

### Lecture 18

## P, NP and reductions

CS 161 Design and Analysis of Algorithms
Ioannis Panageas

# Different time complexities

Different algorithms can have different time complexities.

| Some common complexity classes | Notation (input size $=n$ ) |            |
|--------------------------------|-----------------------------|------------|
| Constant                       | 0(1)                        |            |
| Logarithmic                    | $O(\log n)$                 |            |
| Linear                         | O(n)                        | Polynomial |
| Log-linear                     | $O(n \log n)$               | time       |
| Quadratic                      | $O(n^2)$                    |            |
| Cubic                          | $O(n^3)$                    |            |
| Exponential                    | $O(e^n)$                    |            |
| Factorial                      | O(n!)                       |            |
| Doubly-exponential             | $O(e^{e^n})$                |            |

We say an algorithm runs in **polynomial time** if its time complexity is  $O(n^c)$  for some constant c.

### P and NP

Given a decision problem A (output yes/no), there could be many possible solutions, with possibly different time complexities.

The class P: We say can be solved in polynomial time or belongs in P if there exist at least one algorithm that solves the problem and runs in polynomial time.

### P and NP

Given a decision problem A (output yes/no), there could be many possible solutions, with possibly different time complexities.

The class P: We say can be solved in polynomial time or belongs in P if there exist at least one algorithm that solves the problem and runs in polynomial time.

The class NP: It stands for Non-deterministic polynomial time.

In high level, if the answer is "yes", it can be verified in polynomial time.

Example: "Given a number x, is it composite?"

Example: "Given a graph G(V, E), does it contain a cycle?".

# **Optimization Problems**

#### **Problem:** The traveling salesman problem

Given a list of cities and the distances between each pair of cities, what is a shortest possible route that visits each city exactly once and returns to the origin city?

- If there are n cities, then the "best" known solution uses dynamic programming and has time complexity  $O(n^2 2^n)$ .
- "best" solution ≈ brute-force search + dynamic programming



This problem is <u>suspected</u> to be not solvable in polynomial time.

We still do not know...

Other example: 0/1 Knapsack problem.

## Convert optimization to decision problems

#### **Problem:** The traveling salesman problem

Given a list of cities and the distances between each pair of cities, is there a route of length at most k that visits each city exactly once and returns to the origin city?

- If there are n cities, then the "best" known solution uses dynamic programming and has time complexity  $O(n^2 2^n)$ .
- "best" solution ≈ brute-force search + dynamic programming

This problem belongs to NP. Why?

# Unsolvable problems?

Question: Are there unsolvable computational problems?

There are examples of unsolvable problems.

The most famous one is called the halting problem.

#### The Halting Problem:

Given a computer program  $\Pi$  and some input I, determine whether  $\Pi$  will terminate when executed with input I.

- This is a decision (yes/no) problem. The answer to the halting problem is either yes or no.
  - Yes, if Π terminates.
  - No, if  $\Pi$  runs forever (e.g. enters an infinite loop).
- If I is not a valid input for  $\Pi$ , then  $\Pi$  executed with input I will terminate with an error message.

## How do we show a problem is not in P?

Question: How can we prove that a problem is not in P?

Short answer: For many problems, we don't know how!

Current Status: We do <u>not</u> know of any general method that works on all problems, that can prove that a problem is **not** in P.

- In fact, we do not even know of any general method that can prove that a problem is not solvable in linear time.
- We can characterize their computational difficulty using reductions.

### The idea of reductions

There are so many different computational problems that we may want to solve.

Do we have to solve every one of these problems from scratch?

#### **Key Idea of reductions**

Given a Problem A that we want to solve, and suppose there is another Problem B that we already know how to solve.

• If we can reformulate Problem A to "look like" Problem B, so that by solving Problem B, we are able to solve Problem A.

### The idea of reductions

There are so many different computational problems that we may want to solve.

Do we have to solve every one of these problems from scratch?

#### **Key Idea of reductions**

Given a Problem A that we want to solve, and suppose there is another Problem B that we already know how to solve.

• If we can reformulate Problem A to "look like" Problem B, so that by solving Problem B, we are able to solve Problem A.

#### Example: A = maximum matching and B = Maxflow.

- Then we say that we have **reduced** Problem A to Problem B.
- Problem B is at least as hard as Problem A.

# NP-complete problems

NP-complete: A problem A is NP-complete if

- Belongs in NP
- 2. Any other problem in NP reduces in poly-time to A. In other words, A is NP-hard.

What does this mean? A is the "hardest" problem in class NP.

# NP-complete problems

NP-complete: A problem A is NP-complete if

- 1. Belongs in NP
- Any other problem in NP reduces in poly-time to A. In other words, A is NP-hard.

What does this mean? A is the "hardest" problem in class NP. In 1971, the first NP-complete problem appears.

**Theorem:** The **3-SAT** problem is NP-complete. (Cook–Levin's Thm, 1971)

# 3-SAT is NP-complete

**Problem: 3-SAT** 

Given a Boolean expression E, such that E is a conjunction of clauses, where each clause is a disjunction of exactly 3 literals, is E satisfiable?

# 3-SAT is NP-complete

**Problem: 3-SAT** 

Given a Boolean expression E, such that E is a conjunction of clauses, where each clause is a disjunction of exactly 3 literals, is E satisfiable?

A **literal** is a Boolean expression consisting of just a single Boolean variable, or the negation of a Boolean variable.

• Example: " $\bar{x}_1$ " and " $x_2$ " are literals.

A **clause** is a Boolean expression of the form " $\ell_1 \vee \ell_2 \vee \cdots \vee \ell_k$ ", i.e. a **disjunction** of some literals  $\ell_1, \ell_2, \dots, \ell_k$ . In 3-SAT k=3.

• Example: " $C_1 \equiv x_1 \vee \bar{x}_2 \vee x_3$ " is a clause.

# 3-SAT is NP-complete

**Problem: 3-SAT** 

Given a Boolean expression E, such that E is a conjunction of clauses, where each clause is a disjunction of exactly 3 literals, is E satisfiable?

A **literal** is a Boolean expression consisting of just a single Boolean variable, or the negation of a Boolean variable. (4.4)

• Example: " $\bar{x}_1$ " and " $x_2$ " are literals.

A **clause** is a Boolean expression of the form " $\ell_1 \vee \ell_2 \vee \cdots \vee \ell_k$ ", i.e. a **disjunction** of some literals  $\ell_1, \ell_2, \ldots, \ell_k$ . In 3-SAT k=3.

• Example: " $C_1 \equiv x_1 \vee \bar{x}_2 \vee x_3$ " is a clause.

A Boolean expression is a conjunction of clauses.

Example:  $(x_1 \lor \bar{x}_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor \bar{x}_3) \land (x_1 \lor \bar{x}_2 \lor x_3)$ 

### Reductions in NP

#### **Example: INDEPENDENT SET (IS) Problem**

Given a simple undirected graph G(V, E) and k, is there an independent set in G of size  $\geq k$ ? Independent set is called a set  $I \subset V$  of vertices such that pairwise the vertices in I do not share

an edge.



### Reductions in NP

#### **Example: INDEPENDENT SET (IS) Problem**

Given a simple undirected graph G(V, E) and k, is there an independent set in G of size  $\geq k$ ? Independent set is called a set  $I \subset V$  of vertices such that pairwise the vertices in I do not share

an edge.



Claim: INDEPENDENT SET is **NP-complete**.

**Proof**: (1) INDEPENDENT SET **belongs** to **NP** (why?).

(2) Reduce 3-SAT to INDEPENDENT SET. Since 3-SAT is NP-hard, INDEPENDENT SET is NP-hard.

Design and Analysis of Algorithms

### Reductions in NP

#### **Example: INDEPENDENT SET (IS) Problem**

Given a simple undirected graph G(V, E) and k, is there an independent set in G of size  $\geq k$ ? Independent set is called a set  $I \subset V$  of vertices such that pairwise the vertices in I do not share

an edge.

 $v_1$   $v_2$   $v_3$   $v_4$   $v_5$   $v_8$ 

Graph G.

Vertices  $v_3, v_5, v_7, v_8$  form an independent set.

(1), (2) imply IND. SET is NP-complete!

Claim: INDEPENDENT SET is **NP-complete**.

**Proof**: (1) INDEPENDENT SET **belongs** to **NP** (why?).

(2) Reduce 3-SAT to INDEPENDENT SET. Since 3-SAT is NP-hard, INDEPENDENT SET is NP-hard.

**3-SAT** instance: Can you assign True, False to the variables of the formula below so that the expression is True?

$$E = (x_1 \lor \bar{x}_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor \bar{x}_3) \land (x_1 \lor \bar{x}_2 \lor x_3)$$

Let's reduce the above to an IS instance. We need a graph!

**3-SAT** instance: Can you assign True, False to the variables of the formula below so that the expression is True?

$$C_1 \qquad C_2 \qquad C_3 \qquad C_4$$

$$E = (x_1 \lor \bar{x}_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor \bar{x}_3) \land (x_1 \lor \bar{x}_2 \lor x_3)$$



**3-SAT** instance: Can you assign True, False to the variables of the formula below so that the expression is True?



**3-SAT** instance: Can you assign True, False to the variables of the formula below so that the expression is True?



Claim: Expression E with k clauses is satisfiable if and only if the induced graph G has an IS of size k.

Therefore, given a **graph** *G* **and a** *k*, if we can identify in **poly-time** if there exists an **Independent Set of size at least k**, then we can solve **in poly-time 3-SAT**.

Claim: Expression E with k clauses is satisfiable if and only if the induced graph G has an IS of size k.

Therefore, given a **graph** *G* **and a** *k*, if we can identify in **poly-time** if there exists an **Independent Set of size at least k**, then we can solve **in poly-time 3-SAT**.

3-SAT ≤ $_p$  INDEPENDENT SET ⇒ INDEPENDENT SET is NP-complete!

# Vertex Cover (VC)

#### **Problem: Vertex Cover (VC):**

Given a simple undirected graph G(V, E) and k, is there an vertex cover in G of size  $\geq k$ ? Vertex cover is called a set  $I \subset V$  of vertices such that all edges are "covered"?



e.g., in this graph, 4 of the 8 vertices are enough to cover all edges.

# Vertex Cover (VC)

#### **Problem: Vertex Cover (VC):**

Given a simple undirected graph G(V, E) and k, is there an vertex cover in G of size  $\geq k$ ? Vertex cover is called a set  $I \subset V$  of vertices such that all edges are "covered"?



e.g., in this graph, 4 of the 8 vertices are enough to cover all edges.

Question: VC is NP-Complete? Answer: YES

- First, it belongs in NP (why?)
- Reduce 3-SAT to VC (or there is something simpler?)

• Given a graph G(V, E), with |V| = n, we want to know if there exists an Independent Set of size k.



• Given a graph G(V, E), with |V| = n, we want to know if there exists an Independent Set of size k.

Lemma: Given G(V, E), the set of vertices S is an independent set if and only if V − S (set of remaining vertices) is a vertex cover.

• Given a graph G(V, E), with |V| = n, we want to know if there exists an Independent Set of size k.

• Lemma: Given G(V, E), the set of vertices S is an independent set if and only if V - S is a vertex cover.

Reduction: Does G have a VC of size n - k?

Yes: Then it has an IS of size k.

No: Then it does not.



- Given a graph G(V, E), with |V| = n, suppose there exists an Independent Set of size k.
- Lemma: Given G(V, E), the set of vertices S is an independent set if and only if V-S is a vertex cover.

Proof: Let S be an independent set, and e = (u, v) be some edge. Only one of u, v can be in S. Hence, at least one of u, v is in V - S. So, V - S is a vertex cover. The other direction is similar.