
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 13

More problems on Maxflow, Maximum 
Matching, Baseball elimination, Vertex 
cover



Design and Analysis of Algorithms

Flow of a Network (Recap)
Definition: Function    from edges to non-negative 
integers so that for each edge 𝑒 it holds
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Flow of a Network (Recap)
Definition: Function    from edges to non-negative 
integers so that for each edge 𝑒 it holds
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Design and Analysis of Algorithms

Maxflow Problem (Recap) 
Problem: Given a network 𝐺, a source 𝒔 and a sink 𝒕, and capacities 
on the edges, compute the maximum possible flow value |𝑓∗|.
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Find the $ to get maxflow |𝑓∗|



Design and Analysis of Algorithms

Augmenting paths (Recap)

We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓. 
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.  

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣).
Imply the residual graph.
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Augmenting path: Path from 𝒔 to 𝒕 
with positive residual capacities.

𝑠 → 𝑣 → 𝑡 augmenting path
𝑠 → 𝑢 → 𝑤 → 𝑣 → 𝑡 augmenting path

𝑠 → 𝑢 → 𝑧 → 𝑡 is not



The Ford-Fulkerson Algorithm 
 

Design and Analysis of Algorithms

Main idea: Repeatedly search for an augmenting path 𝝅:

• If there is an augmenting path, augment flow with f() 
(minimum residual capacity among the edges of π) along the 
edges of π.

• If there is no augmenting path, terminate.

Remark: You can use DFS (or BFS) to search for an augmenting path.

Running time: 

Time to search for an augmenting path × number of updates. 
Θ |𝑉| + |𝐸| ⋅ |𝑓∗|

Updates increase flow by 1 unit onlyRunning time of DFS or BFS



Design and Analysis of Algorithms

Case study I: Capacities on the vertices
Problem: Given a network 𝐺, a source 𝒔 and a sink 𝒕, and capacities 
on the edges and vertices, compute the maximum possible flow 
value |𝑓∗|.
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Design and Analysis of Algorithms

Case study I: Capacities on the vertices

Main idea: Reduce it to classic Maxflow problem. To do that, we need to 

remove the capacity constraints on vertices. How?
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Design and Analysis of Algorithms

Case study I: Capacities on the vertices

Main idea: Reduce it to classic Maxflow problem. To do that, we need to 

remove the capacity constraints on vertices. How? 

Slow approach: Consider all possible capacities on incoming 
edges. Run Maxflow in all possible flow networks. 
Exponentially many.
 

w

0

7

9

3

0
w

1

7

9

1

1



Design and Analysis of Algorithms

Case study I: Capacities on the vertices

Main idea: Reduce it to classic Maxflow problem. To do that, we need to 

remove the capacity constraints on vertices. How?
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Fast approach: Transform the capacity on vertices to capacities 
on edges. For every vertex 𝑤, create two new vertices 
𝑤𝑖𝑛, 𝑤𝑜𝑢𝑡 and connect all incoming edges of 𝑤 to 𝑤𝑖𝑛 and all 
outgoing edges to 𝑤𝑜𝑢𝑡.
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Design and Analysis of Algorithms
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Case study I: Capacities on the vertices

s

t

uin uo

vin vo

zin zo

win

wo

6

5 1

2

3

1

1

6

5

2

3
9

7

3



Design and Analysis of Algorithms

Case study I: Capacities on the vertices

Running time: Θ(𝑉 + 𝐸) to create the new graph 
+ Ford-Fulkerson (or Edmonds-Karp).
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Another Question: What if you have multiple sources and/or 
sinks?
  



Case study II: Baseball Elimination

Design and Analysis of Algorithms

Problem: Let 𝑇 be a set of teams in baseball league. At any point 
during the season, each team, 𝑖  will have 𝑤𝑖 wins, and will have 𝑔𝑖 
games left to play. The task is to determine whether it is possible 
for team 𝑖 to finish the season in first place, given the games it has 
already won and the games it has left to play. Note that this 
depends on the games left for team 𝑖 but also depends on the 
respective schedules of the other teams.



Case study II: Baseball Elimination

Design and Analysis of Algorithms

Problem: Let 𝑇 be a set of teams in baseball league. At any point 
during the season, each team, 𝑖  will have 𝑤𝑖 wins, and will have 𝑔𝑖 
games left to play. The task is to determine whether it is possible 
for team 𝑖 to finish the season in first place, given the games it has 
already won and the games it has left to play. Note that this 
depends on the games left for team 𝑖 but also depends on the 
respective schedules of the other teams.

Question: Can Texas finish first? What about Oakland?



Case study II: Baseball Elimination

Design and Analysis of Algorithms

Question: Can Texas finish first? What about Oakland?

Answer: For Texas the answer is NO. It can win at most 79 wins.
For Oakland is also NO. Either LA or Seattle will definitely reach 82 wins.



Case study II: Baseball Elimination

Design and Analysis of Algorithms
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Case study II: Baseball Elimination

Design and Analysis of Algorithms

s t

For team 𝒊, capacity is 𝑾−𝒘𝒊



Design and Analysis of Algorithms

Intuition: Suppose 𝑘 wins all its games (𝑊 wins in total). All 
possible flows show how the rest of the games will proceed. 
Need to check if all games can be played without any other 
team exceeding 𝑊 wins. 

Case study II: Baseball Elimination

𝐌𝐚𝐱𝐟𝐥𝐨𝐰 in new graph
   
Maximum Matching in old graph



Design and Analysis of Algorithms

Intuition: Suppose 𝑘 wins all its games (𝑊 wins in total). All 
possible flows show how the rest of the games will proceed. 
Need to check if all games can be played without any other 
team exceeding 𝑊 wins. 

Case study II: Baseball Elimination

𝐌𝐚𝐱𝐟𝐥𝐨𝐰 in graph 
= # of remaining games (without 𝑘)
𝑘 can finish first.   



Case study III: Vertex Cover on 
Bipartite Graphs

Design and Analysis of Algorithms

Problem (Practice):  We use the term line of a matrix to mean 
either a row or a column. Given an 𝑛 × 𝑛 matrix of 0’s and 1's, your 
task is to find a smallest number of lines such that every 1 entry of 
the matrix is contained in one of the selected lines. 

    

1 0 1 1

0 1 0 0

0 1 1 0

0 1 0 0



Case study III: Vertex Cover on 
Bipartite Graphs

Design and Analysis of Algorithms

Problem (Practice):  We use the term line of a matrix to mean 
either a row or a column. Given an 𝑛 × 𝑛 matrix of 0’s and 1's, your 
task is to find a smallest number of lines such that every 1 entry of 
the matrix is contained in one of the selected lines. 

    

1 0 1 1

0 1 0 0

0 1 1 0

0 1 0 0

Three lines. Can you do it with two?



Case study III: Vertex Cover on 
Bipartite Graphs

Design and Analysis of Algorithms

Idea:  Create a bipartite graph. 

    1 0 1 1

0 1 0 0

0 1 1 0

0 1 0 0
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Case study III: Vertex Cover on 
Bipartite Graphs

Design and Analysis of Algorithms

Idea:  Create a bipartite graph. 

    1 0 1 1

0 1 0 0

0 1 1 0

0 1 0 0



Case study III: Vertex Cover on 
Bipartite Graphs

Design and Analysis of Algorithms

Idea 2:  Choose min number of vertices to cover all the edges 
(minimum vertex cover) 

    1 0 1 1

0 1 0 0

0 1 1 0

0 1 0 0



Case study III: Vertex Cover on 
Bipartite Graphs

Design and Analysis of Algorithms

Idea 2: Choose min number of vertices to cover all the edges 
(minimum vertex cover)  

1 0 1 1

0 1 0 0

0 1 1 0

0 1 0 0
Not Vertex Cover



Case study III: Vertex Cover on 
Bipartite Graphs

Design and Analysis of Algorithms

1 0 1 1

0 1 0 0

0 1 1 0

0 1 0 0

Idea 2: Choose min number of vertices to cover all the edges 
(minimum vertex cover)  



Case study III: Vertex Cover on 
Bipartite Graphs

Design and Analysis of Algorithms

1 0 1 1

0 1 0 0

0 1 1 0

0 1 0 0

Idea 3: Find a maximum Matching. Theorem (Konig): This is equal 
to min VC in bipartite graphs.  
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