

Lecture 19

Recap part A

CS 161 Design and Analysis of Algorithms
Ioannis Panageas

Divide and conquer method

- Steps of method:
 - Divide input into parts (smaller problems)
 - Conquer (solve) each part <u>recursively</u>
 - Combine results to obtain solution of original

$$T(n) =$$
divide time
+ $T(n_1) + T(n_2) + ... + T(n_k)$
+ combine time

Key idea:

Divide input into two parts of equal size

Sort each part recursively

Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers

9 3 4 220 1 3 10 5 8 7 2

Divide

Recursion

• Key idea:

Divide input into two parts of equal size

Sort each part recursively

Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers

9 3 4 220 1 3 10 5 8 7 2

9 3 4 220 1

3 10 5 8 7 2

Divide

Recursion

Key idea:

Divide input into two parts of equal size

Sort each part <u>recursively</u>

Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers

9 3 4 220 1 3 10 5 8 7 2

9 3 4 220 1

3 10 5 8 7 2

Divide

1349220

2357810

Recursion

Key idea:

Divide input into two parts of equal size

Sort each part recursively

Merge the two sorted parts to obtain the solution.

Example: Sort the following 11 numbers

9 3 4 220 1 3 10 5 8 7 2

9 3 4 220 1

3 10 5 8 7 2

Divide

1349220

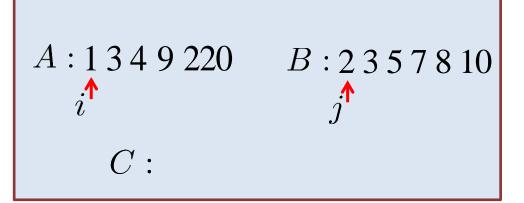
2357810

Recursion

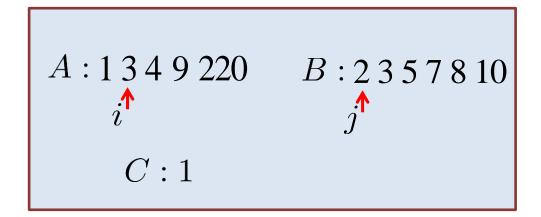
12334578910220

Tricky part: Merge

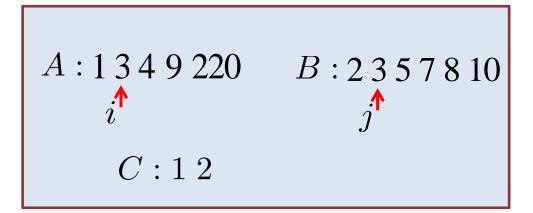
Tricky part: Merge



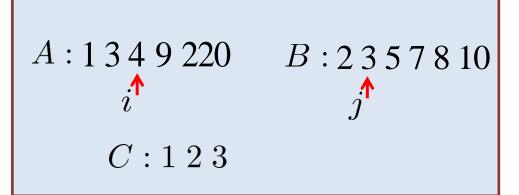
Tricky part: Merge



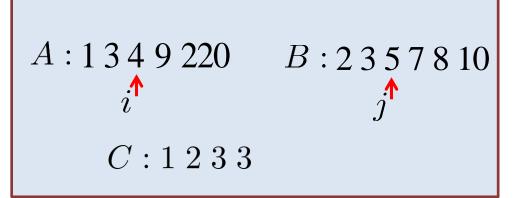
Tricky part: Merge



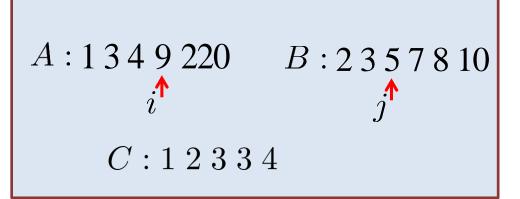
Tricky part: Merge



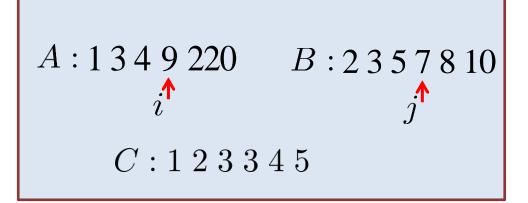
Tricky part: Merge



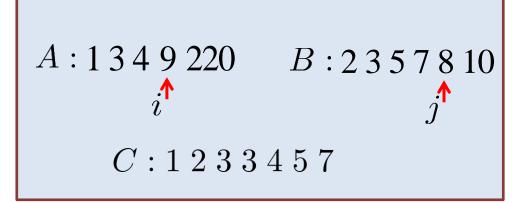
Tricky part: Merge



Tricky part: Merge



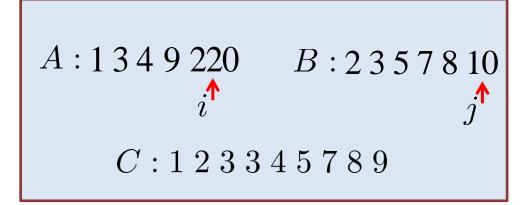
Tricky part: Merge



Tricky part: Merge

```
A: 1\ 3\ 4\ 9\ 220 B: 2\ 3\ 5\ 7\ 8\ 10 f^{lack} C: 1\ 2\ 3\ 3\ 4\ 5\ 7\ 8
```

Tricky part: Merge



Tricky part: Merge

```
A: 1349220 \quad B: 2357810
i^{\uparrow}
C: 12334578910
```

Tricky part: Merge

Problem: Given two sorted arrays A, B, merge them to a sorted array C.

Running time: $\Theta(n)$

A: 1349220 B: 2357810

 $C: 1\ 2\ 3\ 3\ 4\ 5\ 7\ 8\ 9\ 10\ 220$

Mergesort

Pseudocode:

```
Mergesort(A[1:n])
     If n == 1 then
        return A
     Mergesort (A[1:\frac{n}{2}])
     Mergesort (A[\frac{n}{2}+1:n])
     C \leftarrow \text{Merge}(A[1:\frac{n}{2}], A[\frac{n}{2}+1:n])
     return C
Running time:
         T(n) = T(n/2) + T(n/2) + \Theta(n) + \Theta(1)
                =2T(n/2)+\Theta(n)
                                                How to analyze?
```

$$T(n) = \begin{cases} T(1) = \Theta(1) \\ aT(n/b) + f(n) \end{cases}$$

• The Master Theorem can find the order of T(n) which is defined recursively.

$$T(n) = \begin{cases} T(1) = \Theta(1) \\ aT(n/b) + f(n) \end{cases}$$

• The Master Theorem can find the order of T(n) which is defined recursively.

• Key idea: The answer depends on the comparison between f(n) and $n^{\log_b a}$. So, there are 3 cases!

$$T(n) = \begin{cases} T(1) = \Theta(1) \\ aT(n/b) + f(n) \end{cases}$$

- 1. If f(n) is $O(n^{\log_b a \epsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. If f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. If f(n) is $\Omega(n^{\log_b a + \epsilon})$, then T(n) is $\Theta(f(n))$, need to check af(n/b) < f(n).

Case 1: $n^{\log_b a}$ dominates f(n)

$$T(n) = \begin{cases} T(1) = \Theta(1) \\ aT(n/b) + f(n) \end{cases}$$

- 1. If f(n) is $O(n^{\log_b a \epsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. If f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. If f(n) is $\Omega(n^{\log_b a + \epsilon})$, then T(n) is $\Theta(f(n))$, need to check af(n/b) < f(n).

Case 2: $n^{\log_b a}$ have same order as f(n) (up to $\log^k n$)

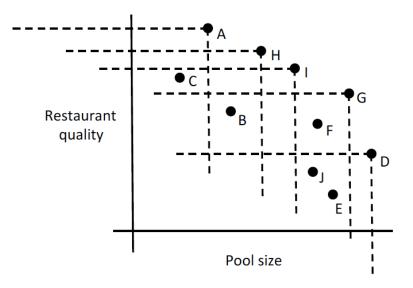
$$T(n) = \begin{cases} T(1) = \Theta(1) \\ aT(n/b) + f(n) \end{cases}$$

- 1. If f(n) is $O(n^{\log_b a \epsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. If f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. If f(n) is $\Omega(n^{\log_b a + \epsilon})$, then T(n) is $\Theta(f(n))$, need to check af(n/b) < f(n).

Case 3: $n^{\log_b a}$ is dominated by f(n) (+ another condition)

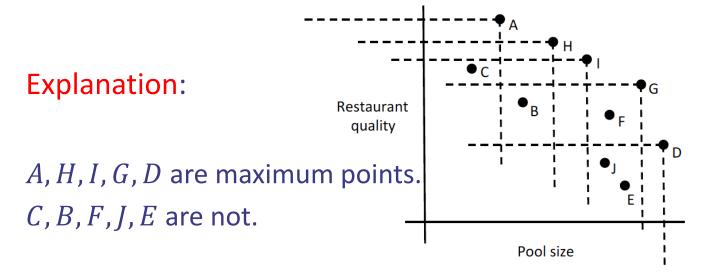
Problem: We are given n points $(x_1, y_1), ..., (x_n, y_n)$ on the plane. A point (x_i, y_i) is called a maximum point if there is no other point (x_j, y_j) that $x_i \le x_j$ and $y_i \le y_j$.

Example: x captures pool size and y restaurant quality. 10 hotels



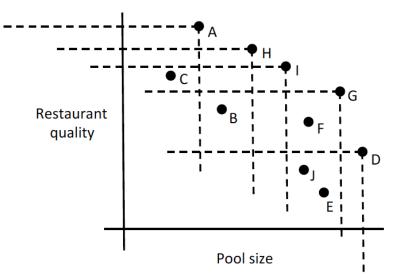
Problem: We are given n points $(x_1, y_1), ..., (x_n, y_n)$ on the plane. A point (x_i, y_i) is called a maximum point if there is no other point (x_j, y_j) that $x_i \le x_j$ and $y_i \le y_j$.

Example: x captures pool size and y restaurant quality. 10 hotels



Problem: We are given n points $(x_1, y_1), ..., (x_n, y_n)$ on the plane. A point (x_i, y_i) is called a maximum point if there is no other point (x_j, y_j) that $x_i \le x_j$ and $y_i \le y_j$.

Idea: Divide and conquer. Divide step and Combine step is challenging.



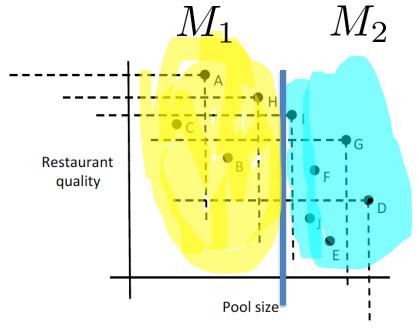
Divide step: It should split the points in two parts of equal size.

How?

Divide step: It should split the points in two parts of equal size.

How? Choose the middle (median) point with respect to x

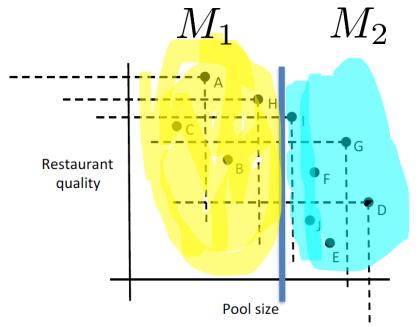
coordinates.



Divide step: It should split the points in two parts of equal size.

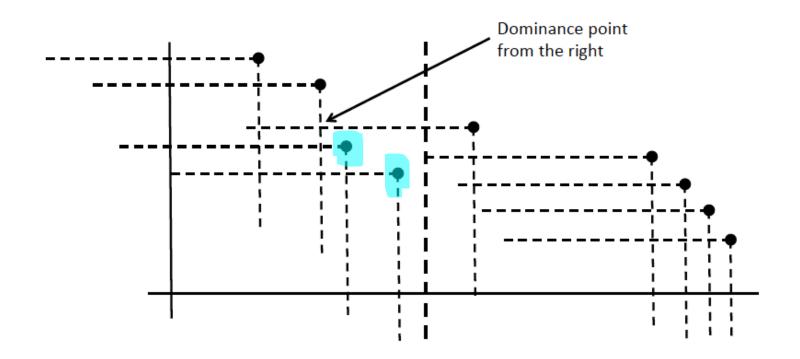
How? Choose the middle (median) point with respect to x

coordinates.

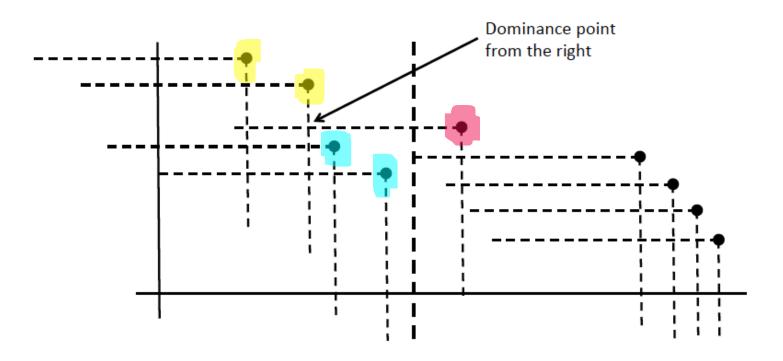


Combine step: Return $M_1 \cup M_2$?

Combine step: Return $M_1 \cup M_2$? Wrong: blue points below of M_1 are not part of the solution



Combine step idea: M_2 points should part of the solution. From M_1 , the points that are maximum should not be dominated by smallest with respect to x coordinates in M_2



Pseudocode:

```
MaximaSet(S,n):
           if n = 1 then
                return S
           Let p be the median point in S, by x -coordinates
           Let L be the set of points less than p in S by x -coordinates
           Let G be the set of points greater than or equal to p in S by x -coordinates
           M_1 \leftarrow \mathsf{MaximaSet}(L)
           M_2 \leftarrow \mathsf{MaximaSet}(G)
           Let q be the smallest point in M_2
           for each point, r, in M_1 do by x -coordinates
                                                              Running time??
                if x(r) \le x(q) and y(r) \le y(q) then
                    Remove r from M_1
           return M_1 \cup M_2
Running time is T(n) = 2T(n/2) + T_{\text{media}}(n) + T_{\text{min}}(n) + \Theta(n)
                                = 2T(n/2) + T_{\text{media}}(n) + \Theta(n)
```

Design and Analysis of Algorithms

Dynamic Programming

Technique for solving optimization problems.

Solve problem by solving **sub**-problems and combine: This is called **Optimal substructure** property.

Dynamic Programming

Technique for solving optimization problems.

Solve problem by solving **sub**-problems and combine: This is called **Optimal substructure** property.

- Similar to divide-and-conquer: recursion (for solving sub-problems)
- > Sub-problems overlap: solve them only once!

DP = recursion + re-use (Memoization)

Problem: A set of n items, with each item i having positive weight w_i and positive benefit v_i . You are asked to choose items with maximum total benefit so that the total weight is at most W

Example:

Items:

Weight: 4 lbs 2 lbs 2 lbs 6 lbs 2 lbs

Benefit: \$20 \$3 \$6 \$25 \$80

"knapsack" with 9 lbs capacity

Solution:

- item 5 (\$80, 2 lbs)
- item 3 (\$6, 2lbs)
- item 1 (\$20, 4lbs)

Idea: Dynamic Programming (first attempt).

Step 1: Define the problem and subproblems.

Answer: Let DP[k] be the maximum value I can get from items $\{1, ..., k\}$ without exceeding W.

Step 2: Define the goal/output given Step 1. It is DP[n].

Step 3: Define the base cases It is DP[0] = 0.

Step 4: Define the recurrence

Idea: Dynamic Programming (first attempt).

Step 4: Define the recurrence Item *k* will be used or not.

$$DP[k] = \max(DP[k-1], DP[k-1] + v_k)$$

But how do we know that DP[k-1] does not exceed $W - w_k$ in weight so we can use k?

Idea: Dynamic Programming (correct attempt).

Step 1: Define the problem and subproblems.

Answer: Let DP[k, j] be the maximum value I can get from items $\{1, ..., k\}$ without exceeding j.

Idea: Dynamic Programming (correct attempt).

Step 1: Define the problem and subproblems.

Answer: Let DP[k, j] be the maximum value I can get from items $\{1, ..., k\}$ without exceeding j.

Step 2: Define the goal/output given Step 1. It is DP[n, W].

Idea: Dynamic Programming (correct attempt).

Step 1: Define the problem and subproblems.

Answer: Let DP[k, j] be the maximum value I can get from items $\{1, ..., k\}$ without exceeding j.

Step 2: Define the goal/output given Step 1. It is DP[n, W].

Step 3: Define the base cases It is DP[0,j] = 0 for all j and DP[i,0] = 0 for all i.

Step 4: Define the recurrence

Idea: Dynamic Programming (correct attempt).

Step 4: Define the recurrence Item *k* will be **used** or **not**.

$$DP[k][j] = \max(\mathbf{DP[k-1][j-w_k]} + \mathbf{v_k}, \mathbf{DP[k-1][j]})$$

Idea: Dynamic Programming (correct attempt).

Step 4: Define the recurrence Item *k* will be **used** or **not**.

$$DP[k][j] = \max(\mathbf{DP[k-1][j-w_k] + v_k}, \mathbf{DP[k-1][j]})$$

Question: How do we know that item k does not have weight more than j?

Idea: Dynamic Programming (correct attempt).

Step 4: Define the recurrence

Item k will be **used** or **not**.

$$DP[k][j] = \text{if } w_k \le j \quad \max(\mathbf{DP[k-1][j-w_k]} + \mathbf{v_k}, \mathbf{DP[k-1][j]})$$

 $\text{If } w_k > j \quad \mathbf{DP[k-1][j]}$

Answer: Add an if statement in the recurrence.

3 items,
$$W = 4$$

Example:
$$3 \text{ items, } W = 4$$
 $w_1 = 2, v_1 = 1, w_2 = 2, v_2 = 1, w_3 = 3, v_3 = 5$

Initialization:

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0				
2	0				
3	0				

Example:
$$3 \text{ items, } W = 4$$
 $w_1 = 2, v_1 = 1, w_2 = 2, v_2 = 1, w_3 = 3, v_3 = 5$

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	$0 (j < w_1)$			
2	0	0 $(j < w_2)$			
3	0	$0 (j < w_3)$			

Example:
$$3 \text{ items, } W = 4$$
 $w_1 = 2, v_1 = 1, w_2 = 2, v_2 = 1, w_3 = 3, v_3 = 5$

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	0	$\max(0,v_1+0)$		
2	0	0			
3	0	0			

Example:
$$3 \text{ items, } W = 4$$
 $w_1 = 2, v_1 = 1, w_2 = 2, v_2 = 1, w_3 = 3, v_3 = 5$

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	0	1		
2	0	0	$\max(1, v_2 + 0)$		
3	0	0			

Example:
$$3 \text{ items, } W = 4$$
 $w_1 = 2, v_1 = 1, w_2 = 2, v_2 = 1, w_3 = 3, v_3 = 5$

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	0	1		
2	0	0	1		
3	0	0	$1 (j < w_3)$		

Example:
$$3 \text{ items, } W = 4$$
 $w_1 = 2, v_1 = 1, w_2 = 2, v_2 = 1, w_3 = 3, v_3 = 5$

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	0	1	$\max(0, v_1 + 0)$	
2	0	0	1		
3	0	0	1		

Example:
$$3 \text{ items, } W = 4$$
 $w_1 = 2, v_1 = 1, w_2 = 2, v_2 = 1, w_3 = 3, v_3 = 5$

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	0	1	1	
2	0	0	1	$\max(1, v_2 + 0)$	
3	0	0	1		

Example:
$$3 \text{ items, } W = 4$$
 $w_1 = 2, v_1 = 1, w_2 = 2, v_2 = 1, w_3 = 3, v_3 = 5$

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	0	1	1	
2	0	0	1	1	
3	0	0	1	$\max(1, v_3 + 0)$	

Example:
$$3 \text{ items, } W = 4$$
 $w_1 = 2, v_1 = 1, w_2 = 2, v_2 = 1, w_3 = 3, v_3 = 5$

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	0	1	1	max(0, v_1 +0)
2	0	0	1	1	
3	0	0	1	5	

Example:
$$3 \text{ items, } W = 4$$
 $w_1 = 2, v_1 = 1, w_2 = 2, v_2 = 1, w_3 = 3, v_3 = 5$

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	0	1	1	1
2	0	0	1	1	max(1, v_2 +1)
3	0	0	1	5	

Example:
$$3 \text{ items, } W = 4$$
 $w_1 = 2, v_1 = 1, w_2 = 2, v_2 = 1, w_3 = 3, v_3 = 5$

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	0	1	1	1
2	0	0	1	1	2
3	0	0	1	5	max(2,0+ v_3)

Example:
$$3 \text{ items, } W = 4$$
 $w_1 = 2, v_1 = 1, w_2 = 2, v_2 = 1, w_3 = 3, v_3 = 5$

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	0	1	1	1
2	0	0	1	1	2
3	0	0	1	5	5

Pseudocode:

```
Array DP[][]
For i = 0 to n do
  \mathrm{DP}[i,0] \leftarrow 0
                                                Initialization
For j = 1 to W do
  DP[0, j] \leftarrow 0
For i = 1 to n do
                                            Bottom up filliing DP
  For j = 1 to W do
    If j < w_i then
       \mathrm{DP}[i][j] \leftarrow \mathrm{DP}[i-1][j]
     else \mathrm{DP}[i][j] \leftarrow \max(\mathrm{DP}[i-1][j], \mathrm{DP}[i-1][j-w_i] + v_i
return DP[n][W]
                                                     Goal
```

Pseudocode:

```
Array DP[][]
For i = 0 to n do
  DP[i,0] \leftarrow 0
                                               Initialization
For j = 1 to W do
  DP[0, j] \leftarrow 0
For i = 1 to n do
                                          Bottom up filliing DP
  For j = 1 to W do
    If j < w_i then
       \mathrm{DP}[i][j] \leftarrow \mathrm{DP}[i-1][j]
    else \mathrm{DP}[i][j] \leftarrow \max(\mathrm{DP}[i-1][j], \mathrm{DP}[i-1][j-w_i] + v_i
return DP[n][W]
                                                    Goal
```

Running time: $\Theta(nW)$