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Greedy method
The greedy method is a general algorithm design technique, in 
which given:

– configurations: different choices we need to make

– objective function: a score assigned to all configurations, 
which we want to either maximize or minimize

We should make choices greedily: We can find a globally-
optimal solution by a series of local improvements from a 
starting configuration.

Example: Maxflow problem.
Configurations: All possible flow functions. Objective function: Maximize flow value.

Ford-Fulkerson makes choices greedily starting from flow 𝒇 = 𝟎.

Design and Analysis of Algorithms



Greedy does not always work

Design and Analysis of Algorithms

Problem 1: Given a value 𝑋 and notes {1, 2, 5, 10, 20, 50, 100}, find 
the minimum number of notes to create value 𝑋. You can use each 
note as many times as you want.

Answer: Greedy approach works. Pick largest note that is at most 𝑋 
and subtract from 𝑋. Repeat until value becomes 0.
E.g., for X=1477, you need fourteen 100s, one 50, one 20, one 5 
and one 2.

Problem 2: Given a value 𝑋 and notes {1, 2, 7, 10}, find the 
minimum number of notes to create value 𝑋. You can use each 
note as many times as you want.

Answer: Greedy approach does not work as before. 
E.g., for X=14, you need two 7s, but greedy will give one 10, two 2s.

Greedy does not work always



Fractional Knapsack
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1 2 3 4 5

Weight: 4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Value:
($ per ml)

$3 $4 $20 $5 $50

Value: “knapsack”
  with 10ml

Problem: A set of 𝑛 items, with each item 𝑖 having positive weight 
𝑤𝑖 and positive value 𝑣𝑖.  You are asked to choose items with 
maximum total value so that the total weight is at most 𝑊. We are 
allowed to take fractional amounts (some percentage of each item).



Fractional Knapsack
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1 2 3 4 5

Weight:

Value:

4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Solution:
• 1 ml of 5
• 2 ml of 3
• 6 ml of 4
• 1 ml of 2
Total Value: $124

“knapsack”
  with 10mlValue:

($ per ml)

$3 $4 $20 $5 $50

Problem: A set of 𝑛 items, with each item 𝑖 having positive weight 
𝑤𝑖 and positive value 𝑣𝑖.  You are asked to choose items with 
maximum total value so that the total weight is at most 𝑊. We are 
allowed to take fractional amounts (some percentage of each item).



Fractional Knapsack
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Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2 3 4 5

Weight:

Value:

4 ml 8 ml 2 ml 6 ml

$12 $32 $40 $30 $50

Items:

Value: $3 $4 $20 $5 $50

1 ml

𝑊 = 10 ml
𝑣𝑎𝑙𝑢𝑒 =  $0
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Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2 3 4 5

Weight:

Value:

4 ml 8 ml 2 ml

$12 $32 $40 $30 $50

Items:

Value: $3 $4 $20 $5 $50

6 ml 1 ml

𝑊 = 10 ml
𝑣𝑎𝑙𝑢𝑒 =  $0



Fractional Knapsack
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Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2 3 4

Weight:

Value:

4 ml 8 ml 2 ml

$12 $32 $40 $30

Items:

Value: $3 $4 $20 $5

6 ml

𝑊 = 9 ml
𝑣𝑎𝑙𝑢𝑒 =  $50
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Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2 3 4

Weight:

Value:

4 ml 8 ml 2 ml

$12 $32 $40 $30

Items:

Value: $3 $4 $20 $5

6 ml

𝑊 = 9 ml
𝑣𝑎𝑙𝑢𝑒 =  $50



Fractional Knapsack
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Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2 4

Weight:

Value:

4 ml 8 ml

$12 $32 $30

Items:

Value: $3 $4 $5

6 ml

𝑊 = 7 ml
𝑣𝑎𝑙𝑢𝑒 =  $90



Fractional Knapsack
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Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2 4

Weight:

Value:

4 ml 8 ml

$12 $32 $30

Items:

Value: $3 $4 $5

6 ml

𝑊 = 7 ml
𝑣𝑎𝑙𝑢𝑒 =  $90



Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2

Weight:

Value:

4 ml 8 ml

$12 $32

Items:

Value: $3 $4
𝑊 =  1 ml
𝑣𝑎𝑙𝑢𝑒 =  $120



Fractional Knapsack
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Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2

Weight:

Value:

4 ml 8 ml

$12 $32

Items:

Value: $3 $4
𝑊 =  1 ml
𝑣𝑎𝑙𝑢𝑒 =  $120



Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2

Weight:

Value:

4 ml 7 ml

$12 $32

Items:

Value: $3 $4
𝑊 = 0 ml
𝑣𝑎𝑙𝑢𝑒 =  $124

Running time: ?



Fractional Knapsack
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Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2

Weight:

Value:

4 ml 7 ml

$12 $32

Items:

Value: $3 $4
𝑊 = 0 ml
𝑣𝑎𝑙𝑢𝑒 =  $124

Running time: If we sort the items with respect to value to weight 
ratio then Θ(𝑛 log 𝑛).



Fractional Knapsack
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Pseudocode:

Compute the ratios

Initialization

While knapsack not full

If whole item fits



Scheduling jobs/tasks 
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Problem 1: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖  and 
a finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform all the tasks using a minimum number of machines.
A machine can serve one task at a given time.



Scheduling jobs/tasks 
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Problem 1: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖  and 
a finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform all the tasks using a minimum number of machines.
A machine can serve one task at a given time.

Idea: Sort tasks in increasing order of their start time. Assign first 
task to machine 1 and set 𝐾 = 1.
When considering a new task, if all machines are busy, create a new 
machine, set 𝐾 = 𝐾 + 1 and assign the new task to the new 
machine otherwise assign the new task to an available machine.



Scheduling jobs/tasks 
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Problem 2: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖  and 
a finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform as many tasks as possible using one machine.
In other words, find the maximum number of non-overlapping 
intervals.



Scheduling jobs/tasks 

Design and Analysis of Algorithms

Problem 2: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖  and 
a finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform as many tasks as possible using one machine.
In other words, find the maximum number of non-overlapping 
intervals.

Idea: Sort tasks in increasing order of their finish time. Perform first 
task and remove all overlapping tasks with first task. Repeat the 
same process to the remaining tasks. 
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Maxflow Problem 
Problem: Given a network 𝐺, a source 𝒔 and a sink 𝒕, and capacities 
on the edges, compute the maximum possible flow value |𝑓∗|.
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Find the $ to get maxflow |𝑓∗|
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Augmenting paths
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We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓. 
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.  

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)
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We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓. 
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.  

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)
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Augmenting paths
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We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓. 
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.  

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)
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We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓. 
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.  

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)
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Augmenting paths
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Augmenting path: Path from 𝒔 to 𝒕 
with positive residual capacities.

𝑠 → 𝑣 → 𝑡 augmenting path
𝑠 → 𝑢 → 𝑤 → 𝑣 → 𝑡 augmenting path

We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓. 
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.  

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)
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Augmenting paths

We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓. 
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.  

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)
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Augmenting path: Path from 𝒔 to 𝒕 
with positive residual capacities.

𝑠 → 𝑣 → 𝑡 augmenting path
𝑠 → 𝑢 → 𝑤 → 𝑣 → 𝑡 augmenting path

𝑠 → 𝑢 → 𝑧 → 𝑡 is not
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Augmenting paths

We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓. 
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.  

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)
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𝑠 → 𝑣 → 𝑡: 2 units of flow can be pushed 
(min over residual capacities).

𝑠 → 𝑢 → 𝑤 → 𝑣 → 𝑡: 1 unit of flow
can be pushed

𝑠 → 𝑢 → 𝑧 → 𝑡: No flow can be pushed



The Ford-Fulkerson Algorithm 
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Main idea: Repeatedly search for an augmenting path 𝝅:

• If there is an augmenting path, augment flow with f() 
(minimum residual capacity among the edges of π) along the 
edges of π.



The Ford-Fulkerson Algorithm 
 

Design and Analysis of Algorithms

Main idea: Repeatedly search for an augmenting path 𝝅:

• If there is an augmenting path, augment flow with f() 
(minimum residual capacity among the edges of π) along the 
edges of π.

• If there is no augmenting path, terminate.

Remark: You can use DFS (or BFS) to search for an augmenting path.

Running time: ?



The Ford-Fulkerson Algorithm 
 

Design and Analysis of Algorithms

Main idea: Repeatedly search for an augmenting path 𝝅:

• If there is an augmenting path, augment flow with f() 
(minimum residual capacity among the edges of π) along the 
edges of π.

• If there is no augmenting path, terminate.

Remark: You can use DFS (or BFS) to search for an augmenting path.

Running time: 

Time to search for an augmenting path × number of updates. 



The Ford-Fulkerson Algorithm 
 

Design and Analysis of Algorithms

Main idea: Repeatedly search for an augmenting path 𝝅:

• If there is an augmenting path, augment flow with f() 
(minimum residual capacity among the edges of π) along the 
edges of π.

• If there is no augmenting path, terminate.

Remark: You can use DFS (or BFS) to search for an augmenting path.

Running time: 

Time to search for an augmenting path × number of updates. 
Θ |𝑉| + |𝐸| ⋅ |𝑓∗|

Updates increase flow by 1 unit onlyRunning time of DFS or BFS
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The Ford-Fulkerson Algorithm 
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The Ford-Fulkerson Algorithm 
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The Ford-Fulkerson Algorithm 
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The Ford-Fulkerson Algorithm 
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The Ford-Fulkerson Algorithm 
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The Ford-Fulkerson Algorithm 
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The Ford-Fulkerson Algorithm 
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The Ford-Fulkerson Algorithm 
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The Ford-Fulkerson Algorithm 
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No more augmenting paths!
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The Ford-Fulkerson Algorithm 

Pseudocode:

Initialization 𝑓 = 0

Δ: min residual capacity on aug. path

Update flow on aug. path

No more aug. paths



Application: Maximum Matching
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Definition: Given a bipartite graph, a matching is just a 
collection of edges that do not share a vertex.
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Definition: We are given an undirected, weighted graph 𝐺. A 
spanning tree of 𝐺 is a connected acyclic (tree) subgraph of 𝐺 that 
includes all the vertices of 𝐺 (spanning).
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Definition: We are given an undirected, weighted graph 𝐺. A 
spanning tree of 𝐺 is a connected acyclic (tree) subgraph of 𝐺 that 
includes all the vertices of 𝐺 (spanning).
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Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to 
larger. Include each edge in the current solution as long as it does not 
create a cycle, otherwise discard it. 
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Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠. 

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢] 

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.
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