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P, NP and reductions



Different time complexities
Different algorithms can have different time complexities.

We say an algorithm runs in polynomial time if its time 
complexity is 𝑶(𝒏𝒄) for some constant 𝑐.

Some common complexity classes Notation (input size = 𝑛)

Constant 𝑂(1)

Logarithmic 𝑂(log 𝑛)

Linear 𝑂(𝑛)

Log-linear 𝑂(𝑛 log 𝑛)

Quadratic 𝑂(𝑛2)

Cubic 𝑂(𝑛3)

Exponential 𝑂(𝑒𝑛)

Factorial 𝑂(𝑛!)

Doubly-exponential 𝑂(𝑒𝑒𝑛
)

Polynomial 
time
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P and NP

Given a decision problem 𝑨 (output yes/no), there could be many 
possible solutions, with possibly different time complexities.

The class P: We say can be solved in polynomial time or 

belongs in 𝑷 if there exist at least one algorithm that solves the 
problem and runs in polynomial time.
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Given a decision problem 𝑨 (output yes/no), there could be many 
possible solutions, with possibly different time complexities.

The class P: We say can be solved in polynomial time or 

belongs in 𝑷 if there exist at least one algorithm that solves the 
problem and runs in polynomial time.

The class NP: It stands for Non-deterministic polynomial time.

In high level, if the answer is “yes”, it can be verified in polynomial time.

Example: “Given a number 𝑥, is it composite?”

Example: “Given a graph 𝐺(𝑉, 𝐸), does it contain a cycle?”.
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Optimization Problems
Problem: The traveling salesman problem

Given a list of cities and the distances between each pair of cities, 
what is a shortest possible route that visits each city exactly once 
and returns to the origin city?

This problem is suspected to be not solvable in polynomial time.

• We still do not know…

Other example: 0/1 Knapsack problem.

• If there are n cities, then the “best” known 
solution uses dynamic programming and 
has time complexity 𝑂(𝑛22𝑛).

• “best” solution ≈ brute-force search + 
      dynamic programming
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Convert optimization to decision problems 
Problem: The traveling salesman problem

Given a list of cities and the distances between each pair of cities, 
is there a route of length at most 𝑘 that visits each city exactly 
once and returns to the origin city?

This problem belongs to NP. Why?

• If there are n cities, then the “best” known 
solution uses dynamic programming and 
has time complexity 𝑂(𝑛22𝑛).

• “best” solution ≈ brute-force search + 
      dynamic programming
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Unsolvable problems?
Question: Are there unsolvable computational problems?

There are examples of unsolvable problems.

• The most famous one is called the halting problem.

The Halting Problem:

Given a computer program 𝚷 and some input 𝐼, determine whether 
𝚷 will terminate when executed with input 𝐼.

• This is a decision (yes/no) problem. The answer to the halting 
problem is either yes or no.

▪ Yes, if 𝚷 terminates.

▪ No, if 𝚷 runs forever (e.g. enters an infinite loop).

• If 𝐼 is not a valid input for 𝚷, then 𝚷 executed with input 𝐼 will 
terminate with an error message.
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How do we show a problem is not in P?
Question: How can we prove that a problem is not in P?

• Short answer: For many problems, we don’t know how!

Current Status: We do not know of any general method that 
works on all problems, that can prove that a problem is not in 𝑷.

• In fact, we do not even know of any general method that can 
prove that a problem is not solvable in linear time.

• We can characterize their computational difficulty using 
reductions.
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The idea of reductions

There are so many different computational problems that we 
may want to solve.

• Do we have to solve every one of these problems from scratch?

Key Idea of reductions

Given a Problem 𝑨 that we want to solve, and suppose there is another 
Problem 𝑩 that we already know how to solve.

• If we can reformulate Problem 𝑨 to “look like” Problem 𝑩, so that by 
solving Problem 𝑩, we are able to solve Problem 𝑨.
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The idea of reductions

There are so many different computational problems that we 
may want to solve.

• Do we have to solve every one of these problems from scratch?

Key Idea of reductions

Given a Problem 𝑨 that we want to solve, and suppose there is another 
Problem 𝑩 that we already know how to solve.

• If we can reformulate Problem 𝑨 to “look like” Problem 𝑩, so that by 
solving Problem 𝑩, we are able to solve Problem 𝑨.

Example: 𝑨 = maximum matching and 𝑩 = Maxflow.

• Then we say that we have reduced Problem 𝑨 to Problem 𝑩.

• Problem 𝑩 is at least as hard as Problem 𝑨.
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NP-complete problems 
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NP-complete: A problem 𝑨 is NP-complete if 

1. Belongs in NP
2. Any other problem in NP reduces in poly-time to 𝑨. In other 

words, 𝑨 is NP-hard.

What does this mean? 𝑨 is the “hardest” problem in class NP.



NP-complete problems 
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NP-complete: A problem 𝑨 is NP-complete if 

1. Belongs in NP
2. Any other problem in NP reduces in poly-time to 𝑨. In other 

words, 𝑨 is NP-hard.

What does this mean? 𝑨 is the “hardest” problem in class NP.

In 1971, the first NP-complete problem appears.

Theorem: The 3-SAT problem is NP-complete. 
(Cook–Levin’s Thm, 1971)



Problem: 3-SAT

Given a Boolean expression 𝐸, such that 𝐸 is a conjunction 
of clauses, where each clause is a disjunction of exactly 3 
literals, is 𝐸 satisfiable?

3-SAT is NP-complete
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Problem: 3-SAT

Given a Boolean expression 𝐸, such that 𝐸 is a conjunction 
of clauses, where each clause is a disjunction of exactly 3 
literals, is 𝐸 satisfiable?

A literal is a Boolean expression consisting of just a single Boolean 
variable, or the negation of a Boolean variable.
• Example: “ ǉ𝑥1” and “𝑥2” are literals.

A clause is a Boolean expression of the form “ℓ1 ∨ ℓ2 ∨ ⋯ ∨ ℓ𝑘”, i.e. a 
disjunction of some literals ℓ1, ℓ2, … , ℓ𝑘. In 3-SAT 𝑘 = 3.

• Example: “C1 ≡ 𝑥1 ∨ ǉ𝑥2 ∨ 𝑥3” is a clause. 

3-SAT is NP-complete
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Problem: 3-SAT

Given a Boolean expression 𝐸, such that 𝐸 is a conjunction 
of clauses, where each clause is a disjunction of exactly 3 
literals, is 𝐸 satisfiable?

A literal is a Boolean expression consisting of just a single Boolean 
variable, or the negation of a Boolean variable.
• Example: “ ǉ𝑥1” and “𝑥2” are literals.

A clause is a Boolean expression of the form “ℓ1 ∨ ℓ2 ∨ ⋯ ∨ ℓ𝑘”, i.e. a 
disjunction of some literals ℓ1, ℓ2, … , ℓ𝑘. In 3-SAT 𝑘 = 3.

• Example: “C1 ≡ 𝑥1 ∨ ǉ𝑥2 ∨ 𝑥3” is a clause. 

A Boolean expression is a conjunction of clauses.

Example: 

3-SAT is NP-complete

(𝒙𝟏 ∨ ǉ𝒙𝟐 ∨ ǉ𝒙𝟑) ∧ ( ǉ𝒙𝟏 ∨ 𝒙𝟐 ∨ 𝒙𝟑) ∧ ( ǉ𝒙𝟏 ∨ 𝒙𝟐 ∨ ǉ𝒙𝟑) ∧ (𝒙𝟏 ∨ ǉ𝒙𝟐 ∨ 𝒙𝟑)
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Reductions in NP

Example: INDEPENDENT SET (IS) Problem

Given a simple undirected graph 𝐺(𝑉, 𝐸) and 𝑘, is there an 
independent set in 𝐺 of size ≥  𝑘? Independent set is called a set 

𝐼 ⊂ 𝑉 of vertices such that pairwise the vertices in 𝐼 do not share 

an edge.
𝑣2 𝑣3

𝑣4

𝑣5𝑣6

𝑣1

𝑣7

𝑣8
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Reductions in NP

Example: INDEPENDENT SET (IS) Problem

Given a simple undirected graph 𝐺(𝑉, 𝐸) and 𝑘, is there an 
independent set in 𝐺 of size ≥  𝑘? Independent set is called a set 

𝐼 ⊂ 𝑉 of vertices such that pairwise the vertices in 𝐼 do not share 

an edge.
𝑣2 𝑣3

𝑣4

𝑣5𝑣6

𝑣1

𝑣7

𝑣8

Claim: INDEPENDENT SET is NP-complete.

Proof: (1) INDEPENDENT SET belongs to NP (why?).

(2) Reduce 3-SAT to INDEPENDENT SET. Since 3-SAT is NP-

hard, INDEPENDENT SET is NP-hard. 
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Reductions in NP

Example: INDEPENDENT SET (IS) Problem

Given a simple undirected graph 𝐺(𝑉, 𝐸) and 𝑘, is there an 
independent set in 𝐺 of size ≥  𝑘? Independent set is called a set 

𝐼 ⊂ 𝑉 of vertices such that pairwise the vertices in 𝐼 do not share 

an edge.
𝑣2 𝑣3

𝑣4

𝑣5𝑣6

𝑣1

𝑣7

𝑣8

Claim: INDEPENDENT SET is NP-complete.

Proof: (1) INDEPENDENT SET belongs to NP (why?).

(2) Reduce 3-SAT to INDEPENDENT SET. Since 3-SAT is NP-

hard, INDEPENDENT SET is NP-hard. 
Design and Analysis of Algorithms



3-SAT reduction to IS
3-SAT instance: Can you assign True, False to the variables of the formula 

below so that the expression is True? 

        Let’s reduce the above to an IS instance. We need a graph! 

𝐸 = (𝑥1 ∨ ǉ𝑥2 ∨ ǉ𝑥3) ∧ ( ǉ𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ ( ǉ𝑥1 ∨ 𝑥2 ∨ ǉ𝑥3) ∧ (𝑥1 ∨ ǉ𝑥2 ∨ 𝑥3)
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3-SAT reduction to IS
3-SAT instance: Can you assign True, False to the variables of the formula 

below so that the expression is True? 

𝐸 = (𝑥1 ∨ ǉ𝑥2 ∨ ǉ𝑥3) ∧ ( ǉ𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ ( ǉ𝑥1 ∨ 𝑥2 ∨ ǉ𝑥3) ∧ (𝑥1 ∨ ǉ𝑥2 ∨ 𝑥3)

1x

2x

3x

1x 2x
3x

1x

2x

3x
1x 2x

3x
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3-SAT reduction to IS
3-SAT instance: Can you assign True, False to the variables of the formula 

below so that the expression is True? 

𝐸 = (𝑥1 ∨ ǉ𝑥2 ∨ ǉ𝑥3) ∧ ( ǉ𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ ( ǉ𝑥1 ∨ 𝑥2 ∨ ǉ𝑥3) ∧ (𝑥1 ∨ ǉ𝑥2 ∨ 𝑥3)

1x 2x
3x

1x 2x
3x

1x

2x

3x

1x

2x

3x
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3-SAT reduction to IS
3-SAT instance: Can you assign True, False to the variables of the formula 

below so that the expression is True? 

𝐸 = (𝑥1 ∨ ǉ𝑥2 ∨ ǉ𝑥3) ∧ ( ǉ𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ ( ǉ𝑥1 ∨ 𝑥2 ∨ ǉ𝑥3) ∧ (𝑥1 ∨ ǉ𝑥2 ∨ 𝑥3)

1x 2x
3x

1x 2x
3x

1x

2x

3x

1x

2x

3x
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3-SAT reduction to IS
Claim: Expression 𝐸 with 𝑘 clauses is satisfiable if and only if the induced 

graph G has an IS of size 𝑘.

Therefore, given a graph 𝑮 and a 𝒌, if we can identify in poly-time if there 

exists an Independent Set of size at least k, then we can solve in poly-time 

3-SAT. 
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3-SAT reduction to IS
Claim: Expression 𝐸 with 𝑘 clauses is satisfiable if and only if the induced 

graph G has an IS of size 𝑘.

Therefore, given a graph 𝑮 and a 𝒌, if we can identify in poly-time if there 

exists an Independent Set of size at least k, then we can solve in poly-time 

3-SAT. 
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Vertex Cover (VC)
Problem: Vertex Cover (VC):  

Given a simple undirected graph 𝐺(𝑉, 𝐸) and 𝑘, is there an 
vertex cover in 𝐺 of size ≥  𝑘? Vertex cover is called a set 𝐼 ⊂ 𝑉 

of vertices such that all edges are “covered”? 

e.g., in this graph, 4 of the 8
vertices are enough to cover
all edges.
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Vertex Cover (VC)
Problem: Vertex Cover (VC):  

Given a simple undirected graph 𝐺(𝑉, 𝐸) and 𝑘, is there an 
vertex cover in 𝐺 of size ≥  𝑘? Vertex cover is called a set 𝐼 ⊂ 𝑉 

of vertices such that all edges are “covered”? 

Question: VC is NP-Complete? Answer: YES

• First, it belongs in NP (why?)

• Reduce 3-SAT to VC (or there is something simpler?)

e.g., in this graph, 4 of the 8
vertices are enough to cover
all edges.
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Reduction of IS to Vertex Cover (VC)

• Given a graph 𝐺(𝑉, 𝐸), with V = n, we want to 
know if there exists an Independent Set of size 𝑘.
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Reduction of IS to Vertex Cover (VC)

• Given a graph 𝐺(𝑉, 𝐸), with V = n, we want to 
know if there exists an Independent Set of size 𝑘.

• Lemma: Given 𝐺(𝑉, 𝐸), the set of vertices 𝑆 is an 
independent set if and only if 𝑉 − 𝑆       
(set of remaining vertices) is a vertex cover.

Design and Analysis of Algorithms



Reduction of IS to Vertex Cover (VC)

• Given a graph 𝐺(𝑉, 𝐸), with V = n, we want to know 
if there exists an Independent Set of size 𝑘.

• Lemma: Given 𝐺(𝑉, 𝐸), the set of vertices 𝑆 is an 
independent set if and only if 𝑉 − 𝑆 is a vertex cover.

Reduction: Does 𝐺 have a VC of size 𝑛 − 𝑘? 

Yes: Then it has an IS of size k. 

No: Then it does not.
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Reduction of IS to Vertex Cover (VC)

• Given a graph 𝐺(𝑉, 𝐸), with V = n, suppose 
there exists an Independent Set of size 𝑘.

• Lemma: Given 𝐺(𝑉, 𝐸), the set of vertices 𝑆 is an 
independent set if and only if 𝑉 − 𝑆 is a vertex 
cover.

Proof: Let 𝑆 be an independent set, and 𝑒 =  (𝑢, 𝑣) 
be some edge. Only one of 𝑢, 𝑣 can be in 𝑆. Hence, 
at least one of 𝑢, 𝑣 is in 𝑉 −  𝑆. So, 𝑉 −  𝑆 is a 
vertex cover. The other direction is similar.
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