
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 15

Minimum Spanning Trees

Design and Analysis of Algorithms

Spanning Tree

Definition: We are given an undirected, weighted graph 𝐺. A
spanning tree of 𝐺 is a connected acyclic (tree) subgraph of 𝐺 that
includes all the vertices of 𝐺 (spanning).

OAK

MIA

ATL

NYC

LA

DC

BOS

10
1

9

8

6

25

7

4

3

Design and Analysis of Algorithms

Definition: We are given an undirected, weighted graph 𝐺. A
spanning tree of 𝐺 is a connected acyclic (tree) subgraph of 𝐺 that
includes all the vertices of 𝐺 (spanning).

OAK

MIA

ATL

NYC

LA

DC

BOS

10
1

9

8

6

25

7

4

3

Spanning Tree

Design and Analysis of Algorithms

Definition: We are given an undirected, weighted graph 𝐺. A
spanning tree of 𝐺 is a connected acyclic (tree) subgraph of 𝐺 that
includes all the vertices of 𝐺 (spanning).

OAK

MIA

ATL

NYC

LA

DC

BOS

10
1

9

8

6

25

7

4

3

Spanning Tree

Design and Analysis of Algorithms

Definition: We are given an undirected, weighted graph 𝐺. A
spanning tree of 𝐺 is a connected acyclic (tree) subgraph of 𝐺 that
includes all the vertices of 𝐺 (spanning).

OAK

MIA

ATL

NYC

LA

DC

BOS

10
1

9

8

6

25

7

4

3
Not a spanning tree.
It is not spanning (MIA).

Spanning Tree

Design and Analysis of Algorithms

Definition: We are given an undirected, weighted graph 𝐺. A
spanning tree of 𝐺 is a connected acyclic (tree) subgraph of 𝐺 that
includes all the vertices of 𝐺 (spanning).

OAK

MIA

ATL

NYC

LA

DC

BOS

10
1

9

8

6

25

7

4

3
Not a spanning tree.
It is not a tree (cycle).

Spanning Tree

Design and Analysis of Algorithms

Minimum Spanning Tree

Problem: We are given an undirected, weighted graph 𝐺, find the
minimum spanning tree (MST).

 OAK

MIA

ATL

NYC

LA

DC

BOS

10
1

9

8

6

25

7

4

3

Minimum Spanning Tree
Cycle Property
Let 𝑇 be a minimum spanning

tree of a weighted graph 𝐺.

– Let 𝒆 be an edge of 𝐺 that
is not in 𝑇 and 𝐶 let be the
cycle formed by 𝒆 with 𝑇.

Design and Analysis of Algorithms

OAK

MIA

ATL

NYC

LA

DC

BOS

10
1

9

8

6

25

7

4

3
It holds that:
For every edge 𝒇 of 𝐶,
 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓  𝑤𝑒𝑖𝑔ℎ𝑡 𝑒 .

Minimum Spanning Tree
Cycle Property
Let 𝑇 be a minimum spanning

tree of a weighted graph 𝐺.

– Let 𝒆 be an edge of 𝐺 that
is not in 𝑇 and 𝐶 let be the
cycle formed by 𝒆 with 𝑇.

Design and Analysis of Algorithms

It holds that:
For every edge 𝒇 of 𝐶,
 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓  𝑤𝑒𝑖𝑔ℎ𝑡 𝑒 .

Example 1: Cycle LA, DC, NYC, OAK
𝑤 𝑒 = 8 ≥ 1, 6, 4 (rest of weights)

OAK

MIA

ATL

NYC

LA

DC

BOS

10
1

9

8

6

25

7

4

3

𝒆

Minimum Spanning Tree
Cycle Property
Let 𝑇 be a minimum spanning

tree of a weighted graph 𝐺.

– Let 𝒆 be an edge of 𝐺 that
is not in 𝑇 and 𝐶 let be the
cycle formed by 𝒆 with 𝑇.

Design and Analysis of Algorithms

OAK

MIA

ATL

NYC

LA

DC

BOS

10
1

9

8

6

25

7

4

3
It holds that:
For every edge 𝒇 of 𝐶,
 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓  𝑤𝑒𝑖𝑔ℎ𝑡 𝑒 .

Example 2: Cycle BOS, ATL, NYC
𝑤 𝑒 = 5 ≥ 2, 3 (rest of weights)

Minimum Spanning Tree
Cycle Property 8

4

2
3

6

7

7

9

8

e

f

8

4

2
3

6

7

7

9

8

e

f

Replacing 𝑓 with 𝑒 yields
a better spanning tree

Design and Analysis of Algorithms

For the sake of contradiction:

Assume there exist 𝑓, 𝑒 so that

 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓 > 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒)

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not
create a cycle, otherwise discard it.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Why Kruskal’s algo works: General argument. Suppose there is a
better solution. Assume the 𝑚 edges of 𝐺 are ordered in increasing
order of weights, i.e., w1 ≤ 𝑤2 … ≤ 𝑤𝑚. 𝐺 has also 𝑛 vertices.

○ Let 𝑥1, … , 𝑥𝑛−1 be the weight values of the edges in
increasing order of the minimum spanning tree 𝑇’.

○ Let 𝑦1, … , 𝑦𝑛−1 be the weight values of the edges in
increasing order of Kruskal’s spanning tree 𝑇.

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Why Kruskal’s algo works: General argument. Suppose there is a
better solution. Assume the 𝑚 edges of 𝐺 are ordered in increasing
order of weights, i.e., w1 ≤ 𝑤2 … ≤ 𝑤𝑚. 𝐺 has also 𝑛 vertices.

○ Let 𝑥1, … , 𝑥𝑛−1 be the weight values of the edges in
increasing order of the minimum spanning tree 𝑇’.

○ Let 𝑦1, … , 𝑦𝑛−1 be the weight values of the edges in
increasing order of Kruskal’s spanning tree 𝑇.

○ There is an index 𝑖, so that 𝑦𝑖 < 𝑥𝑖 . We add edge with
value 𝑦𝑖 in 𝑇’, we create a cycle 𝐶.

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Why Kruskal’s algo works: General argument. Suppose there is a
better solution. Assume the 𝑚 edges of 𝐺 are ordered in increasing
order of weights, i.e., w1 ≤ 𝑤2 … ≤ 𝑤𝑚. 𝐺 has also 𝑛 vertices.

○ Let 𝑥1, … , 𝑥𝑛−1 be the weight values of the edges in
increasing order of the minimum spanning tree 𝑇’.

○ Let 𝑦1, … , 𝑦𝑛−1 be the weight values of the edges in
increasing order of Kruskal’s spanning tree 𝑇.

○ There is an index 𝑖, so that 𝑦𝑖 < 𝑥𝑖 . We add edge with
value 𝑦𝑖 in 𝑇’, we create a cycle 𝐶.

■ If 𝑥𝑖 is in 𝐶, we remove it and create a spanning tree smaller than T’
(contradiction).

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Why Kruskal’s algo works: General argument. Suppose there is a
better solution. Assume the 𝑚 edges of 𝐺 are ordered in increasing
order of weights, i.e., w1 ≤ 𝑤2 … ≤ 𝑤𝑚. 𝐺 has also 𝑛 vertices.

○ Let 𝑥1, … , 𝑥𝑛−1 be the weight values of the edges in
increasing order of the minimum spanning tree 𝑇’.

○ Let 𝑦1, … , 𝑦𝑛−1 be the weight values of the edges in
increasing order of Kruskal’s spanning tree 𝑇.

○ There is an index 𝑖, so that 𝑦𝑖 < 𝑥𝑖 . We add edge with
value 𝑦𝑖 in 𝑇’, we create a cycle 𝐶.

■ If 𝑥𝑖 is in 𝐶, we remove it and create a spanning tree smaller than T’
(contradiction).

■ If 𝑥𝑖 not in 𝐶, by cycle property, 𝑦𝑖 is the largest value from edges in
C. Kruskal would not have chosen 𝑦𝑖 (contradiction).

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

We build the tree by adding one new vertex at a time. Each vertex 𝑣

has label 𝑑 𝑣 ≔ smallest weight of an edge connecting 𝑣 to a vertex

in the built tree.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠.

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢]

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.

B G

C

A

F

4

1 3

5

2

8

7

6

E

11

9

D H

10
12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Pseudocode:

Starting vertex

Initialization

Relaxation

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Pseudocode:

Starting vertex

Initialization

Relaxation

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Pseudocode:

Starting vertex

Initialization

Relaxation

𝚯(𝑽 𝟐)

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Pseudocode:

Starting vertex

Initialization

Relaxation

	Slide 1: Lecture 15 Minimum Spanning Trees
	Slide 2: Spanning Tree
	Slide 3: Spanning Tree
	Slide 4: Spanning Tree
	Slide 5: Spanning Tree
	Slide 6: Spanning Tree
	Slide 7: Minimum Spanning Tree
	Slide 8: Minimum Spanning Tree
	Slide 9: Minimum Spanning Tree
	Slide 10: Minimum Spanning Tree
	Slide 11: Minimum Spanning Tree
	Slide 12: Kruskal’s Algorithm for MSTs
	Slide 13: Kruskal’s Algorithm for MSTs
	Slide 14: Kruskal’s Algorithm for MSTs
	Slide 15: Kruskal’s Algorithm for MSTs
	Slide 16: Kruskal’s Algorithm for MSTs
	Slide 17: Kruskal’s Algorithm for MSTs
	Slide 18: Kruskal’s Algorithm for MSTs
	Slide 19: Kruskal’s Algorithm for MSTs
	Slide 20: Kruskal’s Algorithm for MSTs
	Slide 21: Kruskal’s Algorithm for MSTs
	Slide 22: Kruskal’s Algorithm for MSTs
	Slide 23: Kruskal’s Algorithm for MSTs
	Slide 24: Kruskal’s Algorithm for MSTs
	Slide 25: Kruskal’s Algorithm for MSTs
	Slide 26: Kruskal’s Algorithm for MSTs
	Slide 27: Kruskal’s Algorithm for MSTs
	Slide 28: Kruskal’s Algorithm for MSTs
	Slide 29: Prim’s Algorithm for MSTs
	Slide 30: Prim’s Algorithm for MSTs
	Slide 31: Prim’s Algorithm for MSTs
	Slide 32: Prim’s Algorithm for MSTs
	Slide 33: Prim’s Algorithm for MSTs
	Slide 34: Prim’s Algorithm for MSTs
	Slide 35: Prim’s Algorithm for MSTs
	Slide 36: Prim’s Algorithm for MSTs
	Slide 37: Prim’s Algorithm for MSTs
	Slide 38: Prim’s Algorithm for MSTs
	Slide 39: Prim’s Algorithm for MSTs
	Slide 40: Prim’s Algorithm for MSTs
	Slide 41: Prim’s Algorithm for MSTs
	Slide 42: Prim’s Algorithm for MSTs

