
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 4

Divide and Conquer II: Counting
inversions, counting intersections,
max subarray, maxima set

Divide and conquer method

Steps of method:

– Divide input into parts (smaller problems)

– Conquer (solve) each part recursively

– Combine results to obtain solution of original

T (n) = divide time

+ T (n1)+T (n2)+ ...+T (nk)

+ combine time

Design and Analysis of Algorithms

 Case study I: Counting inversions

Given numbers 𝐴1, … , 𝐴𝑛 in an array 𝐴, compute
the number of inversions.

 (𝑖, 𝑗) is an inversion: 𝐴𝑖 > 𝐴𝑗 and 𝑖 < 𝑗.

Example [18, 29, 12, 15, 32, 10] has 9 inversions:

(18,12), (18,15), (18,10), (29,12), (29,15), (29,10),
(12,10), (15,10), (32,10)

Design and Analysis of Algorithms

Design and Analysis of Algorithms

● Solution: Use Divide and conquer. Tricky part the combine step.

Run a modification of Mergesort that has a counter that counts

inversions during merge steps.

● Question: Assume that 𝐵1, … , 𝐵𝑘 and 𝐶1, … , 𝐶𝑙 are both sorted. Can

you compute the number of inversions of the concatenated sequence

𝐵1, … , 𝐵𝑘 , 𝐶1, … , 𝐶𝑙?

 Case study I: Counting inversions

Design and Analysis of Algorithms

● Question: Assume that 𝐵1, … , 𝐵𝑘and 𝐶1, … , 𝐶𝑙 are both sorted. Can

you compute the number of inversions of the sequence

𝐵1, … , 𝐵𝑘 , 𝐶1, … , 𝐶𝑙?

 If 𝐵𝑖 > 𝐶𝑗 ≥ 𝐵𝑖−1 there are

 𝑘 − 𝑖 + 1 including 𝐶𝑗

𝐵1, … , 𝐵𝑖 , … , 𝐵𝑘 𝐶1, … , 𝐶𝑗 , … , 𝐶𝑙

 Case study I: Counting inversions

Design and Analysis of Algorithms

● Question: Assume that 𝐵1, … , 𝐵𝑘and 𝐶1, … , 𝐶𝑙 are both sorted. Can

you compute the number of inversions of the sequence

𝐵1, … , 𝐵𝑘 , 𝐶1, … , 𝐶𝑙?

 If 𝐵𝑖 > 𝐶𝑗 ≥ 𝐵𝑖−1 there are

 𝑘 − 𝑖 + 1 including 𝐶𝑗

𝐵1, … , 𝐵𝑖 , … , 𝐵𝑘 𝐶1, … , 𝐶𝑗 , … , 𝐶𝑙

 Case study I: Counting inversions

Design and Analysis of Algorithms

 If 𝐵𝑖 > 𝐶𝑗 ≥ 𝐵𝑖−1 there are

 𝑘 − 𝑖 + 1 including 𝐶𝑗

 𝐵1, … , 𝐵𝑖 , … , 𝐵𝑘 𝐶1, … , 𝐶𝑗 , … , 𝐶𝑙

 Case study I: Counting inversions

1 3 4 9 220 2 3 5 7 8 10 Concatenated:

2 3 5 7 8 10 1 3 4 9 220

8 participates in 2 inversions. 𝑘 = 5, 𝑖 = 4

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

Design and Analysis of Algorithms

Problem: Given two sorted arrays 𝐵, 𝐶, merge them to a sorted
array and count number of inversions simultaneously.

Solution: Index 𝑖 for 𝐵, index 𝑗 for 𝐶, index 𝑘 for 𝐴, counter.

1 3 4 9 220 2 3 5 7 8 10

 Case study I: Counting inversions

 Case study I: Counting inversions
Pseudocode:

Design and Analysis of Algorithms

 Case study II: Counting intersections

Design and Analysis of Algorithms

Problem: Given 𝑛 distinct lines in the plane, none of which are vertical and
two vertical lines 𝑥 = 𝑎 and 𝑥 = 𝑏, find the number of intersections. We
assume that each line 𝑖 is described by its endpoints (𝑎, 𝑦𝑖1) and (𝑏, 𝑦𝑖2).

Example: 6 lines (8 intersections)

 Case study II: Counting intersections

Design and Analysis of Algorithms

Problem: Given 𝑛 distinct lines in the plane, none of which are vertical and
two vertical lines 𝑥 = 𝑎 and 𝑥 = 𝑏, find the number of intersections. We
assume that each line 𝑖 is described by its endpoints (𝑎, 𝑦𝑖1) and (𝑏, 𝑦𝑖2).

Question: When two lines 𝑖, 𝑗 intersect?

 Case study II: Counting intersections

Design and Analysis of Algorithms

Problem: Given 𝑛 distinct lines in the plane, none of which are vertical and
two vertical lines 𝑥 = 𝑎 and 𝑥 = 𝑏, find the number of intersections. We
assume that each line 𝑖 is described by its endpoints (𝑎, 𝑦𝑖1) and (𝑏, 𝑦𝑖2).

Question: When two lines 𝑖, 𝑗 intersect?

If 𝒚𝒊𝟏 > 𝒚𝒋𝟏 then 𝒚𝒊𝟐 < 𝒚𝒋𝟐 or If 𝒚𝒊𝟏 < 𝒚𝒋𝟏 then 𝒚𝒊𝟐 > 𝒚𝒋𝟐

 Case study II: Counting intersections

Design and Analysis of Algorithms

For all pairs 𝑖, 𝑗 with 𝑖 < 𝑗, count number of intersections

Pseudocode:

 Case study II: Counting intersections

Design and Analysis of Algorithms

For all pairs 𝑖, 𝑗 with 𝑖 < 𝑗, count number of intersections

Pseudocode:

Can we do better?

Running time 𝚯(𝐧𝟐)

 Case study II: Counting intersections

Design and Analysis of Algorithms

Idea: Let’s sort the lines with respect to 𝑦 on 𝑎. Check the inverse
permutation of the indices of the lines on 𝑏.

Example: 4, 6, 1, 3, 2, 5

 Case study II: Counting intersections

Design and Analysis of Algorithms

Idea: Let’s sort the lines with respect to 𝑦 on 𝑎. Check the inverse
permutation of the indices of the lines on 𝑏.

Example: 4, 6, 1, 3, 2, 5

Key observation: Number of inversions is equal to number of
intersections. In example (4, 1), (4,3), (4,2), (6,1), (6,3), (6,2), (6,5),
(3,2)

 Case study II: Counting intersections

Design and Analysis of Algorithms

Solution: Sort the lines with respect to 𝑦 on 𝑎. Run modified
mergesort to find number of inversions. Running time Θ(𝑛 log 𝑛).

Idea: Let’s sort the lines with respect to 𝑦 on 𝑎. Check the inverse
permutation of the indices of the lines on 𝑏.

Example: 4, 6, 1, 3, 2, 5

 Case study III: Maximum subarray

Design and Analysis of Algorithms

Problem (Leetcode, question in interviews): Given an array 𝐴 of 𝑛
numbers (positive and negative), find the subarray with the
maximum sum.

Example: 𝐴 = [−2, −5, 6, −2, −3, 1, 5, −6]

 Case study III: Maximum subarray

Design and Analysis of Algorithms

Problem (Leetcode, question in interviews): Given an array 𝐴 of 𝑛
numbers (positive and negative), find the subarray with the
maximum sum.

Example: 𝐴 = [−2, −5, 6, −2, −3, 1, 5, −6]

Solution of example:

[−2, −5, 𝟔, −𝟐, −𝟑, 𝟏, 𝟓, −6] with sum 7.

 Case study III: Maximum subarray

Design and Analysis of Algorithms

For all 𝑖, 𝑗 with 𝑖 ≤ 𝑗, compute 𝐴𝑖 + 𝐴𝑖+1 + ⋯ + 𝐴𝑗. Keep the

maximum from all sums. Total number of computations is…

 Case study III: Maximum subarray

Design and Analysis of Algorithms

For all 𝑖, 𝑗 with 𝑖 ≤ 𝑗, compute 𝐴𝑖 + 𝐴𝑖+1 + ⋯ + 𝐴𝑗. Keep the

maximum from all sums. Total number of computations is…

Pseudocode:

 Case study III: Maximum subarray

Design and Analysis of Algorithms

For all 𝑖, 𝑗 with 𝑖 < 𝑗, compute 𝐴𝑖 + 𝐴𝑖+1 + ⋯ + 𝐴𝑗. Keep the

maximum from all sums. Total number of computations is

Pseudocode:

Can we do better?

 Case study III: Maximum subarray

Design and Analysis of Algorithms

Idea 1: Do first preprocessing. Compute partial sums

𝑆𝑖 = 𝐴1 + ⋯ + 𝐴𝑖 for every 𝑖. Running time Θ(𝑛).

 Observe that 𝐴𝑖 + 𝐴𝑖+1 + ⋯ + 𝐴𝑗 = 𝑆𝑗 − 𝑆𝑖−1

 Case study III: Maximum subarray

Design and Analysis of Algorithms

Idea 1: Do first preprocessing. Compute partial sums

𝑆𝑖 = 𝐴1 + ⋯ + 𝐴𝑖 for every 𝑖. Running time Θ(𝑛).

 Observe that 𝐴𝑖 + 𝐴𝑖+1 + ⋯ + 𝐴𝑗 = 𝑆𝑗 − 𝑆𝑖−1

Then for all 𝑖, 𝑗 with 𝑖 ≤ 𝑗, compute the maximum among 𝑆𝑗 − 𝑆𝑖−1.

 Case study III: Maximum subarray

Design and Analysis of Algorithms

Idea 1: Do first preprocessing. Compute partial sums

𝑆𝑖 = 𝐴1 + ⋯ + 𝐴𝑖 for every 𝑖. Running time Θ(𝑛).

 Observe that 𝐴𝑖 + 𝐴𝑖+1 + ⋯ + 𝐴𝑗 = 𝑆𝑗 − 𝑆𝑖−1

Then for all 𝑖, 𝑗 with 𝑖 ≤ 𝑗, compute the maximum among 𝑆𝑗 − 𝑆𝑖−1.

−2, −5, 6, −2, −3, 1, 5, −6
 S = [0, -2, -7, -1, -3, -6, -5, 0, -6]
 -5+6-2-3+1 = S[6] – S[1] = -3

 Case study III: Maximum subarray

Design and Analysis of Algorithms

Idea 1: Do first preprocessing. Compute partial sums

𝑆𝑖 = 𝐴1 + ⋯ + 𝐴𝑖 for every 𝑖. Running time Θ(𝑛).

 Observe that 𝐴𝑖 + 𝐴𝑖+1 + ⋯ + 𝐴𝑗 = 𝑆𝑗 − 𝑆𝑖−1

Then for all 𝑖, 𝑗 with 𝑖 < 𝑗, compute the maximum among 𝑆𝑗 − 𝑆𝑖−1.

Can we do better?

Running time 𝚯(𝐧𝟐)

 Case study III: Maximum subarray

Design and Analysis of Algorithms

Idea 2: Divide and conquer
[−𝟐, −𝟓, 𝟔, −𝟐, −𝟑, 𝟏, 𝟓, −𝟔]

Find max in left half (e.g., green), find max in right half (e.g., black)

and combine/merge. HOW?

Observe left part has maximum 6 and right part also 6. The solution
is 7 though.

 Case study III: Maximum subarray

Design and Analysis of Algorithms

Idea 2: Divide and conquer

 [−𝟐, −𝟓, 𝟔, −𝟐, −𝟑, 𝟏, 𝟓, −𝟔]

Find max in left half (e.g., green), find max in right half (e.g., black)

and combine/merge. HOW?

Observe left part has maximum 6 and right part also 6. The solution
is 7 though.

Key idea: The solution is either on left part, or right part or crosses
the midpoint (has at least one number in both parts).

 Case study III: Maximum subarray

Design and Analysis of Algorithms

Idea 2: Divide and conquer
[−𝟐, −𝟓, 𝟔, −𝟐, −𝟑, 𝟏, 𝟓, −𝟔]

Question: How to get the maximum subarray that crosses the
midpoint?

 Case study III: Maximum subarray

Design and Analysis of Algorithms

Idea 2: Divide and conquer
[−𝟐, −𝟓, 𝟔, −𝟐, −𝟑, 𝟏, 𝟓, −𝟔]

Question: How to get the maximum subarray that crosses the
midpoint?

a) Find the maximum starting from mid and going left.

b) Find the maximum starting from mid+1 and going right.

Add them up. This can happen in Θ(𝑛) time using partial sums 𝑺.

 In example above a) is 4 and b) is 3 for a total of 7.

 Case study III: Maximum subarray

Design and Analysis of Algorithms

Pseudocode:

 Case study III: Maximum subarray

Design and Analysis of Algorithms

Pseudocode:

[−𝟐, −𝟓, 𝟔, −𝟐, −𝟑, 𝟏, 𝟓, −𝟔]
 maxL = 6, maxR = 6, max1+max2 = 4+3 = 7

 Case study IV: Maxima Set

Design and Analysis of Algorithms

Problem: We are given 𝑛 points (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) on the plane. A
point (𝑥𝑖 , 𝑦𝑖) is called a maximum point if there is no other point
(𝑥𝑗 , 𝑦𝑗) that 𝑥𝑖 ≤ 𝑥𝑗 and 𝑦𝑖 ≤ 𝑦𝑗.

Example: 𝑥 captures pool size and 𝑦 restaurant quality. 10 hotels

 Case study IV: Maxima Set

Design and Analysis of Algorithms

Problem: We are given 𝑛 points (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) on the plane. A
point (𝑥𝑖 , 𝑦𝑖) is called a maximum point if there is no other point
(𝑥𝑗 , 𝑦𝑗) that 𝑥𝑖 ≤ 𝑥𝑗 and 𝑦𝑖 ≤ 𝑦𝑗.

Example: 𝑥 captures pool size and 𝑦 restaurant quality. 10 hotels

Explanation:

𝐴, 𝐻, 𝐺, 𝐷 are maximum points.

𝐶, 𝐵, 𝐹, 𝐽, 𝐸 are not.

 Case study IV: Maxima Set

Design and Analysis of Algorithms

Problem: We are given 𝑛 points (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) on the plane. A
point (𝑥𝑖 , 𝑦𝑖) is called a maximum point if there is no other point
(𝑥𝑗 , 𝑦𝑗) that 𝑥𝑖 ≤ 𝑥𝑗 and 𝑦𝑖 ≤ 𝑦𝑗.

Obvious approach:

For every point (𝑥𝑖 , 𝑦𝑖), check if it is maximum

To check if it is maximum, you check

the condition with all other points.

 Case study IV: Maxima Set

Design and Analysis of Algorithms

Problem: We are given 𝑛 points (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) on the plane. A
point (𝑥𝑖 , 𝑦𝑖) is called a maximum point if there is no other point
(𝑥𝑗 , 𝑦𝑗) that 𝑥𝑖 ≤ 𝑥𝑗 and 𝑦𝑖 ≤ 𝑦𝑗.

Pseudocode:

Can we do better?

Running time 𝚯(𝐧𝟐)

 Case study IV: Maxima Set

Design and Analysis of Algorithms

Problem: We are given 𝑛 points (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) on the plane. A
point (𝑥𝑖 , 𝑦𝑖) is called a maximum point if there is no other point
(𝑥𝑗 , 𝑦𝑗) that 𝑥𝑖 ≤ 𝑥𝑗 and 𝑦𝑖 ≤ 𝑦𝑗.

Idea: Divide and conquer. Divide step and Combine step is
challenging.

 Case study IV: Maxima Set

Design and Analysis of Algorithms

Divide step: It should split the points in two parts of equal size.

How?

 Case study IV: Maxima Set

Design and Analysis of Algorithms

Divide step: It should split the points in two parts of equal size.

How? Choose the middle (median) point with respect to 𝑥
coordinates.

 Case study IV: Maxima Set

Design and Analysis of Algorithms

Divide step: It should split the points in two parts of equal size.

How? Choose the middle (median) point with respect to 𝑥
coordinates.

Combine step: Return 𝑀1 ∪ 𝑀2?

 Case study IV: Maxima Set

Design and Analysis of Algorithms

Combine step: Return 𝑀1 ∪ 𝑀2? Wrong: blue points below of 𝑀1 are
not part of the solution

 Case study IV: Maxima Set

Design and Analysis of Algorithms

Combine step idea: 𝑀2 points should part of the solution. From

𝑀1, the points that are maximum should not be dominated by
smallest with respect to x coordinates in 𝑀2

 Case study IV: Maxima Set

Design and Analysis of Algorithms

Pseudocode:

 Case study IV: Maxima Set

Design and Analysis of Algorithms

Pseudocode:

 Case study IV: Maxima Set

Design and Analysis of Algorithms

Pseudocode:

Next week we will see how to find
the median in Θ(𝑛) time!
This fact will yield Θ(nlog n) for
Maxima Set.

	Slide 1: Lecture 4 Divide and Conquer II: Counting inversions, counting intersections, max subarray, maxima set
	Slide 2: Divide and conquer method (recap)
	Slide 3: Case study I: Counting inversions
	Slide 4: Case study I: Counting inversions
	Slide 5: Case study I: Counting inversions
	Slide 6: Case study I: Counting inversions
	Slide 7: Case study I: Counting inversions
	Slide 8: Case study I: Counting inversions
	Slide 9: Case study I: Counting inversions
	Slide 10: Case study I: Counting inversions
	Slide 11: Case study I: Counting inversions
	Slide 12: Case study I: Counting inversions
	Slide 13: Case study I: Counting inversions
	Slide 14: Case study I: Counting inversions
	Slide 15: Case study I: Counting inversions
	Slide 16: Case study I: Counting inversions
	Slide 17: Case study I: Counting inversions
	Slide 18: Case study I: Counting inversions
	Slide 19: Case study I: Counting inversions
	Slide 20: Case study I: Counting inversions
	Slide 21: Case study II: Counting intersections
	Slide 22: Case study II: Counting intersections
	Slide 23: Case study II: Counting intersections
	Slide 24: Case study II: Counting intersections
	Slide 25: Case study II: Counting intersections
	Slide 26: Case study II: Counting intersections
	Slide 27: Case study II: Counting intersections
	Slide 28: Case study II: Counting intersections
	Slide 29: Case study III: Maximum subarray
	Slide 30: Case study III: Maximum subarray
	Slide 31: Case study III: Maximum subarray
	Slide 32: Case study III: Maximum subarray
	Slide 33: Case study III: Maximum subarray
	Slide 34: Case study III: Maximum subarray
	Slide 35: Case study III: Maximum subarray
	Slide 36: Case study III: Maximum subarray
	Slide 37: Case study III: Maximum subarray
	Slide 38: Case study III: Maximum subarray
	Slide 39: Case study III: Maximum subarray
	Slide 40: Case study III: Maximum subarray
	Slide 41: Case study III: Maximum subarray
	Slide 42: Case study III: Maximum subarray
	Slide 43: Case study III: Maximum subarray
	Slide 44: Case study IV: Maxima Set
	Slide 45: Case study IV: Maxima Set
	Slide 46: Case study IV: Maxima Set
	Slide 47: Case study IV: Maxima Set
	Slide 48: Case study IV: Maxima Set
	Slide 49: Case study IV: Maxima Set
	Slide 50: Case study IV: Maxima Set
	Slide 51: Case study IV: Maxima Set
	Slide 52: Case study IV: Maxima Set
	Slide 53: Case study IV: Maxima Set
	Slide 54: Case study IV: Maxima Set
	Slide 55: Case study IV: Maxima Set
	Slide 56: Case study IV: Maxima Set

