
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 20

Recap part B

Greedy method
The greedy method is a general algorithm design technique, in
which given:

– configurations: different choices we need to make

– objective function: a score assigned to all configurations,
which we want to either maximize or minimize

We should make choices greedily: We can find a globally-
optimal solution by a series of local improvements from a
starting configuration.

Example: Maxflow problem.
Configurations: All possible flow functions. Objective function: Maximize flow value.

Ford-Fulkerson makes choices greedily starting from flow 𝒇 = 𝟎.

Design and Analysis of Algorithms

Greedy does not always work

Design and Analysis of Algorithms

Problem 1: Given a value 𝑋 and notes {1, 2, 5, 10, 20, 50, 100}, find
the minimum number of notes to create value 𝑋. You can use each
note as many times as you want.

Answer: Greedy approach works. Pick largest note that is at most 𝑋
and subtract from 𝑋. Repeat until value becomes 0.
E.g., for X=1477, you need fourteen 100s, one 50, one 20, one 5
and one 2.

Problem 2: Given a value 𝑋 and notes {1, 2, 7, 10}, find the
minimum number of notes to create value 𝑋. You can use each
note as many times as you want.

Answer: Greedy approach does not work as before.
E.g., for X=14, you need two 7s, but greedy will give one 10, two 2s.

Greedy does not work always

Fractional Knapsack

Design and Analysis of Algorithms

1 2 3 4 5

Weight: 4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Value:
($ per ml)

$3 $4 $20 $5 $50

Value: “knapsack”
 with 10ml

Problem: A set of 𝑛 items, with each item 𝑖 having positive weight
𝑤𝑖 and positive value 𝑣𝑖. You are asked to choose items with
maximum total value so that the total weight is at most 𝑊. We are
allowed to take fractional amounts (some percentage of each item).

Fractional Knapsack

Design and Analysis of Algorithms

1 2 3 4 5

Weight:

Value:

4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Solution:
• 1 ml of 5
• 2 ml of 3
• 6 ml of 4
• 1 ml of 2
Total Value: $124

“knapsack”
 with 10mlValue:

($ per ml)

$3 $4 $20 $5 $50

Problem: A set of 𝑛 items, with each item 𝑖 having positive weight
𝑤𝑖 and positive value 𝑣𝑖. You are asked to choose items with
maximum total value so that the total weight is at most 𝑊. We are
allowed to take fractional amounts (some percentage of each item).

Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to
weight ratio until knapsack is full or run out of items.

1 2 3 4 5

Weight:

Value:

4 ml 8 ml 2 ml 6 ml

$12 $32 $40 $30 $50

Items:

Value: $3 $4 $20 $5 $50

1 ml

𝑊 = 10 ml
𝑣𝑎𝑙𝑢𝑒 = $0

Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to
weight ratio until knapsack is full or run out of items.

1 2 3 4 5

Weight:

Value:

4 ml 8 ml 2 ml

$12 $32 $40 $30 $50

Items:

Value: $3 $4 $20 $5 $50

6 ml 1 ml

𝑊 = 10 ml
𝑣𝑎𝑙𝑢𝑒 = $0

Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to
weight ratio until knapsack is full or run out of items.

1 2 3 4

Weight:

Value:

4 ml 8 ml 2 ml

$12 $32 $40 $30

Items:

Value: $3 $4 $20 $5

6 ml

𝑊 = 9 ml
𝑣𝑎𝑙𝑢𝑒 = $50

Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to
weight ratio until knapsack is full or run out of items.

1 2 3 4

Weight:

Value:

4 ml 8 ml 2 ml

$12 $32 $40 $30

Items:

Value: $3 $4 $20 $5

6 ml

𝑊 = 9 ml
𝑣𝑎𝑙𝑢𝑒 = $50

Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to
weight ratio until knapsack is full or run out of items.

1 2 4

Weight:

Value:

4 ml 8 ml

$12 $32 $30

Items:

Value: $3 $4 $5

6 ml

𝑊 = 7 ml
𝑣𝑎𝑙𝑢𝑒 = $90

Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to
weight ratio until knapsack is full or run out of items.

1 2 4

Weight:

Value:

4 ml 8 ml

$12 $32 $30

Items:

Value: $3 $4 $5

6 ml

𝑊 = 7 ml
𝑣𝑎𝑙𝑢𝑒 = $90

Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to
weight ratio until knapsack is full or run out of items.

1 2

Weight:

Value:

4 ml 8 ml

$12 $32

Items:

Value: $3 $4
𝑊 = 1 ml
𝑣𝑎𝑙𝑢𝑒 = $120

Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to
weight ratio until knapsack is full or run out of items.

1 2

Weight:

Value:

4 ml 8 ml

$12 $32

Items:

Value: $3 $4
𝑊 = 1 ml
𝑣𝑎𝑙𝑢𝑒 = $120

Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to
weight ratio until knapsack is full or run out of items.

1 2

Weight:

Value:

4 ml 7 ml

$12 $32

Items:

Value: $3 $4
𝑊 = 0 ml
𝑣𝑎𝑙𝑢𝑒 = $124

Running time: ?

Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to
weight ratio until knapsack is full or run out of items.

1 2

Weight:

Value:

4 ml 7 ml

$12 $32

Items:

Value: $3 $4
𝑊 = 0 ml
𝑣𝑎𝑙𝑢𝑒 = $124

Running time: If we sort the items with respect to value to weight
ratio then Θ(𝑛 log 𝑛).

Fractional Knapsack

Design and Analysis of Algorithms

Pseudocode:

Compute the ratios

Initialization

While knapsack not full

If whole item fits

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 1: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖 and
a finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform all the tasks using a minimum number of machines.
A machine can serve one task at a given time.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 1: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖 and
a finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform all the tasks using a minimum number of machines.
A machine can serve one task at a given time.

Idea: Sort tasks in increasing order of their start time. Assign first
task to machine 1 and set 𝐾 = 1.
When considering a new task, if all machines are busy, create a new
machine, set 𝐾 = 𝐾 + 1 and assign the new task to the new
machine otherwise assign the new task to an available machine.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 2: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖 and
a finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform as many tasks as possible using one machine.
In other words, find the maximum number of non-overlapping
intervals.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 2: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖 and
a finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform as many tasks as possible using one machine.
In other words, find the maximum number of non-overlapping
intervals.

Idea: Sort tasks in increasing order of their finish time. Perform first
task and remove all overlapping tasks with first task. Repeat the
same process to the remaining tasks.

Design and Analysis of Algorithms

Maxflow Problem
Problem: Given a network 𝐺, a source 𝒔 and a sink 𝒕, and capacities
on the edges, compute the maximum possible flow value |𝑓∗|.

w
s

v

u

t

z

$/3

$/9

$/1

$/3

$/7

$/6

$/5$/1
$/5

$/2

Find the $ to get maxflow |𝑓∗|

Design and Analysis of Algorithms

Augmenting paths

w
s

v

u

t

z

3/3

2/9

1/1

1/3

3/7

2/6

4/51/1
3/5

2/2

We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓.
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)

Design and Analysis of Algorithms

Augmenting paths

w
s

v

u

t

z

3/3

2/9

1/1

1/3

3/7

2/6

4/51/1
3/5

2/2

We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓.
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)

Design and Analysis of Algorithms

Augmenting paths

w
s

v

u

t

z

3/3

2/9

1/1

1/3

3/7

2/6

4/51/1
3/5

2/2

We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓.
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)

Design and Analysis of Algorithms

Augmenting paths

w
s

v

u

t

z

3/3

2/9

1/1

1/3

3/7

2/6

4/51/1
3/5

2/2

We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓.
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)

Design and Analysis of Algorithms

Augmenting paths

w
s

v

u

t

z

3/3

2/9

1/1

1/3

3/7

2/6

4/50/1
2/5

2/2

Augmenting path: Path from 𝒔 to 𝒕
with positive residual capacities.

𝑠 → 𝑣 → 𝑡 augmenting path
𝑠 → 𝑢 → 𝑤 → 𝑣 → 𝑡 augmenting path

We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓.
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)

Design and Analysis of Algorithms

Augmenting paths

We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓.
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)

w
s

v

u

t

z

3/3

2/9

1/1

1/3

3/7

2/6

4/50/1
2/5

2/2

Augmenting path: Path from 𝒔 to 𝒕
with positive residual capacities.

𝑠 → 𝑣 → 𝑡 augmenting path
𝑠 → 𝑢 → 𝑤 → 𝑣 → 𝑡 augmenting path

𝑠 → 𝑢 → 𝑧 → 𝑡 is not

Design and Analysis of Algorithms

Augmenting paths

We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓.
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)

w
s

v

u

t

z

3/3

2/9

1/1

1/3

3/7

2/6

4/50/1
2/5

2/2

𝑠 → 𝑣 → 𝑡: 2 units of flow can be pushed
(min over residual capacities).

𝑠 → 𝑢 → 𝑤 → 𝑣 → 𝑡: 1 unit of flow
can be pushed

𝑠 → 𝑢 → 𝑧 → 𝑡: No flow can be pushed

The Ford-Fulkerson Algorithm

Design and Analysis of Algorithms

Main idea: Repeatedly search for an augmenting path 𝝅:

• If there is an augmenting path, augment flow with f()
(minimum residual capacity among the edges of π) along the
edges of π.

The Ford-Fulkerson Algorithm

Design and Analysis of Algorithms

Main idea: Repeatedly search for an augmenting path 𝝅:

• If there is an augmenting path, augment flow with f()
(minimum residual capacity among the edges of π) along the
edges of π.

• If there is no augmenting path, terminate.

Remark: You can use DFS (or BFS) to search for an augmenting path.

Running time: ?

The Ford-Fulkerson Algorithm

Design and Analysis of Algorithms

Main idea: Repeatedly search for an augmenting path 𝝅:

• If there is an augmenting path, augment flow with f()
(minimum residual capacity among the edges of π) along the
edges of π.

• If there is no augmenting path, terminate.

Remark: You can use DFS (or BFS) to search for an augmenting path.

Running time:

Time to search for an augmenting path × number of updates.

The Ford-Fulkerson Algorithm

Design and Analysis of Algorithms

Main idea: Repeatedly search for an augmenting path 𝝅:

• If there is an augmenting path, augment flow with f()
(minimum residual capacity among the edges of π) along the
edges of π.

• If there is no augmenting path, terminate.

Remark: You can use DFS (or BFS) to search for an augmenting path.

Running time:

Time to search for an augmenting path × number of updates.
Θ |𝑉| + |𝐸| ⋅ |𝑓∗|

Updates increase flow by 1 unit onlyRunning time of DFS or BFS

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

w
s

v

u

t

z

0/3

0/9

0/1

0/3

0/7

0/6

0/5
0/10/5

0/2

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

w
s

v

u

t

z

0/3

0/9

0/1

0/3

1/7

0/6

0/5
1/11/5

0/2

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

w
s

v

u

t

z

1/3

0/9

0/1

0/3

1/7

0/6

1/5
0/11/5

1/2

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

w
s

v

u

t

z

1/3

0/9

1/1

0/3

2/7

1/6

1/5
0/11/5

1/2

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

w
s

v

u

t

z

1/3

0/9

1/1

3/3

2/7

4/6

1/5
0/11/5

1/2

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

w
s

v

u

t

z

3/3

0/9

1/1

3/3

4/7

4/6

1/5
0/11/5

1/2

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

w
s

v

u

t

z

3/3

1/9

1/1

3/3

4/7

4/6

2/5
1/12/5

1/2

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

w
s

v

u

t

z

3/3

1/9

1/1

3/3

4/7

4/6

3/5
1/13/5

2/2

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

w
s

v

u

t

z

3/3

1/9

1/1

3/3

4/7

4/6

3/5
1/13/5

2/2

No more augmenting paths!

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

Pseudocode:

Initialization 𝑓 = 0

Δ: min residual capacity on aug. path

Update flow on aug. path

No more aug. paths

Application: Maximum Matching

Design and Analysis of Algorithms

Definition: Given a bipartite graph, a matching is just a
collection of edges that do not share a vertex.

Design and Analysis of Algorithms

Definition: We are given an undirected, weighted graph 𝐺. A
spanning tree of 𝐺 is a connected acyclic (tree) subgraph of 𝐺 that
includes all the vertices of 𝐺 (spanning).

OAK

MIA

ATL

NYC

LA

DC

BOS

10
1

9

8

6

25

7

4

3

Spanning Tree

Design and Analysis of Algorithms

Definition: We are given an undirected, weighted graph 𝐺. A
spanning tree of 𝐺 is a connected acyclic (tree) subgraph of 𝐺 that
includes all the vertices of 𝐺 (spanning).

OAK

MIA

ATL

NYC

LA

DC

BOS

10
1

9

8

6

25

7

4

3

Spanning Tree

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

	Slide 1: Lecture 20 Recap part B
	Slide 2: Greedy method
	Slide 3: Greedy does not always work
	Slide 4: Fractional Knapsack
	Slide 5: Fractional Knapsack
	Slide 6: Fractional Knapsack
	Slide 7: Fractional Knapsack
	Slide 8: Fractional Knapsack
	Slide 9: Fractional Knapsack
	Slide 10: Fractional Knapsack
	Slide 11: Fractional Knapsack
	Slide 12: Fractional Knapsack
	Slide 13: Fractional Knapsack
	Slide 14: Fractional Knapsack
	Slide 15: Fractional Knapsack
	Slide 16: Fractional Knapsack
	Slide 17: Scheduling jobs/tasks
	Slide 18: Scheduling jobs/tasks
	Slide 19: Scheduling jobs/tasks
	Slide 20: Scheduling jobs/tasks
	Slide 21: Maxflow Problem
	Slide 22: Augmenting paths
	Slide 23: Augmenting paths
	Slide 24: Augmenting paths
	Slide 25: Augmenting paths
	Slide 26: Augmenting paths
	Slide 27: Augmenting paths
	Slide 28: Augmenting paths
	Slide 29: The Ford-Fulkerson Algorithm
	Slide 30: The Ford-Fulkerson Algorithm
	Slide 31: The Ford-Fulkerson Algorithm
	Slide 32: The Ford-Fulkerson Algorithm
	Slide 33: The Ford-Fulkerson Algorithm
	Slide 34: The Ford-Fulkerson Algorithm
	Slide 35: The Ford-Fulkerson Algorithm
	Slide 36: The Ford-Fulkerson Algorithm
	Slide 37: The Ford-Fulkerson Algorithm
	Slide 38: The Ford-Fulkerson Algorithm
	Slide 39: The Ford-Fulkerson Algorithm
	Slide 40: The Ford-Fulkerson Algorithm
	Slide 41: The Ford-Fulkerson Algorithm
	Slide 42
	Slide 43: Application: Maximum Matching
	Slide 44: Spanning Tree
	Slide 45: Spanning Tree
	Slide 46: Kruskal’s Algorithm for MSTs
	Slide 47: Kruskal’s Algorithm for MSTs
	Slide 48: Kruskal’s Algorithm for MSTs
	Slide 49: Kruskal’s Algorithm for MSTs
	Slide 50: Kruskal’s Algorithm for MSTs
	Slide 51: Kruskal’s Algorithm for MSTs
	Slide 52: Kruskal’s Algorithm for MSTs
	Slide 53: Kruskal’s Algorithm for MSTs
	Slide 54: Kruskal’s Algorithm for MSTs
	Slide 55: Kruskal’s Algorithm for MSTs
	Slide 56: Kruskal’s Algorithm for MSTs
	Slide 57: Kruskal’s Algorithm for MSTs
	Slide 58: Kruskal’s Algorithm for MSTs
	Slide 59: Prim’s Algorithm for MSTs
	Slide 60: Prim’s Algorithm for MSTs
	Slide 61: Prim’s Algorithm for MSTs
	Slide 62: Prim’s Algorithm for MSTs
	Slide 63: Prim’s Algorithm for MSTs
	Slide 64: Prim’s Algorithm for MSTs
	Slide 65: Prim’s Algorithm for MSTs
	Slide 66: Prim’s Algorithm for MSTs
	Slide 67: Prim’s Algorithm for MSTs

