
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 15

Minimum Spanning Trees 



Design and Analysis of Algorithms

Spanning Tree

Definition: We are given an undirected, weighted graph 𝐺. A 
spanning tree of 𝐺 is a connected acyclic (tree) subgraph of 𝐺 that 
includes all the vertices of 𝐺 (spanning).
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Minimum Spanning Tree

Problem: We are given an undirected, weighted graph 𝐺, find the 
minimum spanning tree (MST). 
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Minimum Spanning Tree
Cycle Property 
Let 𝑇 be a minimum spanning 

tree of a weighted graph 𝐺.

– Let 𝒆 be an edge of 𝐺 that 
is not in 𝑇 and 𝐶 let be the 
cycle formed by 𝒆 with 𝑇.
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It holds that:
For every edge 𝒇 of 𝐶, 
 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓  𝑤𝑒𝑖𝑔ℎ𝑡 𝑒 . 
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It holds that:
For every edge 𝒇 of 𝐶, 
 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓  𝑤𝑒𝑖𝑔ℎ𝑡 𝑒 . 

Example 1: Cycle LA, DC, NYC, OAK
𝑤 𝑒 =  8 ≥ 1, 6, 4 (rest of weights)
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It holds that:
For every edge 𝒇 of 𝐶, 
 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓  𝑤𝑒𝑖𝑔ℎ𝑡 𝑒 .

Example 2: Cycle BOS, ATL, NYC 
𝑤 𝑒 = 5 ≥ 2, 3 (rest of weights)
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Replacing 𝑓 with 𝑒 yields
a better spanning tree 
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For the sake of contradiction:

Assume there exist 𝑓, 𝑒 so that

 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓 >  𝑤𝑒𝑖𝑔ℎ𝑡(𝑒) 



Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Idea 1: Greedy approach. Consider the edges from smaller weight to 
larger. Include each edge in the current solution as long as it does not 
create a cycle, otherwise discard it. 
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Kruskal’s Algorithm for MSTs

Why Kruskal’s algo works: General argument. Suppose there is a 
better solution. Assume the 𝑚 edges of 𝐺 are ordered in increasing 
order of weights, i.e., w1 ≤  𝑤2  … ≤  𝑤𝑚. 𝐺 has also 𝑛 vertices.

○ Let 𝑥1, … , 𝑥𝑛−1 be the weight values of the edges in 
increasing order of the minimum spanning tree 𝑇’.

○ Let 𝑦1, … , 𝑦𝑛−1 be the weight values of the edges in 
increasing order of Kruskal’s spanning tree 𝑇.
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value 𝑦𝑖 in 𝑇’, we create a cycle 𝐶. 
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■ If 𝑥𝑖 is in 𝐶, we remove it and create a spanning tree smaller than T’ 
(contradiction).
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value 𝑦𝑖 in 𝑇’, we create a cycle 𝐶. 

■ If 𝑥𝑖 is in 𝐶, we remove it and create a spanning tree smaller than T’ 
(contradiction).

■ If 𝑥𝑖 not in 𝐶, by cycle property, 𝑦𝑖  is the largest value from edges in 
C. Kruskal would not have chosen 𝑦𝑖  (contradiction).
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Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’s algorithm. We pick an arbitrary vertex 𝑠. 

We build the tree by adding one new vertex at a time. Each vertex 𝑣 

has label 𝑑 𝑣 ≔ smallest weight of an edge connecting 𝑣 to a vertex 

in the built tree. 

At each step:

○ We add to the current tree the vertex 𝑢 with the smallest 𝑑[𝑢] 

and the corresponding incident to 𝑢 edge.

○ We update the labels of the vertices adjacent to 𝑢.
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Relaxation
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