
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 18

P, NP and reductions

Different time complexities
Different algorithms can have different time complexities.

We say an algorithm runs in polynomial time if its time
complexity is 𝑶(𝒏𝒄) for some constant 𝑐.

Some common complexity classes Notation (input size = 𝑛)

Constant 𝑂(1)

Logarithmic 𝑂(log 𝑛)

Linear 𝑂(𝑛)

Log-linear 𝑂(𝑛 log 𝑛)

Quadratic 𝑂(𝑛2)

Cubic 𝑂(𝑛3)

Exponential 𝑂(𝑒𝑛)

Factorial 𝑂(𝑛!)

Doubly-exponential 𝑂(𝑒𝑒𝑛
)

Polynomial
time

Design and Analysis of Algorithms

P and NP

Given a decision problem 𝑨 (output yes/no), there could be many
possible solutions, with possibly different time complexities.

The class P: We say can be solved in polynomial time or

belongs in 𝑷 if there exist at least one algorithm that solves the
problem and runs in polynomial time.

Design and Analysis of Algorithms

Given a decision problem 𝑨 (output yes/no), there could be many
possible solutions, with possibly different time complexities.

The class P: We say can be solved in polynomial time or

belongs in 𝑷 if there exist at least one algorithm that solves the
problem and runs in polynomial time.

The class NP: It stands for Non-deterministic polynomial time.

In high level, if the answer is “yes”, it can be verified in polynomial time.

Example: “Given a number 𝑥, is it composite?”

Example: “Given a graph 𝐺(𝑉, 𝐸), does it contain a cycle?”.

Design and Analysis of Algorithms

P and NP

Optimization Problems
Problem: The traveling salesman problem

Given a list of cities and the distances between each pair of cities,
what is a shortest possible route that visits each city exactly once
and returns to the origin city?

This problem is suspected to be not solvable in polynomial time.

• We still do not know…

Other example: 0/1 Knapsack problem.

• If there are n cities, then the “best” known
solution uses dynamic programming and
has time complexity 𝑂(𝑛22𝑛).

• “best” solution ≈ brute-force search +
 dynamic programming

Design and Analysis of Algorithms

Convert optimization to decision problems
Problem: The traveling salesman problem

Given a list of cities and the distances between each pair of cities,
is there a route of length at most 𝑘 that visits each city exactly
once and returns to the origin city?

This problem belongs to NP. Why?

• If there are n cities, then the “best” known
solution uses dynamic programming and
has time complexity 𝑂(𝑛22𝑛).

• “best” solution ≈ brute-force search +
 dynamic programming

Design and Analysis of Algorithms

Unsolvable problems?
Question: Are there unsolvable computational problems?

There are examples of unsolvable problems.

• The most famous one is called the halting problem.

The Halting Problem:

Given a computer program 𝚷 and some input 𝐼, determine whether
𝚷 will terminate when executed with input 𝐼.

• This is a decision (yes/no) problem. The answer to the halting
problem is either yes or no.

▪ Yes, if 𝚷 terminates.

▪ No, if 𝚷 runs forever (e.g. enters an infinite loop).

• If 𝐼 is not a valid input for 𝚷, then 𝚷 executed with input 𝐼 will
terminate with an error message.

Design and Analysis of Algorithms

How do we show a problem is not in P?
Question: How can we prove that a problem is not in P?

• Short answer: For many problems, we don’t know how!

Current Status: We do not know of any general method that
works on all problems, that can prove that a problem is not in 𝑷.

• In fact, we do not even know of any general method that can
prove that a problem is not solvable in linear time.

• We can characterize their computational difficulty using
reductions.

Design and Analysis of Algorithms

The idea of reductions

There are so many different computational problems that we
may want to solve.

• Do we have to solve every one of these problems from scratch?

Key Idea of reductions

Given a Problem 𝑨 that we want to solve, and suppose there is another
Problem 𝑩 that we already know how to solve.

• If we can reformulate Problem 𝑨 to “look like” Problem 𝑩, so that by
solving Problem 𝑩, we are able to solve Problem 𝑨.

Design and Analysis of Algorithms

The idea of reductions

There are so many different computational problems that we
may want to solve.

• Do we have to solve every one of these problems from scratch?

Key Idea of reductions

Given a Problem 𝑨 that we want to solve, and suppose there is another
Problem 𝑩 that we already know how to solve.

• If we can reformulate Problem 𝑨 to “look like” Problem 𝑩, so that by
solving Problem 𝑩, we are able to solve Problem 𝑨.

Example: 𝑨 = maximum matching and 𝑩 = Maxflow.

• Then we say that we have reduced Problem 𝑨 to Problem 𝑩.

• Problem 𝑩 is at least as hard as Problem 𝑨.
Design and Analysis of Algorithms

NP-complete problems

Design and Analysis of Algorithms

NP-complete: A problem 𝑨 is NP-complete if

1. Belongs in NP
2. Any other problem in NP reduces in poly-time to 𝑨. In other

words, 𝑨 is NP-hard.

What does this mean? 𝑨 is the “hardest” problem in class NP.

NP-complete problems

Design and Analysis of Algorithms

NP-complete: A problem 𝑨 is NP-complete if

1. Belongs in NP
2. Any other problem in NP reduces in poly-time to 𝑨. In other

words, 𝑨 is NP-hard.

What does this mean? 𝑨 is the “hardest” problem in class NP.

In 1971, the first NP-complete problem appears.

Theorem: The 3-SAT problem is NP-complete.
(Cook–Levin’s Thm, 1971)

Problem: 3-SAT

Given a Boolean expression 𝐸, such that 𝐸 is a conjunction
of clauses, where each clause is a disjunction of exactly 3
literals, is 𝐸 satisfiable?

3-SAT is NP-complete

Design and Analysis of Algorithms

Problem: 3-SAT

Given a Boolean expression 𝐸, such that 𝐸 is a conjunction
of clauses, where each clause is a disjunction of exactly 3
literals, is 𝐸 satisfiable?

A literal is a Boolean expression consisting of just a single Boolean
variable, or the negation of a Boolean variable.
• Example: “ ǉ𝑥1” and “𝑥2” are literals.

A clause is a Boolean expression of the form “ℓ1 ∨ ℓ2 ∨ ⋯ ∨ ℓ𝑘”, i.e. a
disjunction of some literals ℓ1, ℓ2, … , ℓ𝑘. In 3-SAT 𝑘 = 3.

• Example: “C1 ≡ 𝑥1 ∨ ǉ𝑥2 ∨ 𝑥3” is a clause.

3-SAT is NP-complete

Design and Analysis of Algorithms

Problem: 3-SAT

Given a Boolean expression 𝐸, such that 𝐸 is a conjunction
of clauses, where each clause is a disjunction of exactly 3
literals, is 𝐸 satisfiable?

A literal is a Boolean expression consisting of just a single Boolean
variable, or the negation of a Boolean variable.
• Example: “ ǉ𝑥1” and “𝑥2” are literals.

A clause is a Boolean expression of the form “ℓ1 ∨ ℓ2 ∨ ⋯ ∨ ℓ𝑘”, i.e. a
disjunction of some literals ℓ1, ℓ2, … , ℓ𝑘. In 3-SAT 𝑘 = 3.

• Example: “C1 ≡ 𝑥1 ∨ ǉ𝑥2 ∨ 𝑥3” is a clause.

A Boolean expression is a conjunction of clauses.

Example:

3-SAT is NP-complete

(𝒙𝟏 ∨ ǉ𝒙𝟐 ∨ ǉ𝒙𝟑) ∧ (ǉ𝒙𝟏 ∨ 𝒙𝟐 ∨ 𝒙𝟑) ∧ (ǉ𝒙𝟏 ∨ 𝒙𝟐 ∨ ǉ𝒙𝟑) ∧ (𝒙𝟏 ∨ ǉ𝒙𝟐 ∨ 𝒙𝟑)

Design and Analysis of Algorithms

Reductions in NP

Example: INDEPENDENT SET (IS) Problem

Given a simple undirected graph 𝐺(𝑉, 𝐸) and 𝑘, is there an
independent set in 𝐺 of size ≥ 𝑘? Independent set is called a set

𝐼 ⊂ 𝑉 of vertices such that pairwise the vertices in 𝐼 do not share

an edge.
𝑣2 𝑣3

𝑣4

𝑣5𝑣6

𝑣1

𝑣7

𝑣8

Design and Analysis of Algorithms

Reductions in NP

Example: INDEPENDENT SET (IS) Problem

Given a simple undirected graph 𝐺(𝑉, 𝐸) and 𝑘, is there an
independent set in 𝐺 of size ≥ 𝑘? Independent set is called a set

𝐼 ⊂ 𝑉 of vertices such that pairwise the vertices in 𝐼 do not share

an edge.
𝑣2 𝑣3

𝑣4

𝑣5𝑣6

𝑣1

𝑣7

𝑣8

Claim: INDEPENDENT SET is NP-complete.

Proof: (1) INDEPENDENT SET belongs to NP (why?).

(2) Reduce 3-SAT to INDEPENDENT SET. Since 3-SAT is NP-

hard, INDEPENDENT SET is NP-hard.
Design and Analysis of Algorithms

Reductions in NP

Example: INDEPENDENT SET (IS) Problem

Given a simple undirected graph 𝐺(𝑉, 𝐸) and 𝑘, is there an
independent set in 𝐺 of size ≥ 𝑘? Independent set is called a set

𝐼 ⊂ 𝑉 of vertices such that pairwise the vertices in 𝐼 do not share

an edge.
𝑣2 𝑣3

𝑣4

𝑣5𝑣6

𝑣1

𝑣7

𝑣8

Claim: INDEPENDENT SET is NP-complete.

Proof: (1) INDEPENDENT SET belongs to NP (why?).

(2) Reduce 3-SAT to INDEPENDENT SET. Since 3-SAT is NP-

hard, INDEPENDENT SET is NP-hard.
Design and Analysis of Algorithms

3-SAT reduction to IS
3-SAT instance: Can you assign True, False to the variables of the formula

below so that the expression is True?

 Let’s reduce the above to an IS instance. We need a graph!

𝐸 = (𝑥1 ∨ ǉ𝑥2 ∨ ǉ𝑥3) ∧ (ǉ𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (ǉ𝑥1 ∨ 𝑥2 ∨ ǉ𝑥3) ∧ (𝑥1 ∨ ǉ𝑥2 ∨ 𝑥3)

Design and Analysis of Algorithms

3-SAT reduction to IS
3-SAT instance: Can you assign True, False to the variables of the formula

below so that the expression is True?

𝐸 = (𝑥1 ∨ ǉ𝑥2 ∨ ǉ𝑥3) ∧ (ǉ𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (ǉ𝑥1 ∨ 𝑥2 ∨ ǉ𝑥3) ∧ (𝑥1 ∨ ǉ𝑥2 ∨ 𝑥3)

1x

2x

3x

1x 2x
3x

1x

2x

3x
1x 2x

3x

Design and Analysis of Algorithms

3-SAT reduction to IS
3-SAT instance: Can you assign True, False to the variables of the formula

below so that the expression is True?

𝐸 = (𝑥1 ∨ ǉ𝑥2 ∨ ǉ𝑥3) ∧ (ǉ𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (ǉ𝑥1 ∨ 𝑥2 ∨ ǉ𝑥3) ∧ (𝑥1 ∨ ǉ𝑥2 ∨ 𝑥3)

1x 2x
3x

1x 2x
3x

1x

2x

3x

1x

2x

3x

Design and Analysis of Algorithms

3-SAT reduction to IS
3-SAT instance: Can you assign True, False to the variables of the formula

below so that the expression is True?

𝐸 = (𝑥1 ∨ ǉ𝑥2 ∨ ǉ𝑥3) ∧ (ǉ𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (ǉ𝑥1 ∨ 𝑥2 ∨ ǉ𝑥3) ∧ (𝑥1 ∨ ǉ𝑥2 ∨ 𝑥3)

1x 2x
3x

1x 2x
3x

1x

2x

3x

1x

2x

3x

Design and Analysis of Algorithms

IS of size 4

3-SAT reduction to IS
Claim: Expression 𝐸 with 𝑘 clauses is satisfiable if and only if the induced

graph G has an IS of size 𝑘.

Therefore, given a graph 𝑮 and a 𝒌, if we can identify in poly-time if there

exists an Independent Set of size at least k, then we can solve in poly-time

3-SAT.

Design and Analysis of Algorithms

3-SAT reduction to IS
Claim: Expression 𝐸 with 𝑘 clauses is satisfiable if and only if the induced

graph G has an IS of size 𝑘.

Therefore, given a graph 𝑮 and a 𝒌, if we can identify in poly-time if there

exists an Independent Set of size at least k, then we can solve in poly-time

3-SAT.

Design and Analysis of Algorithms

Vertex Cover (VC)
Problem: Vertex Cover (VC):

Given a simple undirected graph 𝐺(𝑉, 𝐸) and 𝑘, is there an
vertex cover in 𝐺 of size ≥ 𝑘? Vertex cover is called a set 𝐼 ⊂ 𝑉

of vertices such that all edges are “covered”?

e.g., in this graph, 4 of the 8
vertices are enough to cover
all edges.

Design and Analysis of Algorithms

Vertex Cover (VC)
Problem: Vertex Cover (VC):

Given a simple undirected graph 𝐺(𝑉, 𝐸) and 𝑘, is there an
vertex cover in 𝐺 of size ≥ 𝑘? Vertex cover is called a set 𝐼 ⊂ 𝑉

of vertices such that all edges are “covered”?

Question: VC is NP-Complete? Answer: YES

• First, it belongs in NP (why?)

• Reduce 3-SAT to VC (or there is something simpler?)

e.g., in this graph, 4 of the 8
vertices are enough to cover
all edges.

Design and Analysis of Algorithms

Reduction of IS to Vertex Cover (VC)

• Given a graph 𝐺(𝑉, 𝐸), with V = n, we want to
know if there exists an Independent Set of size 𝑘.

Design and Analysis of Algorithms

Reduction of IS to Vertex Cover (VC)

• Given a graph 𝐺(𝑉, 𝐸), with V = n, we want to
know if there exists an Independent Set of size 𝑘.

• Lemma: Given 𝐺(𝑉, 𝐸), the set of vertices 𝑆 is an
independent set if and only if 𝑉 − 𝑆
(set of remaining vertices) is a vertex cover.

Design and Analysis of Algorithms

Reduction of IS to Vertex Cover (VC)

• Given a graph 𝐺(𝑉, 𝐸), with V = n, we want to know
if there exists an Independent Set of size 𝑘.

• Lemma: Given 𝐺(𝑉, 𝐸), the set of vertices 𝑆 is an
independent set if and only if 𝑉 − 𝑆 is a vertex cover.

Reduction: Does 𝐺 have a VC of size 𝑛 − 𝑘?

Yes: Then it has an IS of size k.

No: Then it does not.

Design and Analysis of Algorithms

Reduction of IS to Vertex Cover (VC)

• Given a graph 𝐺(𝑉, 𝐸), with V = n, suppose
there exists an Independent Set of size 𝑘.

• Lemma: Given 𝐺(𝑉, 𝐸), the set of vertices 𝑆 is an
independent set if and only if 𝑉 − 𝑆 is a vertex
cover.

Proof: Let 𝑆 be an independent set, and 𝑒 = (𝑢, 𝑣)
be some edge. Only one of 𝑢, 𝑣 can be in 𝑆. Hence,
at least one of 𝑢, 𝑣 is in 𝑉 − 𝑆. So, 𝑉 − 𝑆 is a
vertex cover. The other direction is similar.

Design and Analysis of Algorithms

	Slide 1: Lecture 18 P, NP and reductions
	Slide 2: Different time complexities
	Slide 3: P and NP
	Slide 4: P and NP
	Slide 5: Optimization Problems
	Slide 6: Convert optimization to decision problems
	Slide 7: Unsolvable problems?
	Slide 8: How do we show a problem is not in P?
	Slide 9: The idea of reductions
	Slide 10: The idea of reductions
	Slide 11: NP-complete problems
	Slide 12: NP-complete problems
	Slide 13: 3-SAT is NP-complete
	Slide 14: 3-SAT is NP-complete
	Slide 15: 3-SAT is NP-complete
	Slide 16
	Slide 17
	Slide 18
	Slide 19: 3-SAT reduction to IS
	Slide 20: 3-SAT reduction to IS
	Slide 21: 3-SAT reduction to IS
	Slide 22: 3-SAT reduction to IS
	Slide 23: 3-SAT reduction to IS
	Slide 24: 3-SAT reduction to IS
	Slide 25: Vertex Cover (VC)
	Slide 26: Vertex Cover (VC)
	Slide 27: Reduction of IS to Vertex Cover (VC)
	Slide 28: Reduction of IS to Vertex Cover (VC)
	Slide 29: Reduction of IS to Vertex Cover (VC)
	Slide 30: Reduction of IS to Vertex Cover (VC)

