
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 14

Greedy Method: Fractional Knapsack, 
Interval scheduling



Greedy method
The greedy method is a general algorithm design technique, in 
which given:

– configurations: different choices we need to make

– objective function: a score assigned to all configurations, 
which we want to either maximize or minimize

We should make choices greedily: We can find a globally-
optimal solution by a series of local improvements from a 
starting configuration.

Design and Analysis of Algorithms



Greedy method
The greedy method is a general algorithm design technique, in 
which given:

– configurations: different choices we need to make

– objective function: a score assigned to all configurations, 
which we want to either maximize or minimize

We should make choices greedily: We can find a globally-
optimal solution by a series of local improvements from a 
starting configuration.

Example: Maxflow problem. 
Configurations: All possible flow functions. Objective function: Maximize flow value.

Ford-Fulkerson makes choices greedily starting from flow 𝒇 = 𝟎.

Design and Analysis of Algorithms



Greedy does not always work

Design and Analysis of Algorithms

Problem 1: Given a value 𝑋 and notes {1, 2, 5, 10, 20, 50, 100}, find 
the minimum number of notes to create value 𝑋. You can use each 
note as many times as you want.



Greedy does not always work

Design and Analysis of Algorithms

Problem 1: Given a value 𝑋 and notes {1, 2, 5, 10, 20, 50, 100}, find 
the minimum number of notes to create value 𝑋. You can use each 
note as many times as you want.

Answer: Greedy approach works. Pick largest note that is at most 𝑋 
and subtract from 𝑋. Repeat until value becomes 0.
E.g., for X=1477, you need fourteen 100s, one 50, one 20, one 5 
and one 2.



Greedy does not always work

Design and Analysis of Algorithms

Problem 1: Given a value 𝑋 and notes {1, 2, 5, 10, 20, 50, 100}, find 
the minimum number of notes to create value 𝑋. You can use each 
note as many times as you want.

Answer: Greedy approach works. Pick largest note that is at most 𝑋 
and subtract from 𝑋. Repeat until value becomes 0.
E.g., for X=1477, you need fourteen 100s, one 50, one 20, one 5 
and one 2.

Problem 2: Given a value 𝑋 and notes {1, 2, 7, 10}, find the 
minimum number of notes to create value 𝑋. You can use each 
note as many times as you want.



Greedy does not always work

Design and Analysis of Algorithms

Problem 1: Given a value 𝑋 and notes {1, 2, 5, 10, 20, 50, 100}, find 
the minimum number of notes to create value 𝑋. You can use each 
note as many times as you want.

Answer: Greedy approach works. Pick largest note that is at most 𝑋 
and subtract from 𝑋. Repeat until value becomes 0.
E.g., for X=1477, you need fourteen 100s, one 50, one 20, one 5 
and one 2.

Problem 2: Given a value 𝑋 and notes {1, 2, 7, 10}, find the 
minimum number of notes to create value 𝑋. You can use each 
note as many times as you want.

Answer: Greedy approach does not work as before. 
E.g., for X=14, you need two 7s, but greedy will give one 10, two 2s.



Greedy does not always work

Design and Analysis of Algorithms

Problem 1: Given a value 𝑋 and notes {1, 2, 5, 10, 20, 50, 100}, find 
the minimum number of notes to create value 𝑋. You can use each 
note as many times as you want.

Answer: Greedy approach works. Pick largest note that is at most 𝑋 
and subtract from 𝑋. Repeat until value becomes 0.
E.g., for X=1477, you need fourteen 100s, one 50, one 20, one 5 
and one 2.

Problem 2: Given a value 𝑋 and notes {1, 2, 7, 10}, find the 
minimum number of notes to create value 𝑋. You can use each 
note as many times as you want.

Answer: Greedy approach does not work as before. 
E.g., for X=14, you need two 7s, but greedy will give one 10, two 2s.

Greedy does not work always



Fractional Knapsack

Design and Analysis of Algorithms

1 2 3 4 5

Weight: 4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Value:
($ per ml)

$3 $4 $20 $5 $50

Value: “knapsack”
  with 10ml

Problem: A set of 𝑛 items, with each item 𝑖 having positive weight 
𝑤𝑖 and positive value 𝑣𝑖.  You are asked to choose items with 
maximum total value so that the total weight is at most 𝑊. We are 
allowed to take fractional amounts (some percentage of each item).



Fractional Knapsack

Design and Analysis of Algorithms

1 2 3 4 5

Weight:

Value:

4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Solution:
• 1 ml of 5
• 2 ml of 3
• 6 ml of 4
• 1 ml of 2
Total Value: $124

“knapsack”
  with 10mlValue:

($ per ml)

$3 $4 $20 $5 $50

Problem: A set of 𝑛 items, with each item 𝑖 having positive weight 
𝑤𝑖 and positive value 𝑣𝑖.  You are asked to choose items with 
maximum total value so that the total weight is at most 𝑊. We are 
allowed to take fractional amounts (some percentage of each item).



Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2 3 4 5

Weight:

Value:

4 ml 8 ml 2 ml 6 ml

$12 $32 $40 $30 $50

Items:

Value: $3 $4 $20 $5 $50

1 ml

𝑊 = 10 ml
𝑣𝑎𝑙𝑢𝑒 =  $0



Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2 3 4 5

Weight:

Value:

4 ml 8 ml 2 ml

$12 $32 $40 $30 $50

Items:

Value: $3 $4 $20 $5 $50

6 ml 1 ml

𝑊 = 10 ml
𝑣𝑎𝑙𝑢𝑒 =  $0



Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2 3 4

Weight:

Value:

4 ml 8 ml 2 ml

$12 $32 $40 $30

Items:

Value: $3 $4 $20 $5

6 ml

𝑊 = 9 ml
𝑣𝑎𝑙𝑢𝑒 =  $50



Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2 3 4

Weight:

Value:

4 ml 8 ml 2 ml

$12 $32 $40 $30

Items:

Value: $3 $4 $20 $5

6 ml

𝑊 = 9 ml
𝑣𝑎𝑙𝑢𝑒 =  $50



Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2 4

Weight:

Value:

4 ml 8 ml

$12 $32 $30

Items:

Value: $3 $4 $5

6 ml

𝑊 = 7 ml
𝑣𝑎𝑙𝑢𝑒 =  $90



Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2 4

Weight:

Value:

4 ml 8 ml

$12 $32 $30

Items:

Value: $3 $4 $5

6 ml

𝑊 = 7 ml
𝑣𝑎𝑙𝑢𝑒 =  $90



Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2

Weight:

Value:

4 ml 8 ml

$12 $32

Items:

Value: $3 $4
𝑊 =  1 ml
𝑣𝑎𝑙𝑢𝑒 =  $120



Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2

Weight:

Value:

4 ml 8 ml

$12 $32

Items:

Value: $3 $4
𝑊 =  1 ml
𝑣𝑎𝑙𝑢𝑒 =  $120



Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2

Weight:

Value:

4 ml 7 ml

$12 $32

Items:

Value: $3 $4
𝑊 = 0 ml
𝑣𝑎𝑙𝑢𝑒 =  $124

Running time: ?



Fractional Knapsack

Design and Analysis of Algorithms

Idea: Greedy approach. Keep taking item with highest value to 
weight ratio until knapsack is full or run out of items.

1 2

Weight:

Value:

4 ml 7 ml

$12 $32

Items:

Value: $3 $4
𝑊 = 0 ml
𝑣𝑎𝑙𝑢𝑒 =  $124

Running time: If we sort the items with respect to value to weight 
ratio then Θ(𝑛 log 𝑛).



Fractional Knapsack

Design and Analysis of Algorithms

Pseudocode:



Fractional Knapsack

Design and Analysis of Algorithms

Pseudocode:

Compute the ratios

Initialization

While knapsack not full

If whole item fits



Fractional Knapsack

Design and Analysis of Algorithms

Pseudocode:

Compute the ratios

Initialization

While knapsack not full

If whole item fits

Percentage of item i 
that fits



Fractional Knapsack

Design and Analysis of Algorithms

Pseudocode:

This is fast, in 𝑶(𝟏) time.



Fractional Knapsack

Design and Analysis of Algorithms

Why greedy works: General argument. Suppose there is a better 
solution. Assume items are order in decreasing order of value per 
weight, i.e., 𝑟1 ≥  𝑟2  … ≥  𝑟𝑛.

○ Let 𝑥1, … , 𝑥𝑛 be the weight values of the items in the 
knapsack for the better solution.



Fractional Knapsack

Design and Analysis of Algorithms

Why greedy works: General argument. Suppose there is a better 
solution. Assume items are order in decreasing order of value per 
weight, i.e., 𝑟1 ≥  𝑟2  … ≥  𝑟𝑛.

○ Let 𝑥1, … , 𝑥𝑛 be the weight values of the items in the 
knapsack for the better solution.

○ Since it is different from what greedy returns, there must be 
indices 𝑖, 𝑗 so that 𝑟𝑖 > 𝑟𝑗 and 𝑥𝑗 > 0 and 𝑥𝑖 < 𝑤𝑖 .



Fractional Knapsack

Design and Analysis of Algorithms

Why greedy works: General argument. Suppose there is a better 
solution. Assume items are order in decreasing order of value per 
weight, i.e., 𝑟1 ≥  𝑟2  … ≥  𝑟𝑛.

○ Let 𝑥1, … , 𝑥𝑛 be the weight values of the items in the 
knapsack for the better solution.

○ Since it is different from what greedy returns, there must be 
indices 𝑖, 𝑗 so that 𝑟𝑖 > 𝑟𝑗 and 𝑥𝑗 > 0 and 𝑥𝑖 < 𝑤𝑖 .

value per weight of 
item 𝑖 is larger than 𝑗



Fractional Knapsack

Design and Analysis of Algorithms

Why greedy works: General argument. Suppose there is a better 
solution. Assume items are order in decreasing order of value per 
weight, i.e., 𝑟1 ≥  𝑟2  … ≥  𝑟𝑛.

○ Let 𝑥1, … , 𝑥𝑛 be the weight values of the items in the 
knapsack for the better solution.

○ Since it is different from what greedy returns, there must be 
indices 𝑖, 𝑗 so that 𝑟𝑖 > 𝑟𝑗 and 𝑥𝑗 > 0 and 𝑥𝑖 < 𝑤𝑖 .

Part or all of item 𝑗
is in the knapsack

value per weight of 
item 𝑖 is larger than 𝑗



Fractional Knapsack

Design and Analysis of Algorithms

Why greedy works: General argument. Suppose there is a better 
solution. Assume items are order in decreasing order of value per 
weight, i.e., 𝑟1 ≥  𝑟2  … ≥  𝑟𝑛.

○ Let 𝑥1, … , 𝑥𝑛 be the weight values of the items in the 
knapsack for the better solution.

○ Since it is different from what greedy returns, there must be 
indices 𝑖, 𝑗 so that 𝑟𝑖 > 𝑟𝑗 and 𝑥𝑗 > 0 and 𝑥𝑖 < 𝑤𝑖 .

Part or all of item 𝑗
is in the knapsack

value per weight of 
item 𝑖 is larger than 𝑗

Not all of item 𝑖
is in the knapsack



Fractional Knapsack

Design and Analysis of Algorithms

Why greedy works: General argument. Suppose there is a better 
solution. Assume items are order in decreasing order of value per 
weight, i.e., 𝑟1 ≥  𝑟2  … ≥  𝑟𝑛.

○ Let 𝑥1, … , 𝑥𝑛 be the weight values of the items in the 
knapsack for the better solution.

○ Since it is different from what greedy returns, there must be 
indices 𝑖, 𝑗 so that 𝑟𝑖 > 𝑟𝑗 and 𝑥𝑗 > 0 and 𝑥𝑖 < 𝑤𝑖 .

○ Exchange part of item 𝑖, with part of item 𝑗. How much?

Say the minimum of 𝑤𝑖 − 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗. 



Fractional Knapsack

Design and Analysis of Algorithms

Why greedy works: General argument. Suppose there is a better 
solution. Assume items are order in decreasing order of value per 
weight, i.e., 𝑟1 ≥  𝑟2  … ≥  𝑟𝑛.

○ Let 𝑥1, … , 𝑥𝑛 be the weight values of the items in the 
knapsack for the better solution.

○ Since it is different from what greedy returns, there must be 
indices 𝑖, 𝑗 so that 𝑟𝑖 > 𝑟𝑗 and 𝑥𝑗 > 0 and 𝑥𝑖 < 𝑤𝑖 .

○ Exchange part of item 𝑖, with part of item 𝑗. How much?

Say the minimum of 𝑤𝑖 − 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗. 

Total value will increase by 𝒓𝒊 − 𝒓𝒋 ⋅  min(𝒘𝒊 − 𝒙𝒊, 𝒙𝒋)



Design and Analysis of Algorithms

Task scheduling
Problem: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖  and a 
finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform all the tasks using a minimum number of machines.
A machine can serve one task at a given time.



Design and Analysis of Algorithms

Task scheduling
Problem: Given: a set 𝑇 of 𝑛 tasks, each having a start time 𝑠𝑖  and a 
finish time 𝑓𝑖 (where 𝑠𝑖 < 𝑓𝑖)
Goal: Perform all the tasks using a minimum number of machines.
A machine can serve one task at a given time.

1 98765432

Machine 1

Machine 3

Machine 2



Design and Analysis of Algorithms

Task scheduling
Idea: Greedy approach. Consider tasks in increasing order of their 
start time. Assign first task to machine 1 and set 𝐾 = 1.
When considering a new task, if all machines are busy, create a new 
machine, set 𝐾 = 𝐾 + 1 and assign the new task to the new 
machine otherwise assign the new task to an available machine.



Design and Analysis of Algorithms

Task scheduling
Idea: Greedy approach. Consider tasks in increasing order of their 
start time. Assign first task to machine 1 and set 𝐾 = 1.
When considering a new task, if all machines are busy, create a new 
machine, set 𝐾 = 𝐾 + 1 and assign the new task to the new 
machine otherwise assign the new task to an available machine.



Design and Analysis of Algorithms

Task scheduling
Idea: Greedy approach. Consider tasks in increasing order of their 
start time. Assign first task to machine 1 and set 𝐾 = 1.
When considering a new task, if all machines are busy, create a new 
machine, set 𝐾 = 𝐾 + 1 and assign the new task to the new 
machine otherwise assign the new task to an available machine.



Design and Analysis of Algorithms

Task scheduling
Idea: Greedy approach. Consider tasks in increasing order of their 
start time. Assign first task to machine 1 and set 𝐾 = 1.
When considering a new task, if all machines are busy, create a new 
machine, set 𝐾 = 𝐾 + 1 and assign the new task to the new 
machine otherwise assign the new task to an available machine.



Design and Analysis of Algorithms

Task scheduling
Idea: Greedy approach. Consider tasks in increasing order of their 
start time. Assign first task to machine 1 and set 𝐾 = 1.
When considering a new task, if all machines are busy, create a new 
machine, set 𝐾 = 𝐾 + 1 and assign the new task to the new 
machine otherwise assign the new task to an available machine.



Design and Analysis of Algorithms

Task scheduling
Idea: Greedy approach. Consider tasks in increasing order of their 
start time. Assign first task to machine 1 and set 𝐾 = 1.
When considering a new task, if all machines are busy, create a new 
machine, set 𝐾 = 𝐾 + 1 and assign the new task to the new 
machine otherwise assign the new task to an available machine.



Design and Analysis of Algorithms

Task scheduling
Idea: Greedy approach. Consider tasks in increasing order of their 
start time. Assign first task to machine 1 and set 𝐾 = 1.
When considering a new task, if all machines are busy, create a new 
machine, set 𝐾 = 𝐾 + 1 and assign the new task to the new 
machine otherwise assign the new task to an available machine.



Design and Analysis of Algorithms

Task scheduling
Idea: Greedy approach. Consider tasks in increasing order of their 
start time. Assign first task to machine 1 and set 𝐾 = 1.
When considering a new task, if all machines are busy, create a new 
machine, set 𝐾 = 𝐾 + 1 and assign the new task to the new 
machine otherwise assign the new task to an available machine.



Design and Analysis of Algorithms

Task scheduling
Idea: Greedy approach. Consider tasks in increasing order of their 
start time. Assign first task to machine 1 and set 𝐾 = 1.
When considering a new task, if all machines are busy, create a new 
machine, set 𝐾 = 𝐾 + 1 and assign the new task to the new 
machine otherwise assign the new task to an available machine.

Why greedy works: General argument. Suppose there is a better 
solution, using 𝑘 − 1 machines instead of 𝑘.



Design and Analysis of Algorithms

Task scheduling
Idea: Greedy approach. Consider tasks in increasing order of their 
start time. Assign first task to machine 1 and set 𝐾 = 1.
When considering a new task, if all machines are busy, create a new 
machine, set 𝐾 = 𝐾 + 1 and assign the new task to the new 
machine otherwise assign the new task to an available machine.

Why greedy works: General argument. Suppose there is a better 
solution, using 𝑘 − 1 machines instead of 𝑘.

○ Let 𝑖 be the first task that used Machine 𝑘. At that moment, 

there are must be 𝑘 − 1 conflicting tasks with task 𝑖.



Design and Analysis of Algorithms

Task scheduling
Idea: Greedy approach. Consider tasks in increasing order of their 
start time. Assign first task to machine 1 and set 𝐾 = 1.
When considering a new task, if all machines are busy, create a new 
machine, set 𝐾 = 𝐾 + 1 and assign the new task to the new 
machine otherwise assign the new task to an available machine.

Why greedy works: General argument. Suppose there is a better 
solution, using 𝑘 − 1 machines instead of 𝑘.

○ Let 𝑖 be the first task that used Machine 𝑘. At that moment, 

there are must be 𝑘 − 1 conflicting tasks with task 𝑖.

○ All these 𝑘 − 1 tasks have finishing times larger than 𝑠𝑖 and 
starting times less than or equal to 𝑠𝑖. 



Design and Analysis of Algorithms

Task scheduling
Idea: Greedy approach. Consider tasks in increasing order of their 
start time. Assign first task to machine 1 and set 𝐾 = 1.
When considering a new task, if all machines are busy, create a new 
machine, set 𝐾 = 𝐾 + 1 and assign the new task to the new 
machine otherwise assign the new task to an available machine.

Why greedy works: General argument. Suppose there is a better solution, 
using 𝑘 − 1 machines instead of 𝑘.

○ Let 𝑖 be the first task that used Machine 𝑘. At that moment, 

there are must be 𝑘 − 1 conflicting tasks with task 𝑖.

○ All these 𝑘 − 1 tasks have finishing times larger than 𝑠𝑖 and 
starting times less than or equal to 𝑠𝑖. These tasks are conflict 
with each other! 

○ So we have 𝑘 tasks that conflict with each other, we need k 
machines!



Design and Analysis of Algorithms

Task scheduling
Idea: Greedy approach. Consider tasks in increasing order of their 
start time. Assign first task to machine 1 and set 𝐾 = 1.
When considering a new task, if all machines are busy, create a new 
machine, set 𝐾 = 𝐾 + 1 and assign the new task to the new 
machine otherwise assign the new task to an available machine.

Why greedy works: General argument. Suppose there is a better solution, 
using 𝑘 − 1 machines instead of 𝑘.

○ Let 𝑖 be the first task that used Machine 𝑘. At that moment, 

there are must be 𝑘 − 1 conflicting tasks with task 𝑖.

○ All these 𝑘 − 1 tasks have finishing times larger than 𝑠𝑖 and 
starting times less than or equal to 𝑠𝑖. These tasks are conflict 
with each other! 

○ So we have 𝑘 tasks that conflict with each other, we need k 
machines! Contradiction!


	Slide 1:        Lecture 14  Greedy Method: Fractional Knapsack, Interval scheduling
	Slide 2: Greedy method
	Slide 3: Greedy method
	Slide 4: Greedy does not always work
	Slide 5: Greedy does not always work
	Slide 6: Greedy does not always work
	Slide 7: Greedy does not always work
	Slide 8: Greedy does not always work
	Slide 9: Fractional Knapsack
	Slide 10: Fractional Knapsack
	Slide 11: Fractional Knapsack
	Slide 12: Fractional Knapsack
	Slide 13: Fractional Knapsack
	Slide 14: Fractional Knapsack
	Slide 15: Fractional Knapsack
	Slide 16: Fractional Knapsack
	Slide 17: Fractional Knapsack
	Slide 18: Fractional Knapsack
	Slide 19: Fractional Knapsack
	Slide 20: Fractional Knapsack
	Slide 21: Fractional Knapsack
	Slide 22: Fractional Knapsack
	Slide 23: Fractional Knapsack
	Slide 24: Fractional Knapsack
	Slide 25: Fractional Knapsack
	Slide 26: Fractional Knapsack
	Slide 27: Fractional Knapsack
	Slide 28: Fractional Knapsack
	Slide 29: Fractional Knapsack
	Slide 30: Fractional Knapsack
	Slide 31: Fractional Knapsack
	Slide 32: Task scheduling
	Slide 33: Task scheduling
	Slide 34: Task scheduling
	Slide 35: Task scheduling
	Slide 36: Task scheduling
	Slide 37: Task scheduling
	Slide 38: Task scheduling
	Slide 39: Task scheduling
	Slide 40: Task scheduling
	Slide 41: Task scheduling
	Slide 42: Task scheduling
	Slide 43: Task scheduling
	Slide 44: Task scheduling
	Slide 45: Task scheduling
	Slide 46: Task scheduling

