

Design and Analysis of Algorithms

For all 𝑖, 𝑗 with 𝑖 < 𝑗, compute 𝐴𝑖 + 𝐴𝑖+1 + ⋯ + 𝐴𝑗. Keep the 

maximum from all sums. Total number of computations is 

Pseudocode: 

Can we do better?



  Case study III: Maximum subarray 

Design and Analysis of Algorithms

Idea 1: Do first preprocessing. Compute partial sums 

𝑆𝑖  =  𝐴1 + ⋯ + 𝐴𝑖  for every 𝑖. Running time Θ(𝑛). 

  Observe that 𝐴𝑖 + 𝐴𝑖+1 + ⋯ + 𝐴𝑗 = 𝑆𝑗 − 𝑆𝑖−1 
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Then for all 𝑖, 𝑗 with 𝑖 ≤ 𝑗, compute the maximum among 𝑆𝑗 − 𝑆𝑖−1. 



  Case study III: Maximum subarray 

Design and Analysis of Algorithms

Idea 1: Do first preprocessing. Compute partial sums 

𝑆𝑖  =  𝐴1 + ⋯ + 𝐴𝑖  for every 𝑖. Running time Θ(𝑛). 

  Observe that 𝐴𝑖 + 𝐴𝑖+1 + ⋯ + 𝐴𝑗 = 𝑆𝑗 − 𝑆𝑖−1

Then for all 𝑖, 𝑗 with 𝑖 ≤ 𝑗, compute the maximum among 𝑆𝑗 − 𝑆𝑖−1. 

−2, −5, 6, −2, −3, 1, 5, −6
   S = [0, -2, -7, -1, -3, -6, -5, 0, -6]
  -5+6-2-3+1 = S[6] – S[1] = -3



  Case study III: Maximum subarray 

Design and Analysis of Algorithms

Idea 1: Do first preprocessing. Compute partial sums 

𝑆𝑖  =  𝐴1 + ⋯ + 𝐴𝑖  for every 𝑖. Running time Θ(𝑛). 

  Observe that 𝐴𝑖 + 𝐴𝑖+1 + ⋯ + 𝐴𝑗 = 𝑆𝑗 − 𝑆𝑖−1

Then for all 𝑖, 𝑗 with 𝑖 < 𝑗, compute the maximum among 𝑆𝑗 − 𝑆𝑖−1. 

Can we do better?

Running time 𝚯(𝐧𝟐)



  Case study III: Maximum subarray 

Design and Analysis of Algorithms

Idea 2: Divide and conquer
[−𝟐, −𝟓, 𝟔, −𝟐, −𝟑, 𝟏, 𝟓, −𝟔]

Find max in left half (e.g., green), find max in right half (e.g., black)

and combine/merge. HOW? 

Observe left part has maximum 6 and right part also 6. The solution 
is 7 though.



  Case study III: Maximum subarray 

Design and Analysis of Algorithms

Idea 2: Divide and conquer

     [−𝟐, −𝟓, 𝟔, −𝟐, −𝟑, 𝟏, 𝟓, −𝟔]

Find max in left half (e.g., green), find max in right half (e.g., black)

and combine/merge. HOW? 

Observe left part has maximum 6 and right part also 6. The solution 
is 7 though.

Key idea: The solution is either on left part, or right part or crosses 
the midpoint (has at least one number in both parts).



  Case study III: Maximum subarray 

Design and Analysis of Algorithms

Idea 2: Divide and conquer
[−𝟐, −𝟓, 𝟔, −𝟐, −𝟑, 𝟏, 𝟓, −𝟔]

Question: How to get the maximum subarray that crosses the 
midpoint?



  Case study III: Maximum subarray 

Design and Analysis of Algorithms

Idea 2: Divide and conquer
[−𝟐, −𝟓, 𝟔, −𝟐, −𝟑, 𝟏, 𝟓, −𝟔]

Question: How to get the maximum subarray that crosses the 
midpoint?

a) Find the maximum starting from mid and going left.

b) Find the maximum starting from mid+1 and going right.

Add them up. This can happen in Θ(𝑛) time using partial sums 𝑺.

             In example above a) is 4 and b) is 3 for a total of 7. 



  Case study III: Maximum subarray 

Design and Analysis of Algorithms

Pseudocode:



  Case study III: Maximum subarray 

Design and Analysis of Algorithms

Pseudocode:

[−𝟐, −𝟓, 𝟔, −𝟐, −𝟑, 𝟏, 𝟓, −𝟔]
  maxL = 6, maxR = 6, max1+max2 = 4+3 = 7



  Case study IV: Maxima Set 

Design and Analysis of Algorithms

Problem: We are given 𝑛 points (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) on the plane. A 
point (𝑥𝑖 , 𝑦𝑖) is called a maximum point if there is no other point  
(𝑥𝑗 , 𝑦𝑗)  that 𝑥𝑖 ≤ 𝑥𝑗  and 𝑦𝑖 ≤ 𝑦𝑗.  

Example: 𝑥 captures pool size and 𝑦 restaurant quality. 10 hotels



  Case study IV: Maxima Set 

Design and Analysis of Algorithms

Problem: We are given 𝑛 points (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) on the plane. A 
point (𝑥𝑖 , 𝑦𝑖) is called a maximum point if there is no other point  
(𝑥𝑗 , 𝑦𝑗)  that 𝑥𝑖 ≤ 𝑥𝑗  and 𝑦𝑖 ≤ 𝑦𝑗.  

Example: 𝑥 captures pool size and 𝑦 restaurant quality. 10 hotels

Explanation:

𝐴, 𝐻, 𝐺, 𝐷 are maximum points.

𝐶, 𝐵, 𝐹, 𝐽, 𝐸 are not.



  Case study IV: Maxima Set 

Design and Analysis of Algorithms

Problem: We are given 𝑛 points (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) on the plane. A 
point (𝑥𝑖 , 𝑦𝑖) is called a maximum point if there is no other point  
(𝑥𝑗 , 𝑦𝑗)  that 𝑥𝑖 ≤ 𝑥𝑗  and 𝑦𝑖 ≤ 𝑦𝑗.  

Obvious approach:

For every point (𝑥𝑖 , 𝑦𝑖), check if it is maximum

To check if it is maximum, you check 

the condition with all other points.



  Case study IV: Maxima Set 

Design and Analysis of Algorithms

Problem: We are given 𝑛 points (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) on the plane. A 
point (𝑥𝑖 , 𝑦𝑖) is called a maximum point if there is no other point  
(𝑥𝑗 , 𝑦𝑗)  that 𝑥𝑖 ≤ 𝑥𝑗  and 𝑦𝑖 ≤ 𝑦𝑗.  

Pseudocode:

Can we do better?

Running time 𝚯(𝐧𝟐)



  Case study IV: Maxima Set 

Design and Analysis of Algorithms

Problem: We are given 𝑛 points (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) on the plane. A 
point (𝑥𝑖 , 𝑦𝑖) is called a maximum point if there is no other point  
(𝑥𝑗 , 𝑦𝑗)  that 𝑥𝑖 ≤ 𝑥𝑗  and 𝑦𝑖 ≤ 𝑦𝑗.  

Idea: Divide and conquer. Divide step and Combine step is 
challenging.



  Case study IV: Maxima Set 

Design and Analysis of Algorithms

Divide step: It should split the points in two parts of equal size. 

How?  
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Design and Analysis of Algorithms

Divide step: It should split the points in two parts of equal size. 

How?  Choose the middle (median) point with respect to 𝑥 
coordinates.



  Case study IV: Maxima Set 

Design and Analysis of Algorithms

Divide step: It should split the points in two parts of equal size. 

How?  Choose the middle (median) point with respect to 𝑥 
coordinates.

Combine step: Return 𝑀1 ∪ 𝑀2?



  Case study IV: Maxima Set 

Design and Analysis of Algorithms

Combine step: Return 𝑀1 ∪ 𝑀2? Wrong: blue points below of 𝑀1 are 
not part of the solution



  Case study IV: Maxima Set 

Design and Analysis of Algorithms

Combine step idea: 𝑀2 points should part of the solution. From 

𝑀1, the points that are maximum should not be dominated by 
smallest with respect to x coordinates in 𝑀2



  Case study IV: Maxima Set 

Design and Analysis of Algorithms

Pseudocode:



  Case study IV: Maxima Set 

Design and Analysis of Algorithms

Pseudocode:



  Case study IV: Maxima Set 

Design and Analysis of Algorithms

Pseudocode:

Next week we will see how to find 
the median in Θ(𝑛) time!
This fact will yield Θ(nlog n) for 
Maxima Set.
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