TxT
4

Lecture 15

Minimum Spanning Trees

CS 161 Design and Analysis of Algorithms

loannis Panageas

Spanning Tree

Definition: We are given an undirected, weighted graph G. A
spanning tree of G is a connected acyclic (tree) subgraph of ¢ that
includes all the vertices of ¢ (spanning).

Example:
0AK) 1
1 MIA
9
3 BOS
4 NYC

2
> >

Design and Analysis of Algorithms

Spanning Tree

Definition: We are given an undirected, weighted graph G. A
spanning tree of G is a connected acyclic (tree) subgraph of ¢ that
includes all the vertices of ¢ (spanning).

Example:

Total cost
44+1+104+64+7+2 = 30

Design and Analysis of Algorithms

Spanning Tree

Definition: We are given an undirected, weighted graph G. A
spanning tree of G is a connected acyclic (tree) subgraph of ¢ that
includes all the vertices of ¢ (spanning).

Example:

Total cost
84+9+6+10+3+2 = 38

Design and Analysis of Algorithms

Spanning Tree

Definition: We are given an undirected, weighted graph G. A
spanning tree of G is a connected acyclic (tree) subgraph of G that

includes all the vertices of G (spanning).

Example:

Not a spanning tree.
It is not spanning (MIA).

Design and Analysis of Algorithms

Spanning Tree

Definition: We are given an undirected, weighted graph G. A
spanning tree of G is a connected acyclic (tree) subgraph of G that

includes all the vertices of G (spanning).

Example:

Not a spanning tree.
It is not a tree (cycle).

Design and Analysis of Algorithms

Minimum Spanning Tree

Problem: We are given an undirected, weighted graph G, find the
minimum spanning tree (MST).

Example:

Total cost
14+44+6+7+3+2 = 23

Design and Analysis of Algorithms

Minimum Spanning Tree
Cycle Property

Let T be a minimum spanning
tree of a weighted graph G.

— Let e be an edge of ¢ that
isnotinT and C let be the
cycle formed by e with T.

It holds that:
For every edge f of C,
weight(f)<weight(e).

Design and Analysis of Algorithms

Minimum Spanning Tree
Cycle Property

Let T be a minimum spanning

tree of a weighted graph G.

— Let e be an edge of ¢ that
isnotinT and C let be the
cycle formed by e with T.

It holds that:

For every edge f of C,
weight(f)< weight(e).

.--
LN

Example 1: Cycle LA, DC, NYC, OAK
w(e) = 8 > 1, 6,4 (rest of weights)

Design and Analysis of Algorithms

Minimum Spanning Tree
Cycle Property

Let T be a minimum spanning
tree of a weighted graph G.

— Let e be an edge of ¢ that
isnotinT and C let be the
cycle formed by e with T.

It holds that:
For every edge f of C,
weight(f)< weight(e).

Example 2: Cycle BOS, ATL, NYC
w(e) =5 = 2,3 (rest of weights)

Design and Analysis of Algorithms

Minimum Spanning Tree
Cycle Property

For the sake of contradiction:

Assume there exist f, e so that

weight(f) > weight(e) Total cost

24-3+4+64-8 = 23
Replacing f with e yields
a better spanning tree

Total cost)
24+34+44+6+7 = 22

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

ldea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not

create a cycle, otherwise discard it.

Example:

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

ldea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not

create a cycle, otherwise discard it.

Example:

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

ldea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not

create a cycle, otherwise discard it.

Example:

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

ldea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not

create a cycle, otherwise discard it.

Example:

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

ldea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not

create a cycle, otherwise discard it.

Example:

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

ldea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not

create a cycle, otherwise discard it.

Example:

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

ldea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not

create a cycle, otherwise discard it.

Example:

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

ldea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not

create a cycle, otherwise discard it.

Example:

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

ldea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not

create a cycle, otherwise discard it.

Example:

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

ldea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not

create a cycle, otherwise discard it.

Example:

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

ldea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not

create a cycle, otherwise discard it.

Example:

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

ldea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not

create a cycle, otherwise discard it.

Example:

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

ldea 1: Greedy approach. Consider the edges from smaller weight to
larger. Include each edge in the current solution as long as it does not

create a cycle, otherwise discard it.

Example:

Total cost
1+2434+4+5+8+12 = 35

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Why Kruskal’s algo works: General argument. Suppose there is a
better solution. Assume the m edges of G are ordered in increasing
order of weights, i.e., w; < w, ... < w,,. G has also n vertices.

o Letxq,...,x,_1 be the weight values of the edges in
increasing order of the minimum spanning tree T".

o Letwys,...,v,—1 be the weight values of the edges in
increasing order of Kruskal’s spanning tree T.

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Why Kruskal’s algo works: General argument. Suppose there is a
better solution. Assume the m edges of G are ordered in increasing
order of weights, i.e., w; < w, ... < w,,. G has also n vertices.

o Letxq,...,x,_1 be the weight values of the edges in
increasing order of the minimum spanning tree T".

o Letwys,...,v,—1 be the weight values of the edges in
increasing order of Kruskal’s spanning tree T.

o Thereisanindex i, sothaty; < x;. We add edge with
value y; in T’, we create a cycle C.

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Why Kruskal’s algo works: General argument. Suppose there is a
better solution. Assume the m edges of G are ordered in increasing
order of weights, i.e., w; < w, ... < w,,. G has also n vertices.

o Letxq,...,x,_1 be the weight values of the edges in
increasing order of the minimum spanning tree T".

o Letwys,...,v,—1 be the weight values of the edges in
increasing order of Kruskal’s spanning tree T.

o Thereisanindex i, sothaty; < x;. We add edge with
value y; in T’, we create a cycle C.

m Ifx;isin C, we remove it and create a spanning tree smaller than T’
(contradiction).

Design and Analysis of Algorithms

Kruskal’s Algorithm for MSTs

Why Kruskal’s algo works: General argument. Suppose there is a
better solution. Assume the m edges of G are ordered in increasing
order of weights, i.e., w; < w, ... < w,,. G has also n vertices.

o Letxy,...,x,_1 be the weight values of the edges in
increasing order of the minimum spanning tree T".

o Letyy, ..., yn—1 be the weight values of the edges in
increasing order of Kruskal’s spanning tree T.

o Thereisanindex i, sothaty; < x;. We add edge with
value y; in T’, we create a cycle C.

’

m Ifx;isin C, we remove it and create a spanning tree smaller than T
(contradiction).

= If x; notin C, by cycle property, y; is the largest value from edges in
C. Kruskal would not have chosen y; (contradiction).

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’ s algorithm. We pick an arbitrary vertex s.
We build the tree by adding one new vertex at a time. Each vertex v
has label d|v] := smallest weight of an edge connecting v to a vertex

in the built tree.

At each step:

o We add to the current tree the vertex u with the smallest d|u]
and the corresponding incident to u edge.

o We update the labels of the vertices adjacent to u.

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’ s algorithm. We pick an arbitrary vertex s.
At each step:

o We add to the current tree the vertex u with the smallest d|u]
and the corresponding incident to u edge.

o We update the labels of the vertices adjacent to u.

—

238388 38838°

[SRTIEN

e |

SRS

[—

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’ s algorithm. We pick an arbitrary vertex s.
At each step:

o We add to the current tree the vertex u with the smallest d|u]
and the corresponding incident to u edge.

o We update the labels of the vertices adjacent to u.

Al =0
B]=1
C]=7
D]=10
F| =
F] =0
G = o0
H| =oc

L a Aa A

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’ s algorithm. We pick an arbitrary vertex s.
At each step:

o We add to the current tree the vertex u with the smallest d|u]
and the corresponding incident to u edge.

o We update the labels of the vertices adjacent to u.

dlAl =0
d[B] =1
d[C]=5
d[D] =10
d[E]=8
d[F] =00
d|G] =
d[H] = oc

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’ s algorithm. We pick an arbitrary vertex s.
At each step:

o We add to the current tree the vertex u with the smallest d|u]
and the corresponding incident to u edge.

o We update the labels of the vertices adjacent to u.
=0

QL R L 2. 2 &

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’ s algorithm. We pick an arbitrary vertex s.
At each step:

o We add to the current tree the vertex u with the smallest d|u]
and the corresponding incident to u edge.

o We update the labels of the vertices adjacent to u.

d[A] =0
d[B] =1
d|C] =
d[D]=3
d|E] =8
d[F] = o
d|G] = oo
dH| = ¢

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’ s algorithm. We pick an arbitrary vertex s.
At each step:

o We add to the current tree the vertex u with the smallest d|u]
and the corresponding incident to u edge.

o We update the labels of the vertices adjacent to u.

d[A] =
d[B] =1
d[C] =
d[D] =
d[E] =
d[F] = o
d|G] = oo
d[H]=12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’ s algorithm. We pick an arbitrary vertex s.
At each step:

o We add to the current tree the vertex u with the smallest d|u]
and the corresponding incident to u edge.

o We update the labels of the vertices adjacent to u.

d[A] = 0

d[B] = 1

d[C] =5 4
d[D] = 3

d[E] = 8 6
d[F]=2 2
d[G]=6

d[H] = 12 12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’ s algorithm. We pick an arbitrary vertex s.
At each step:

o We add to the current tree the vertex u with the smallest d|u]
and the corresponding incident to u edge.

o We update the labels of the vertices adjacent to u.

d[A] = 0

d[B] = 1

d[C] =5 4
d[D] =

d[E] =8 6

d[F] = 2
d[G]=4

d[H] = 12 12

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Idea 2: Similar to Dijkstra’ s algorithm. We pick an arbitrary vertex s.
At each step:

o We add to the current tree the vertex u with the smallest d|u]
and the corresponding incident to u edge.

o We update the labels of the vertices adjacent to u.

=0
=1

—

I
— = DD OGO o Ot

12

NN N W W W Y
o QT O Qe
|

[S—)

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Pseudocode:

Dv] + 0
for each vertex u # v do

Dlu] + 400 Initialization
Initialize T <« 0.

Initialize a priority queue @ with an item ((u,null), D[u]) for each vertex u,
where (u, null) is the elemnt and D|u] is the key.
while @ is not empty do
(u,e) < Q.removeMin()
Add vertex v and edge eto T'.
for each vertex z adjacent to u such that z is in @ do
// perform the relaxation procedure on edge (u, 2)
if w((u,2)) < D|[z] then .
D[] + w((u, 2)) Relaxation
Change to (z, (u, 2)) the element of vertex z in Q.
Change to D|z] the key of vertex z in Q.
return the tree T’

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Pseudocode:

Dv] + 0
for each vertex u # v do

Dlu] + 400 Initialization
Initialize T <« 0.

Initialize a priority queue @ with an item ((u,null), D[u]) for each vertex u,
where (u, null) is the elemnt and D|u] is the key.
while @ is not empty do
(u,e) < Q.removeMin()
Add vertex v and edge eto T'.
for each vertex z adjacent to u such that z is in @ do
// perform the relaxation procedure on edge (u, 2)
if w((u,2)) < D|[z] then .
D[] + w((u, 2)) Relaxation
Change to (z, (u, 2)) the element of vertex z in Q.
Change to D|z] the key of vertex z in Q.
return the tree T’

Running time: If extractmin in ©(|V]), update in ©(1) then |V|* + |E]|.

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Pseudocode:

Dv] + 0
for each vertex u # v do

Dlu] + 400 Initialization
Initialize T <« 0.

Initialize a priority queue @ with an item ((u,null), D[u]) for each vertex u,
where (u, null) is the elemnt and D|u] is the key.
while @ is not empty do
(u,e) < Q.removeMin()
Add vertex v and edge eto T'.
for each vertex z adjacent to u such that z is in @ do
// perform the relaxation procedure on edge (u, 2)

g

Change to (z, (u, 2)) the element of vertex z in Q.
Change to D|z] the key of vertex z in Q.

return the tree T’
Running time: If extractmin in O(|V]), update in ©(1) (V%)

Design and Analysis of Algorithms

Prim’s Algorithm for MSTs

Pseudocode:

Dv] + 0
for each vertex u # v do

Dlu] + 400 Initialization
Initialize T <« 0.

Initialize a priority queue @ with an item ((u,null), D[u]) for each vertex u,
where (u, null) is the elemnt and D|u] is the key.
while @ is not empty do
(u,e) < Q.removeMin()
Add vertex v and edge eto T'.
for each vertex z adjacent to u such that z is in @ do
// perform the relaxation procedure on edge (u, 2)
if w((u,2)) < D|[z] then .
D[] + w((u, 2)) Relaxation
Change to (z, (u, 2)) the element of vertex z in Q.
Change to D|z] the key of vertex z in Q.
return the tree T’

Running time: If extractmin, update in O(log |V|) then |E|log |V|.

Design and Analysis of Algorithms

	Slide 1: Lecture 15 Minimum Spanning Trees
	Slide 2: Spanning Tree
	Slide 3: Spanning Tree
	Slide 4: Spanning Tree
	Slide 5: Spanning Tree
	Slide 6: Spanning Tree
	Slide 7: Minimum Spanning Tree
	Slide 8: Minimum Spanning Tree
	Slide 9: Minimum Spanning Tree
	Slide 10: Minimum Spanning Tree
	Slide 11: Minimum Spanning Tree
	Slide 12: Kruskal’s Algorithm for MSTs
	Slide 13: Kruskal’s Algorithm for MSTs
	Slide 14: Kruskal’s Algorithm for MSTs
	Slide 15: Kruskal’s Algorithm for MSTs
	Slide 16: Kruskal’s Algorithm for MSTs
	Slide 17: Kruskal’s Algorithm for MSTs
	Slide 18: Kruskal’s Algorithm for MSTs
	Slide 19: Kruskal’s Algorithm for MSTs
	Slide 20: Kruskal’s Algorithm for MSTs
	Slide 21: Kruskal’s Algorithm for MSTs
	Slide 22: Kruskal’s Algorithm for MSTs
	Slide 23: Kruskal’s Algorithm for MSTs
	Slide 24: Kruskal’s Algorithm for MSTs
	Slide 25: Kruskal’s Algorithm for MSTs
	Slide 26: Kruskal’s Algorithm for MSTs
	Slide 27: Kruskal’s Algorithm for MSTs
	Slide 28: Kruskal’s Algorithm for MSTs
	Slide 29: Prim’s Algorithm for MSTs
	Slide 30: Prim’s Algorithm for MSTs
	Slide 31: Prim’s Algorithm for MSTs
	Slide 32: Prim’s Algorithm for MSTs
	Slide 33: Prim’s Algorithm for MSTs
	Slide 34: Prim’s Algorithm for MSTs
	Slide 35: Prim’s Algorithm for MSTs
	Slide 36: Prim’s Algorithm for MSTs
	Slide 37: Prim’s Algorithm for MSTs
	Slide 38: Prim’s Algorithm for MSTs
	Slide 39: Prim’s Algorithm for MSTs
	Slide 40: Prim’s Algorithm for MSTs
	Slide 41: Prim’s Algorithm for MSTs
	Slide 42: Prim’s Algorithm for MSTs

