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Recap part A



Divide and conquer method

• Steps of method: 

– Divide input into parts (smaller problems)

– Conquer (solve) each part recursively

– Combine results to obtain solution of original

T (n) = divide time

           + T (n1)+T (n2 )+ ...+T (nk )

           + combine time

Design and Analysis of Algorithms



Mergesort - A fast sorting recursive 
Algorithm

Design and Analysis of Algorithms

• Key idea: 
Divide input into two parts of equal size
Sort each part recursively
Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers 

9 3 4 220 1 3 10 5 8 7 2

Divide

Recursion

Merge
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Mergesort - A fast sorting recursive 
Algorithm
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• Key idea: 
Divide input into two parts of equal size
Sort each part recursively
Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers 

9 3 4 220 1 3 10 5 8 7 2

9 3 4 220 1 3 10 5 8 7 2 Divide

Recursion

Merge

1 3 4 9 220  2 3 5 7 8 10 



Mergesort - A fast sorting recursive 
Algorithm

Design and Analysis of Algorithms

• Key idea: 
Divide input into two parts of equal size
Sort each part recursively
Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers 

9 3 4 220 1 3 10 5 8 7 2

9 3 4 220 1 3 10 5 8 7 2 Divide

Recursion

Merge

1 3 4 9 220  2 3 5 7 8 10 

1 2 3 3 4 5 7 8 9 10 220  



Mergesort - A fast sorting recursive 
Algorithm
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• Tricky part: Merge 

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a 
sorted array 𝐶. 
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Mergesort - A fast sorting recursive 
Algorithm

Design and Analysis of Algorithms

• Tricky part: Merge 

Problem: Given two sorted arrays 𝐴, 𝐵, merge them to a 
sorted array 𝐶. 

1 3 4 9 220  2 3 5 7 8 10 

Running time: 𝚯(𝒏)



Mergesort
• Pseudocode:

Design and Analysis of Algorithms

• Running time: 

How to analyze?



Master theorem

• The Master Theorem can find the order of 𝑇(𝑛)

which is defined recursively.
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Master theorem

• The Master Theorem can find the order of 𝑇(𝑛)

which is defined recursively.

• Key idea: The answer depends on the comparison 

between 𝑓(𝑛) and 𝑛log𝑏 𝑎 . So, there are 3 cases!

Design and Analysis of Algorithms



Master theorem

Design and Analysis of Algorithms

Case 1: 𝑛log𝑏 𝑎 dominates 𝑓(𝑛)



Master theorem

Design and Analysis of Algorithms

Case 2: 𝑛log𝑏 𝑎 have same order as 𝑓(𝑛) (up to log𝑘 𝑛)



Master theorem

Design and Analysis of Algorithms

Case 3: 𝑛log𝑏 𝑎 is dominated by 𝑓(𝑛) (+ another condition)



  Case study: Maxima Set 

Design and Analysis of Algorithms

Problem: We are given 𝑛 points (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) on the plane. A 
point (𝑥𝑖 , 𝑦𝑖) is called a maximum point if there is no other point  
(𝑥𝑗 , 𝑦𝑗)  that 𝑥𝑖 ≤ 𝑥𝑗  and 𝑦𝑖 ≤ 𝑦𝑗.  

Example: 𝑥 captures pool size and 𝑦 restaurant quality. 10 hotels



  Case study: Maxima Set 

Design and Analysis of Algorithms

Problem: We are given 𝑛 points (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) on the plane. A 
point (𝑥𝑖 , 𝑦𝑖) is called a maximum point if there is no other point  
(𝑥𝑗 , 𝑦𝑗)  that 𝑥𝑖 ≤ 𝑥𝑗  and 𝑦𝑖 ≤ 𝑦𝑗.  

Example: 𝑥 captures pool size and 𝑦 restaurant quality. 10 hotels

Explanation:

𝐴, 𝐻, 𝐼, 𝐺, 𝐷 are maximum points.

𝐶, 𝐵, 𝐹, 𝐽, 𝐸 are not.



  Case study: Maxima Set 

Design and Analysis of Algorithms

Problem: We are given 𝑛 points (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) on the plane. A 
point (𝑥𝑖 , 𝑦𝑖) is called a maximum point if there is no other point  
(𝑥𝑗 , 𝑦𝑗)  that 𝑥𝑖 ≤ 𝑥𝑗  and 𝑦𝑖 ≤ 𝑦𝑗.  

Idea: Divide and conquer. Divide step and Combine step is 
challenging.



  Case study: Maxima Set 

Design and Analysis of Algorithms

Divide step: It should split the points in two parts of equal size. 

How?  



  Case study: Maxima Set 

Design and Analysis of Algorithms

Divide step: It should split the points in two parts of equal size. 

How?  Choose the middle (median) point with respect to 𝑥 
coordinates.



  Case study: Maxima Set 

Design and Analysis of Algorithms

Divide step: It should split the points in two parts of equal size. 

How?  Choose the middle (median) point with respect to 𝑥 
coordinates.

Combine step: Return 𝑀1 ∪ 𝑀2?



  Case study: Maxima Set 

Design and Analysis of Algorithms

Combine step: Return 𝑀1 ∪ 𝑀2? Wrong: blue points below of 𝑀1 are 
not part of the solution



  Case study: Maxima Set 

Design and Analysis of Algorithms

Combine step idea: 𝑀2 points should part of the solution. From 

𝑀1, the points that are maximum should not be dominated by 
smallest with respect to x coordinates in 𝑀2



  Case study: Maxima Set 

Design and Analysis of Algorithms

Pseudocode:

Running time??



Dynamic Programming

Technique for solving optimization problems.

Solve problem by solving sub-problems and combine:

This is called Optimal substructure property.
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Dynamic Programming

Technique for solving optimization problems.

Solve problem by solving sub-problems and combine:

This is called Optimal substructure property.

➢ Similar to divide-and-conquer: recursion (for   
solving sub-problems)

➢ Sub-problems overlap: solve them only once!

     

   DP = recursion + re-use (Memoization)

Design and Analysis of Algorithms
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Case study II: 0/1 Knapsack 
Problem: A set of 𝑛 items, with each item 𝑖 having positive weight 
𝑤𝑖 and positive benefit 𝑣𝑖.  You are asked to choose items with 
maximum total benefit so that the total weight is at most 𝑊

Weight:
Benefit:

4 lbs 2 lbs 2 lbs 6 lbs 2 lbs

$20 $3 $6 $25 $80

Items:

Solution:
• item 5 ($80, 2 lbs)
• item 3 ($6, 2lbs)
• item 1 ($20, 4lbs)

“knapsack” with 9 

lbs capacitycover-small

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
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Idea: Dynamic Programming (first attempt).

Case study II: 0/1 Knapsack 

Step 1:  Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘] be the maximum value I can 
get from items {1, … , 𝑘} without exceeding 𝑊.

Step 2: Define the goal/output given Step 1. 
It is 𝑫𝑷[𝒏].

Step 3: Define the base cases
It is 𝐷𝑃[0] = 0.

Step 4: Define the recurrence



Design and Analysis of Algorithms

Idea: Dynamic Programming (first attempt).

Item 𝑘 will be used or not. 

   𝐷𝑃[𝑘]  =  max(𝐷𝑃[𝑘 − 1], 𝐷𝑃[𝑘 − 1] + 𝑣𝑘)

But how do we know that DP[k-1] does not exceed 𝑊 − 𝑤𝑘 in 

weight so we can use 𝑘?

Case study II: 0/1 Knapsack 

Step 4: Define the recurrence



Design and Analysis of Algorithms

Idea: Dynamic Programming (correct attempt).

Case study II: 0/1 Knapsack 

Step 1:  Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘, 𝑗] be the maximum value I can 
get from items {1, … , 𝑘} without exceeding 𝑗.
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Idea: Dynamic Programming (correct attempt).

Case study II: 0/1 Knapsack 

Step 1:  Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘, 𝑗] be the maximum value I can 
get from items {1, … , 𝑘} without exceeding 𝑗.
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It is 𝑫𝑷[𝒏, 𝑾].



Design and Analysis of Algorithms

Idea: Dynamic Programming (correct attempt).

Case study II: 0/1 Knapsack 

Step 1:  Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘, 𝑗] be the maximum value I can 
get from items {1, … , 𝑘} without exceeding 𝑗.

Step 2: Define the goal/output given Step 1. 
It is 𝑫𝑷[𝒏, 𝑾].

Step 3: Define the base cases
It is 𝐷𝑃[0, 𝑗] = 0 for all 𝑗 and 𝐷𝑃[𝑖, 0] = 0 for all 𝑖.

Step 4: Define the recurrence



Design and Analysis of Algorithms

Idea: Dynamic Programming (correct attempt).

Item 𝑘 will be used or not. 

 𝐷𝑃 𝑘 [𝑗]  =  max(𝐃𝐏[𝐤 − 𝟏][𝐣 − 𝐰𝐤] + 𝐯𝐤, 𝐃𝐏[𝐤 − 𝟏][𝐣])

Case study II: 0/1 Knapsack 

Step 4: Define the recurrence



Design and Analysis of Algorithms

Idea: Dynamic Programming (correct attempt).

Item 𝑘 will be used or not. 

 𝐷𝑃 𝑘 [𝑗]  =  max(𝐃𝐏[𝐤 − 𝟏][𝐣 − 𝐰𝐤] + 𝐯𝐤, 𝐃𝐏[𝐤 − 𝟏][𝐣])

Question: How do we know that item 𝑘 does not have weight 

more than 𝑗?

Case study II: 0/1 Knapsack 

Step 4: Define the recurrence



Design and Analysis of Algorithms

Idea: Dynamic Programming (correct attempt).

Item 𝑘 will be used or not. 

𝐷𝑃[𝑘][𝑗] =  if 𝑤𝑘 ≤ 𝑗    max(𝐃𝐏[𝐤 − 𝟏][𝐣 − 𝐰𝐤] + 𝐯𝐤, 𝐃𝐏[𝐤 − 𝟏][𝐣])

       If 𝑤𝑘 > 𝑗    𝑫𝑷[𝒌 − 𝟏][𝒋]

Answer: Add an if statement in the recurrence.

Case study II: 0/1 Knapsack 

Step 4: Define the recurrence



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0

2 0

3 0

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 (𝑗 < 𝑤1)

2 0 0 (𝑗 < 𝑤2)

3 0 0 (𝑗 < 𝑤3)

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 max(0,𝑣1+0)

2 0 0

3 0 0

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1

2 0 0 max(1,𝑣2+0)

3 0 0

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1

2 0 0 1

3 0 0 1 (𝑗 < 𝑤3)

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 max(0,𝑣1+0)

2 0 0 1

3 0 0 1

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1

2 0 0 1 max(1,𝑣2+0)

3 0 0 1

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1

2 0 0 1 1

3 0 0 1 max(1,𝑣3+0)

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 max(0,𝑣1+0)

2 0 0 1 1

3 0 0 1 5

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 1

2 0 0 1 1 max(1,𝑣2+1)

3 0 0 1 5

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 1

2 0 0 1 1 2

3 0 0 1 5 max(2,0+𝑣3)

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 1

2 0 0 1 1 2

3 0 0 1 5 5

Case study II: 0/1 Knapsack 



Design and Analysis of Algorithms

Bottom up filliing DP

Case study II: 0/1 Knapsack 

Pseudocode:

Initialization

 Goal



Design and Analysis of Algorithms

Bottom up filliing DP

Case study II: 0/1 Knapsack 

Initialization

 Goal

Pseudocode:
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