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More problems on the Greedy Method 



Greedy method

The greedy method is a general algorithm design technique, in 
which given:

– configurations: different choices we need to make

– objective function: a score assigned to all configurations, 
which we want to either maximize or minimize

We should make choices greedily: We can find a globally-
optimal solution by a series of local improvements from a 
starting configuration.
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Problem 1: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖  and 
a finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform all the tasks using a minimum number of machines.
A machine can serve one task at a given time.
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Problem 3: You are given a set 𝑇 of 𝑛 tasks, each having a deadline 
time 𝑓𝑖 and profit 𝑝𝑖 if completed and needs one unit of time to be 
completed. You have only one machine. 

Goal: Complete non-overlapping tasks to maximize your profit.
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Definition: Given a graph 𝐺, a matching is a collection of edges 
that do not share a vertex.

Trees are bipartite!

Problem: Given a tree graph, compute/find a maximum matching. 
We know how to do it for bipartite graphs via maxflow!!
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Problem: Given a tree graph, compute/find a maximum matching.
Do not use Maxflow, but directly Greedy. 

Question: The green edge has a leaf as an endpoint. Should it be in 
the matching?  
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Idea: Choose an edge with one endpoint being a leaf and put it in the 
matching. Remove all other incident edges. The new graph is a union 
of trees. Repeat until run out of edges. 
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Question: Should a leaf be part of the independent set? 

Problem: Given a tree graph, compute/find a maximum 
independent set. 
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