

Lecture 14

Greedy Method: Fractional Knapsack, Interval scheduling

CS 161 Design and Analysis of Algorithms Ioannis Panageas

Greedy method

The greedy method is a general algorithm design technique, in which given:

- configurations: different choices we need to make
- objective function: a score assigned to all configurations, which we want to either maximize or minimize

We should make choices greedily: We can find a globallyoptimal solution by a series of local improvements from a starting configuration.

Greedy method

The greedy method is a general algorithm design technique, in which given:

- configurations: different choices we need to make
- objective function: a score assigned to all configurations, which we want to either maximize or minimize

We should make choices greedily: We can find a globallyoptimal solution by a series of local improvements from a starting configuration.

Example: Maxflow problem.

Configurations: All possible flow functions. Objective function: Maximize flow value. *Ford-Fulkerson makes choices greedily starting from flow* $f = 0$ *.*

Problem 1: Given a value X and notes $\{1, 2, 5, 10, 20, 50, 100\}$, find the minimum number of notes to create value X . You can use each note as many times as you want.

Problem 1: Given a value X and notes $\{1, 2, 5, 10, 20, 50, 100\}$, find the minimum number of notes to create value X . You can use each note as many times as you want.

Answer: Greedy approach works. Pick largest note that is at most X and subtract from X . Repeat until value becomes 0. E.g., for X=1477, you need fourteen 100s, one 50, one 20, one 5 and one 2.

Problem 1: Given a value X and notes $\{1, 2, 5, 10, 20, 50, 100\}$, find the minimum number of notes to create value X . You can use each note as many times as you want.

Answer: Greedy approach works. Pick largest note that is at most X and subtract from X . Repeat until value becomes 0. E.g., for X=1477, you need fourteen 100s, one 50, one 20, one 5 and one 2.

Problem 2: Given a value X and notes $\{1, 2, 7, 10\}$, find the minimum number of notes to create value X . You can use each note as many times as you want.

Problem 1: Given a value X and notes $\{1, 2, 5, 10, 20, 50, 100\}$, find the minimum number of notes to create value X . You can use each note as many times as you want.

Answer: Greedy approach works. Pick largest note that is at most X and subtract from X . Repeat until value becomes 0. E.g., for X=1477, you need fourteen 100s, one 50, one 20, one 5 and one 2.

Problem 2: Given a value X and notes $\{1, 2, 7, 10\}$, find the minimum number of notes to create value X . You can use each note as many times as you want.

Answer: Greedy approach does not work as before. E.g., for X=14, you need two 7s, but greedy will give one 10, two 2s.

Problem 1: Given a value X and notes $\{1, 2, 5, 10, 20, 50, 100\}$, find the minimum number of notes to create value X . You can use each note as many times as you want.

Answer: Greedy approach works. Pick largest note that is at most X and subtract from X . Repeat until value becomes 0. E.g., for X=1477, you need fourteen 100s, one 50, one 20, one 5 and one 2.

Problem 2: Given a value X and notes $\{1, 2, 7, 10\}$, find the minimum number of notes to create value X . You can use each note as many times as you want.

Answer: Greedy approach does not work as before. E.g., for X=14, you need two 7s, but greedy will give one 10, two 2s.

Greedy does not work always

Problem: A set of n items, with each item i having positive weight w_i and positive value v_i . You are asked to choose items with maximum total value so that the total weight is at most W . We are allowed to take fractional amounts (some percentage of each item).

Problem: A set of n items, with each item i having positive weight w_i and positive value v_i . You are asked to choose items with maximum total value so that the total weight is at most W . We are allowed to take fractional amounts (some percentage of each item).

Idea: Greedy approach. Keep taking item with highest value to weight ratio until knapsack is full or run out of items.

 $value = 0

Idea: Greedy approach. Keep taking item with highest value to weight ratio until knapsack is full or run out of items.

 $value = 0

Idea: Greedy approach. Keep taking item with highest value to weight ratio until knapsack is full or run out of items.

 $W = 9$ ml $value = 50

Idea: Greedy approach. Keep taking item with highest value to weight ratio until knapsack is full or run out of items.

 $W = 9$ ml $value = 50

Idea: Greedy approach. Keep taking item with highest value to weight ratio until knapsack is full or run out of items.

 $W = 7$ ml $value = 90

Idea: Greedy approach. Keep taking item with highest value to weight ratio until knapsack is full or run out of items.

Idea: Greedy approach. Keep taking item with highest value to weight ratio until knapsack is full or run out of items.

 $W = 1$ ml $value = 120

Idea: Greedy approach. Keep taking item with highest value to weight ratio until knapsack is full or run out of items.

 $W = 1$ ml $value = 120

Idea: Greedy approach. Keep taking item with highest value to weight ratio until knapsack is full or run out of items.

 $W = 0$ ml $value = 124

Running time: ?

Idea: Greedy approach. Keep taking item with highest value to weight ratio until knapsack is full or run out of items.

$W = 0$ ml $value = 124

Running time: If we sort the items with respect to value to weight ratio then $\Theta(n \log n)$.

Pseudocode:

Items with $v[.,w[],$ knapsack with W

For $i=1$ to n do

$$
\mathbf{r}[i] \leftarrow \frac{v[i]}{w[i]}
$$

 $w \leftarrow 0$ $val \leftarrow 0$

While $w < W$ do

Remove item i with highest $r[i]$ If $w + w_i \leq W$ then

$$
w \leftarrow w + w_i
$$

$$
val \leftarrow val + v[i]
$$

Else

 $w \leftarrow W$, $val \leftarrow val + (W - w) \cdot r[i]$ return val

Pseudocode:

Items with $v[.,w[],$ knapsack with W

For
$$
i = 1
$$
 to *n* do
\n
$$
r[i] \leftarrow \frac{v[i]}{w[i]}
$$
\n
$$
w \leftarrow 0
$$
\n
$$
val \leftarrow 0
$$
\nInitialization

While knapsack not full

If whole item fits

While
$$
w < W
$$
 do

Remove item i with highest $r[i]$

$$
\mathbf{If} \,\, w + w_i \leq W \,\, \mathbf{then}
$$

$$
w \leftarrow w + w_i
$$

val \leftarrow val $+ v[i]$

$$
w \leftarrow W, val \leftarrow val + (W - w) \cdot r[i]
$$
return val

Pseudocode:

Items with $v||, w||$, knapsack with W

For $i = 1$ to n do
 $r[i] \leftarrow \frac{v[i]}{w[i]}$ $w \leftarrow 0$ $val \leftarrow 0$ **Sort** $r[1], ..., r[n]$ While $w < W$ do **Remove** item i with highest $r[i]$ If $w + w_i \leq W$ then $w \leftarrow w + w_i$ $val \leftarrow val + v[i]$ Else

 $w \leftarrow W$, $val \leftarrow val + (W - w) \cdot r[i]$ return val

This is fast, in $O(1)$ time.

Why greedy works: General argument. Suppose there is a better solution. Assume items are order in decreasing order of value per weight, i.e., $r_1 \geq r_2 \dots \geq r_n$.

 \circ Let $x_1, ..., x_n$ be the weight values of the items in the knapsack for the better solution.

Why greedy works: General argument. Suppose there is a better solution. Assume items are order in decreasing order of value per weight, i.e., $r_1 \geq r_2 \dots \geq r_n$.

- \circ Let $x_1, ..., x_n$ be the weight values of the items in the knapsack for the better solution.
- Since it is different from what greedy returns, there must be indices *i*, *j* so that $r_i > r_j$ and $x_j > 0$ and $x_i < w_i$.

Why greedy works: General argument. Suppose there is a better solution. Assume items are order in decreasing order of value per weight, i.e., $r_1 \geq r_2 \dots \geq r_n$.

- \circ Let $x_1, ..., x_n$ be the weight values of the items in the knapsack for the better solution.
- Since it is different from what greedy returns, there must be indices *i*, *j* so that $r_i > r_j$ and $x_j > 0$ and $x_i < w_i$.

value per weight of item i is larger than j

Why greedy works: General argument. Suppose there is a better solution. Assume items are order in decreasing order of value per weight, i.e., $r_1 \geq r_2 \dots \geq r_n$.

- \circ Let $x_1, ..., x_n$ be the weight values of the items in the knapsack for the better solution.
- Since it is different from what greedy returns, there must be indices *i*, *j* so that $r_i > r_j$ and $x_j > 0$ and $x_i < w_i$.

value per weight of item i is larger than j

Part or all of item j is in the knapsack

Why greedy works: General argument. Suppose there is a better solution. Assume items are order in decreasing order of value per weight, i.e., $r_1 \geq r_2 \dots \geq r_n$.

- \circ Let $x_1, ..., x_n$ be the weight values of the items in the knapsack for the better solution.
- Since it is different from what greedy returns, there must be indices *i*, *j* so that $r_i > r_j$ and $x_j > 0$ and $x_i < w_i$.

value per weight of item i is larger than j

Part or all of item j is in the knapsack

Not all of item i is in the knapsack

Why greedy works: General argument. Suppose there is a better solution. Assume items are order in decreasing order of value per weight, i.e., $r_1 \geq r_2 \dots \geq r_n$.

- \circ Let $x_1, ..., x_n$ be the weight values of the items in the knapsack for the better solution.
- Since it is different from what greedy returns, there must be indices *i*, *j* so that $r_i > r_j$ and $x_j > 0$ and $x_i < w_i$.
- \circ Exchange part of item i, with part of item j. How much?

Say the minimum of $w_i - x_i$ and x_j .

Why greedy works: General argument. Suppose there is a better solution. Assume items are order in decreasing order of value per weight, i.e., $r_1 \geq r_2 \dots \geq r_n$.

- \circ Let $x_1, ..., x_n$ be the weight values of the items in the knapsack for the better solution.
- Since it is different from what greedy returns, there must be indices *i*, *j* so that $r_i > r_j$ and $x_j > 0$ and $x_i < w_i$.
- \circ Exchange part of item i, with part of item j. How much?

Say the minimum of $w_i - x_i$ and x_j .

Total value will increase by $(r_i-r_j)\cdot\, \min(w_i-x_i,x_j)$

Problem: Given: a set T of n tasks, each having a start time s_i and a finish time f_i (where $s_i < f_i$) Goal: Perform all the tasks using a minimum number of machines. A machine can serve one task at a given time.

Example: 7 Tasks, [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8]

Problem: Given: a set T of n tasks, each having a start time s_i and a finish time f_i (where $s_i < f_i$) Goal: Perform all the tasks using a minimum number of machines. A machine can serve one task at a given time.

Example: 7 Tasks, [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8]

Idea: Greedy approach. Consider tasks in increasing order of their start time. Assign first task to machine 1 and set $K = 1$. When considering a new task, if all machines are busy, create a new machine, set $K = K + 1$ and assign the new task to the new machine otherwise assign the new task to an available machine.

Example: 7 Tasks, [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8]

Idea: Greedy approach. Consider tasks in increasing order of their start time. Assign first task to machine 1 and set $K = 1$. When considering a new task, if all machines are busy, create a new machine, set $K = K + 1$ and assign the new task to the new machine otherwise assign the new task to an available machine.

Example: 7 Tasks, [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8]

 $K=1$

Machine 1 $|1,4|$

Idea: Greedy approach. Consider tasks in increasing order of their start time. Assign first task to machine 1 and set $K = 1$. When considering a new task, if all machines are busy, create a new machine, set $K = K + 1$ and assign the new task to the new machine otherwise assign the new task to an available machine.

Example: 7 Tasks, [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8]

 $K=2$

Machine 1 $|1,4|$

Machine 2 $[1,3]$

Idea: Greedy approach. Consider tasks in increasing order of their start time. Assign first task to machine 1 and set $K = 1$. When considering a new task, if all machines are busy, create a new machine, set $K = K + 1$ and assign the new task to the new machine otherwise assign the new task to an available machine.

Example: 7 Tasks, [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8]

 $K=3$

Machine 1 $[1,4]$

- Machine 2 $[1,3]$
- Machine 3 $[2,5]$

Idea: Greedy approach. Consider tasks in increasing order of their start time. Assign first task to machine 1 and set $K = 1$. When considering a new task, if all machines are busy, create a new machine, set $K = K + 1$ and assign the new task to the new machine otherwise assign the new task to an available machine.

Example: 7 Tasks, [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8]

 $K=3$

Machine 1 $[1,4]$ Machine 2 $[1,3]$ $[3,7]$ Machine 3 $[2,5]$

Idea: Greedy approach. Consider tasks in increasing order of their start time. Assign first task to machine 1 and set $K = 1$. When considering a new task, if all machines are busy, create a new machine, set $K = K + 1$ and assign the new task to the new machine otherwise assign the new task to an available machine.

Example: 7 Tasks, [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8]

 $K=3$

Machine 1 $[1,4]$ $[4,7]$

Machine 2 $[1,3]$ $[3,7]$

Machine 3 $[2,5]$

Idea: Greedy approach. Consider tasks in increasing order of their start time. Assign first task to machine 1 and set $K = 1$. When considering a new task, if all machines are busy, create a new machine, set $K = K + 1$ and assign the new task to the new machine otherwise assign the new task to an available machine.

Example: 7 Tasks, [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8]

 $K=3$

Idea: Greedy approach. Consider tasks in increasing order of their start time. Assign first task to machine 1 and set $K = 1$. When considering a new task, if all machines are busy, create a new machine, set $K = K + 1$ and assign the new task to the new machine otherwise assign the new task to an available machine.

Example: 7 Tasks, [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8]

 $K=3$

Machine 3 $[2,5]$ $[6,9]$

Idea: Greedy approach. Consider tasks in increasing order of their start time. Assign first task to machine 1 and set $K = 1$. When considering a new task, if all machines are busy, create a new machine, set $K = K + 1$ and assign the new task to the new machine otherwise assign the new task to an available machine.

Why greedy works: General argument. Suppose there is a better solution, using $k - 1$ machines instead of k.

Idea: Greedy approach. Consider tasks in increasing order of their start time. Assign first task to machine 1 and set $K = 1$. When considering a new task, if all machines are busy, create a new machine, set $K = K + 1$ and assign the new task to the new machine otherwise assign the new task to an available machine.

Why greedy works: General argument. Suppose there is a better solution, using $k-1$ machines instead of k.

 \circ Let *i* be the first task that used Machine k . At that moment,

there are must be $k-1$ conflicting tasks with task i.

Idea: Greedy approach. Consider tasks in increasing order of their start time. Assign first task to machine 1 and set $K = 1$. When considering a new task, if all machines are busy, create a new machine, set $K = K + 1$ and assign the new task to the new machine otherwise assign the new task to an available machine.

Why greedy works: General argument. Suppose there is a better solution, using $k-1$ machines instead of k.

- \circ Let *i* be the first task that used Machine k . At that moment, there are must be $k-1$ conflicting tasks with task i.
- \circ All these $k-1$ tasks have finishing times larger than s_i and starting times less than or equal to s_i .

Idea: Greedy approach. Consider tasks in increasing order of their start time. Assign first task to machine 1 and set $K = 1$. When considering a new task, if all machines are busy, create a new machine, set $K = K + 1$ and assign the new task to the new machine otherwise assign the new task to an available machine.

Why greedy works: General argument. Suppose there is a better solution, using $k-1$ machines instead of k.

 \circ Let *i* be the first task that used Machine k . At that moment,

there are must be $k-1$ conflicting tasks with task i.

- \circ All these $k-1$ tasks have finishing times larger than s_i and starting times less than or equal to s_i . These tasks are conflict with each other!
- \circ So we have k tasks that conflict with each other, we need k machines!

Idea: Greedy approach. Consider tasks in increasing order of their start time. Assign first task to machine 1 and set $K = 1$. When considering a new task, if all machines are busy, create a new machine, set $K = K + 1$ and assign the new task to the new machine otherwise assign the new task to an available machine.

Why greedy works: General argument. Suppose there is a better solution, using $k-1$ machines instead of k.

 \circ Let *i* be the first task that used Machine k . At that moment,

there are must be $k-1$ conflicting tasks with task i.

- \circ All these $k-1$ tasks have finishing times larger than s_i and starting times less than or equal to s_i . These tasks are conflict with each other!
- \circ So we have k tasks that conflict with each other, we need k machines! Contradiction!