
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 16

More problems on the Greedy Method

Greedy method

The greedy method is a general algorithm design technique, in
which given:

– configurations: different choices we need to make

– objective function: a score assigned to all configurations,
which we want to either maximize or minimize

We should make choices greedily: We can find a globally-
optimal solution by a series of local improvements from a
starting configuration.

Design and Analysis of Algorithms

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 1: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖 and
a finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform all the tasks using a minimum number of machines.
A machine can serve one task at a given time.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 1: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖 and
a finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform all the tasks using a minimum number of machines.
A machine can serve one task at a given time.

Idea: Sort tasks in increasing order of their start time. Assign first
task to machine 1 and set 𝐾 = 1.
When considering a new task, if all machines are busy, create a new
machine, set 𝐾 = 𝐾 + 1 and assign the new task to the new
machine otherwise assign the new task to an available machine.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 2: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖 and
a finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform as many tasks as possible using one machine.
In other words, find the maximum number of non-overlapping
intervals.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 2: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖 and
a finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform as many tasks as possible using one machine.
In other words, find the maximum number of non-overlapping
intervals.

Idea: Sort tasks in increasing order of their finish time. Perform first
task and remove all overlapping tasks with first task. Repeat the
same process to the remaining tasks.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 2: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖 and
a finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform as many tasks as possible using one machine.
In other words, find the maximum number of non-overlapping
intervals.

Idea: Sort tasks in increasing order of their finish time. Perform first
task and remove all overlapping tasks with first task. Repeat the
same process to the remaining tasks.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 2: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖 and
a finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform as many tasks as possible using one machine.
In other words, find the maximum number of non-overlapping
intervals.

Idea: Sort tasks in increasing order of their finish time. Perform first
task and remove all overlapping tasks with first task. Repeat the
same process to the remaining tasks.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 2: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖 and
a finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform as many tasks as possible using one machine.
In other words, find the maximum number of non-overlapping
intervals.

Idea: Sort tasks in increasing order of their finish time. Perform first
task and remove all overlapping tasks with first task. Repeat the
same process to the remaining tasks.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 2: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖 and
a finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform as many tasks as possible using one machine.
In other words, find the maximum number of non-overlapping
intervals.

Idea: Sort tasks in increasing order of their finish time. Perform first
task and remove all overlapping tasks with first task. Repeat the
same process to the remaining tasks.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 3: You are given a set 𝑇 of 𝑛 tasks, each having a deadline
time 𝑓𝑖 and profit 𝑝𝑖 if completed and needs one unit of time to be
completed. You have only one machine.

Goal: Complete non-overlapping tasks to maximize your profit.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 3: You are given a set 𝑇 of 𝑛 tasks, each having a deadline
time 𝑓𝑖 and profit 𝑝𝑖 if completed and needs one unit of time to be
completed. You have only one machine.

Goal: Complete non-overlapping tasks to maximize your profit.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 3: You are given a set 𝑇 of 𝑛 tasks, each having a deadline
time 𝑓𝑖 and profit 𝑝𝑖 if completed and needs one unit of time to be
completed. You have only one machine.

Goal: Complete non-overlapping tasks to maximize your profit.

Idea: Sort tasks in decreasing order of their profit. Repeat the
following until run out of tasks: Choose first task and schedule it at
the latest time possible without exceeding deadline. If not possible,
discard the task.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 3: You are given a set 𝑇 of 𝑛 tasks, each having a deadline
time 𝑓𝑖 and profit 𝑝𝑖 if completed and needs one unit of time to be
completed. You have only one machine.

Goal: Complete non-overlapping tasks to maximize your profit.

Idea: Sort tasks in decreasing order of their profit. Repeat the
following until run out of tasks: Choose first task and schedule it at
the latest time possible without exceeding deadline. If not possible,
discard the task.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 3: You are given a set 𝑇 of 𝑛 tasks, each having a deadline
time 𝑓𝑖 and profit 𝑝𝑖 if completed and needs one unit of time to be
completed. You have only one machine.

Goal: Complete non-overlapping tasks to maximize your profit.

Idea: Sort tasks in decreasing order of their profit. Repeat the
following until run out of tasks: Choose first task and schedule it at
the latest time possible without exceeding deadline. If not possible,
discard the task.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 3: You are given a set 𝑇 of 𝑛 tasks, each having a deadline
time 𝑓𝑖 and profit 𝑝𝑖 if completed and needs one unit of time to be
completed. You have only one machine.

Goal: Complete non-overlapping tasks to maximize your profit.

Idea: Sort tasks in decreasing order of their profit. Repeat the
following until run out of tasks: Choose first task and schedule it at
the latest time possible without exceeding deadline. If not possible,
discard the task.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 3: You are given a set 𝑇 of 𝑛 tasks, each having a deadline
time 𝑓𝑖 and profit 𝑝𝑖 if completed and needs one unit of time to be
completed. You have only one machine.

Goal: Complete non-overlapping tasks to maximize your profit.

Idea: Sort tasks in decreasing order of their profit. Repeat the
following until run out of tasks: Choose first task and schedule it at
the latest time possible without exceeding deadline. If not possible,
discard the task.

Scheduling jobs/tasks

Design and Analysis of Algorithms

Problem 3: You are given a set 𝑇 of 𝑛 tasks, each having a deadline
time 𝑓𝑖 and profit 𝑝𝑖 if completed and needs one unit of time to be
completed. You have only one machine.

Goal: Complete non-overlapping tasks to maximize your profit.

Idea: Sort tasks in decreasing order of their profit. Repeat the
following until run out of tasks: Choose first task and schedule it at
the latest time possible without exceeding deadline. If not possible,
discard the task.

Problems on trees using Greedy

Design and Analysis of Algorithms

Definition: Given a graph 𝐺, a matching is a collection of edges
that do not share a vertex.

Problems on trees using Greedy

Design and Analysis of Algorithms

Definition: Given a graph 𝐺, a matching is a collection of edges
that do not share a vertex.

Problems on trees using Greedy

Design and Analysis of Algorithms

Definition: Given a graph 𝐺, a matching is a collection of edges
that do not share a vertex.

Problems on trees using Greedy

Design and Analysis of Algorithms

Definition: Given a graph 𝐺, a matching is a collection of edges
that do not share a vertex.

Problem: Given a tree graph, compute/find a maximum matching.

Problems on trees using Greedy

Design and Analysis of Algorithms

Definition: Given a graph 𝐺, a matching is a collection of edges
that do not share a vertex.

Problem: Given a tree graph, compute/find a maximum matching.
We know how to do it for bipartite graphs via maxflow!!

Problems on trees using Greedy

Design and Analysis of Algorithms

Definition: Given a graph 𝐺, a matching is a collection of edges
that do not share a vertex.

Trees are bipartite!

Problem: Given a tree graph, compute/find a maximum matching.
We know how to do it for bipartite graphs via maxflow!!

Maximum Matching on trees

Design and Analysis of Algorithms

Problem: Given a tree graph, compute/find a maximum matching.
Do not use Maxflow, but directly Greedy.

Question: The green edge has a leaf as an endpoint. Should it be in
the matching?

Maximum Matching on trees

Design and Analysis of Algorithms

Problem: Given a tree graph, compute/find a maximum matching.
Do not use Maxflow, but directly Greedy.

Idea: Choose an edge with one endpoint being a leaf and put it in the
matching. Remove all other incident edges. The new graph is a union
of trees. Repeat until run out of edges.

Maximum Matching on trees

Design and Analysis of Algorithms

Problem: Given a tree graph, compute/find a maximum matching.
Do not use Maxflow, but directly Greedy.

Idea: Choose an edge with one endpoint being a leaf and put it in the
matching. Remove all other incident edges. The new graph is a union
of trees. Repeat until run out of edges.

Maximum Matching on trees

Design and Analysis of Algorithms

Problem: Given a tree graph, compute/find a maximum matching.
Do not use Maxflow, but directly Greedy.

Idea: Choose an edge with one endpoint being a leaf and put it in the
matching. Remove all other incident edges. The new graph is a union
of trees. Repeat until run out of edges.

Maximum Matching on trees

Design and Analysis of Algorithms

Problem: Given a tree graph, compute/find a maximum matching.
Do not use Maxflow, but directly Greedy.

Idea: Choose an edge with one endpoint being a leaf and put it in the
matching. Remove all other incident edges. The new graph is a tree as
well. Repeat until run out of edges.

Maximum Matching on trees

Design and Analysis of Algorithms

Problem: Given a tree graph, compute/find a maximum matching.
Do not use Maxflow, but directly Greedy.

Idea: Choose an edge with one endpoint being a leaf and put it in the
matching. Remove all other incident edges. The new graph is a tree as
well. Repeat until run out of edges.

Maximum Matching on trees

Design and Analysis of Algorithms

Problem: Given a tree graph, compute/find a maximum matching.
Do not use Maxflow, but directly Greedy.

Idea: Choose an edge with one endpoint being a leaf and put it in the
matching. Remove all other incident edges. The new graph is a tree as
well. Repeat until run out of edges.

Maximum Matching on trees

Design and Analysis of Algorithms

Problem: Given a tree graph, compute/find a maximum matching.
Do not use Maxflow, but directly Greedy.

Idea: Choose an edge with one endpoint being a leaf and put it in the
matching. Remove all other incident edges. The new graph is a tree as
well. Repeat until run out of edges.

Maximum Matching on trees

Design and Analysis of Algorithms

Problem: Given a tree graph, compute/find a maximum matching.
Do not use Maxflow, but directly Greedy.

Idea: Choose an edge with one endpoint being a leaf and put it in the
matching. Remove all other incident edges. The new graph is a tree as
well. Repeat until run out of edges.

Maximum Matching on trees

Design and Analysis of Algorithms

Problem: Given a tree graph, compute/find a maximum matching.
Do not use Maxflow, but directly Greedy.

Idea: Choose an edge with one endpoint being a leaf and put it in the
matching. Remove all other incident edges. The new graph is a tree as
well. Repeat until run out of edges.

Maximum Matching on trees

Design and Analysis of Algorithms

Problem: Given a tree graph, compute/find a maximum matching.
Do not use Maxflow, but directly Greedy.

Idea: Choose an edge with one endpoint being a leaf and put it in the
matching. Remove all other incident edges. The new graph is a tree as
well. Repeat until run out of edges.

Maximum Matching on trees

Design and Analysis of Algorithms

Problem: Given a tree graph, compute/find a maximum matching.
Do not use Maxflow, but directly Greedy.

Idea: Choose an edge with one endpoint being a leaf and put it in the
matching. Remove all other incident edges. The new graph is a tree as
well. Repeat until run out of edges.

Problems on trees using Greedy

Design and Analysis of Algorithms

Definition: Given a graph 𝐺, an independent set is a collection
of vertices that do not share an edge.

Problems on trees using Greedy

Design and Analysis of Algorithms

Definition: Given a graph 𝐺, an independent set is a collection
of vertices that do not share an edge.

Problems on trees using Greedy

Design and Analysis of Algorithms

Definition: Given a graph 𝐺, an independent set is a collection
of vertices that do not share an edge.

Problems on trees using Greedy

Design and Analysis of Algorithms

Definition: Given a graph 𝐺, an independent set is a collection
of vertices that do not share an edge.

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Question: Should a leaf be part of the independent set?

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Idea: Choose a leaf (or isolated vertex) and put it in the independent
set. Remove the neighboring vertex (and incident edges). The new
graph is a union of trees. Repeat until run out of vertices.

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Idea: Choose a leaf (or isolated vertex) and put it in the independent
set. Remove the neighboring vertex (and incident edges). The new
graph is a union of trees. Repeat until run out of vertices.

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Idea: Choose a leaf (or isolated vertex) and put it in the independent
set. Remove the neighboring vertex (and incident edges). The new
graph is a union of trees. Repeat until run out of vertices.

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Idea: Choose a leaf (or isolated vertex) and put it in the independent
set. Remove the neighboring vertex (and incident edges). The new
graph is a union of trees. Repeat until run out of vertices.

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Idea: Choose a leaf (or isolated vertex) and put it in the independent
set. Remove the neighboring vertex (and incident edges). The new
graph is a union of trees. Repeat until run out of vertices.

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Idea: Choose a leaf (or isolated vertex) and put it in the independent
set. Remove the neighboring vertex (and incident edges). The new
graph is a union of trees. Repeat until run out of vertices.

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Idea: Choose a leaf (or isolated vertex) and put it in the independent
set. Remove the neighboring vertex (and incident edges). The new
graph is a union of trees. Repeat until run out of vertices.

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Idea: Choose a leaf (or isolated vertex) and put it in the independent
set. Remove the neighboring vertex (and incident edges). The new
graph is a union of trees. Repeat until run out of vertices.

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Idea: Choose a leaf (or isolated vertex) and put it in the independent
set. Remove the neighboring vertex (and incident edges). The new
graph is a union of trees. Repeat until run out of vertices.

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Idea: Choose a leaf (or isolated vertex) and put it in the independent
set. Remove the neighboring vertex (and incident edges). The new
graph is a union of trees. Repeat until run out of vertices.

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Idea: Choose a leaf (or isolated vertex) and put it in the independent
set. Remove the neighboring vertex (and incident edges). The new
graph is a union of trees. Repeat until run out of vertices.

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Idea: Choose a leaf (or isolated vertex) and put it in the independent
set. Remove the neighboring vertex (and incident edges). The new
graph is a union of trees. Repeat until run out of vertices.

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Idea: Choose a leaf (or isolated vertex) and put it in the independent
set. Remove the neighboring vertex (and incident edges). The new
graph is a union of trees. Repeat until run out of vertices.

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Idea: Choose a leaf (or isolated vertex) and put it in the independent
set. Remove the neighboring vertex (and incident edges). The new
graph is a union of trees. Repeat until run out of vertices.

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Idea: Choose a leaf (or isolated vertex) and put it in the independent
set. Remove the neighboring vertex (and incident edges). The new
graph is a union of trees. Repeat until run out of vertices.

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Idea: Choose a leaf (or isolated vertex) and put it in the independent
set. Remove the neighboring vertex (and incident edges). The new
graph is a union of trees. Repeat until run out of vertices.

Problem: Given a tree graph, compute/find a maximum
independent set.

Maximum Independent set on trees

Design and Analysis of Algorithms

Idea: Choose a leaf (or isolated vertex) and put it in the independent
set. Remove the neighboring vertex (and incident edges). The new
graph is a union of trees. Repeat until run out of vertices.

Problem: Given a tree graph, compute/find a maximum
independent set.

	Slide 1: Lecture 16 More problems on the Greedy Method
	Slide 2: Greedy method
	Slide 3: Scheduling jobs/tasks
	Slide 4: Scheduling jobs/tasks
	Slide 5: Scheduling jobs/tasks
	Slide 6: Scheduling jobs/tasks
	Slide 7: Scheduling jobs/tasks
	Slide 8: Scheduling jobs/tasks
	Slide 9: Scheduling jobs/tasks
	Slide 10: Scheduling jobs/tasks
	Slide 11: Scheduling jobs/tasks
	Slide 12: Scheduling jobs/tasks
	Slide 13: Scheduling jobs/tasks
	Slide 14: Scheduling jobs/tasks
	Slide 15: Scheduling jobs/tasks
	Slide 16: Scheduling jobs/tasks
	Slide 17: Scheduling jobs/tasks
	Slide 18: Scheduling jobs/tasks
	Slide 19: Problems on trees using Greedy
	Slide 20: Problems on trees using Greedy
	Slide 21: Problems on trees using Greedy
	Slide 22: Problems on trees using Greedy
	Slide 23: Problems on trees using Greedy
	Slide 24: Problems on trees using Greedy
	Slide 25: Maximum Matching on trees
	Slide 26: Maximum Matching on trees
	Slide 27: Maximum Matching on trees
	Slide 28: Maximum Matching on trees
	Slide 29: Maximum Matching on trees
	Slide 30: Maximum Matching on trees
	Slide 31: Maximum Matching on trees
	Slide 32: Maximum Matching on trees
	Slide 33: Maximum Matching on trees
	Slide 34: Maximum Matching on trees
	Slide 35: Maximum Matching on trees
	Slide 36: Maximum Matching on trees
	Slide 37: Problems on trees using Greedy
	Slide 38: Problems on trees using Greedy
	Slide 39: Problems on trees using Greedy
	Slide 40: Problems on trees using Greedy
	Slide 41: Maximum Independent set on trees
	Slide 42: Maximum Independent set on trees
	Slide 43: Maximum Independent set on trees
	Slide 44: Maximum Independent set on trees
	Slide 45: Maximum Independent set on trees
	Slide 46: Maximum Independent set on trees
	Slide 47: Maximum Independent set on trees
	Slide 48: Maximum Independent set on trees
	Slide 49: Maximum Independent set on trees
	Slide 50: Maximum Independent set on trees
	Slide 51: Maximum Independent set on trees
	Slide 52: Maximum Independent set on trees
	Slide 53: Maximum Independent set on trees
	Slide 54: Maximum Independent set on trees
	Slide 55: Maximum Independent set on trees
	Slide 56: Maximum Independent set on trees
	Slide 57: Maximum Independent set on trees
	Slide 58: Maximum Independent set on trees

