

Lecture 12

Network flows, Max flow, Min-cut

CS 161 Design and Analysis of Algorithms
Ioannis Panageas

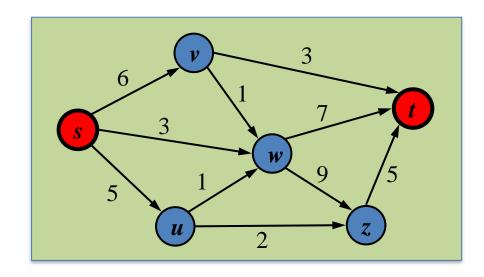
Flow Networks

Definition: A flow network consists of

- A weighted directed graph G with non-negative integer edge weights called capacities and denoted by c(e).
- Vertices, **s** and **t** of *G*, called the source and sink; **s** has no incoming edges and **t** has no outgoing edges.

Example:

(w, z) has capacity c(w, z) = 9.



Definition: Function $f: E \to \mathbb{N}$ from edges to non-negative integers so that for each edge e it holds

$$0 \le f(e) \le c(e)$$
 Capacity constraint

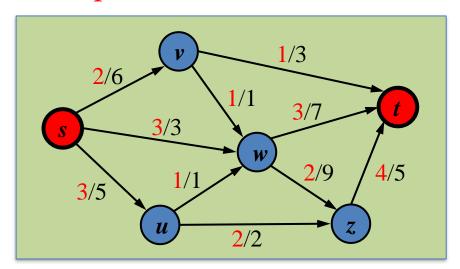
$$\sum_{e \in \mathbf{outgoing}(u)} f(e) = \sum_{e \in \mathbf{incoming}(u)} f(e) \quad \text{Conservation rule}$$
for all $u \neq s, t$

Definition: Function $f: E \to \mathbb{N}$ from edges to non-negative integers so that for each edge e it holds

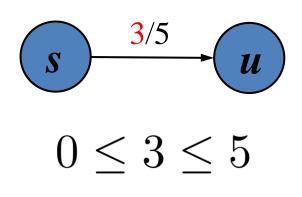
$$0 \le f(e) \le c(e)$$
 Capacity constraint

$$\sum_{e \in \mathbf{outgoing}(u)} f(e) = \sum_{e \in \mathbf{incoming}(u)} f(e) \quad \text{Conservation rule}$$
for all $u \neq s, t$

Example:



Capacity constraint:

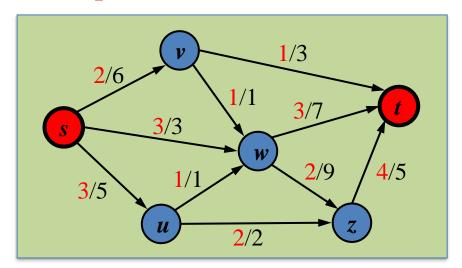


Definition: Function $f: E \to \mathbb{N}$ from edges to non-negative integers so that for each edge e it holds

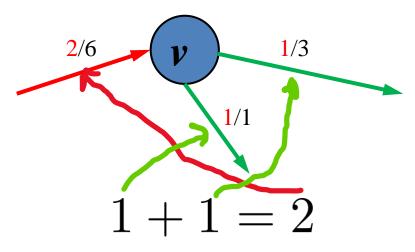
$$0 \le f(e) \le c(e)$$
 Capacity constraint

$$\sum_{e \in \mathbf{outgoing}(u)} f(e) = \sum_{e \in \mathbf{incoming}(u)} f(e) \quad \text{Conservation rule}$$
for all $u \neq s, t$

Example:



Conservation rule:

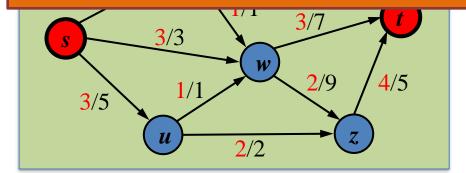


Definition: Function $f: E \to \mathbb{N}$ from edges to non-negative integers so that for each edge e it holds

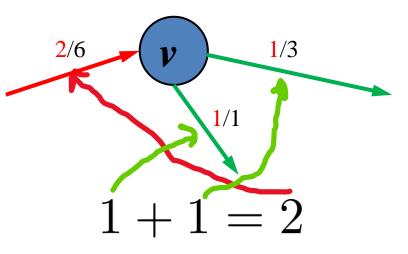
$$0 \le f(e) \le c(e)$$
 Capacity constraint

$$\sum_{e \in \mathbf{outgoing}(u)} f(e) = \sum_{e \in \mathbf{incoming}(u)} f(e) \quad \text{Conservation rule}$$
for all $u \neq s, t$

Question: if f(e) = 0 for all e, is it a flow? Yes.



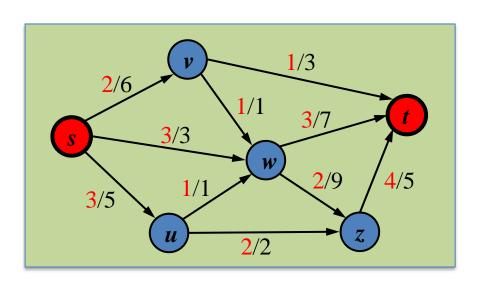
Conservation rule:



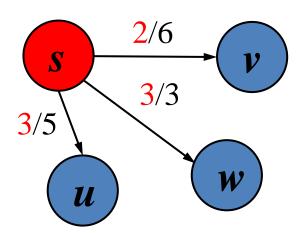
Value of a flow

Definition: Given a flow f, the value of flow |f| is the total flow from source s, which is the same as the total flow into sink t.

Example:

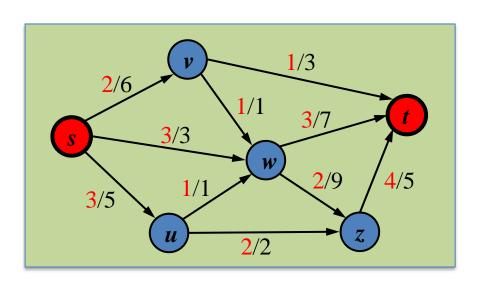


Total Flow |f| = 3 + 3 + 2 = 8

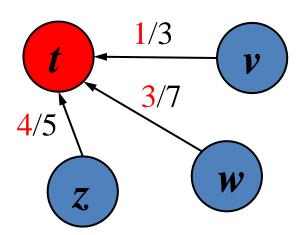


Value of a flow

Definition: Given a flow f, the value of flow |f| is the total flow from source s, which is the same as the total flow into sink t.

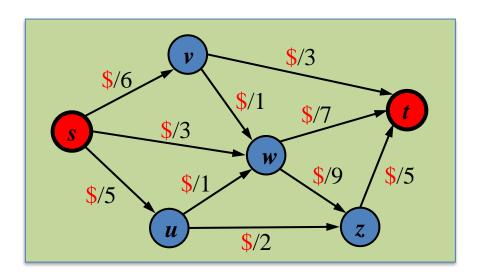


Total Flow
$$|f| = 4 + 3 + 1 = 8$$



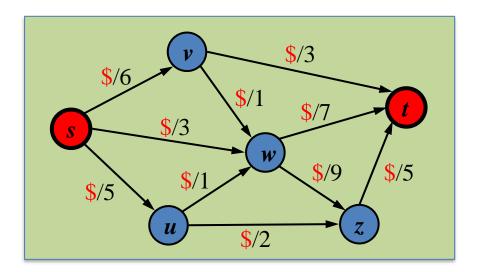
Problem: Given a network G, a source s and a sink t, and capacities on the edges, compute the maximum possible flow value $|f^*|$.

Example:

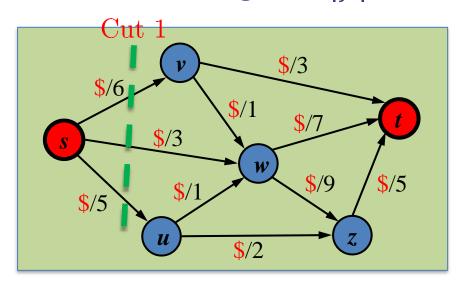


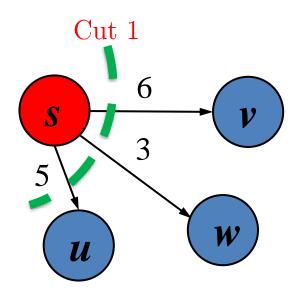
Find the \$ to get maxflow $|f^*|$

Question: How large can |f| be in terms of the capacities?



Question: How large can |f| be in terms of the capacities?

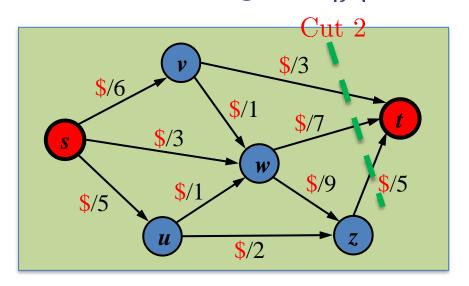


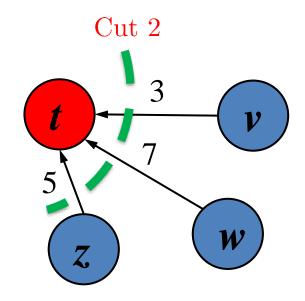


Answer

Focusing on Cut 1, it should be at most 6+3+5=14.

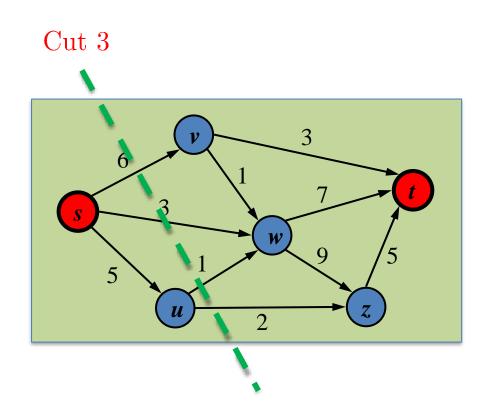
Question: How large can |f| be in terms of the capacities?





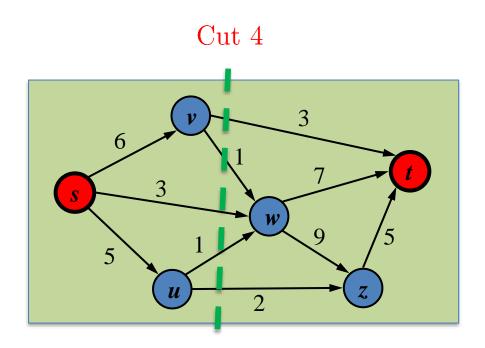
Answer

- Focusing on Cut 1, it should be at most 6+3+5=14.
- Focusing on Cut 2, it should be at most 3+7+5=15.



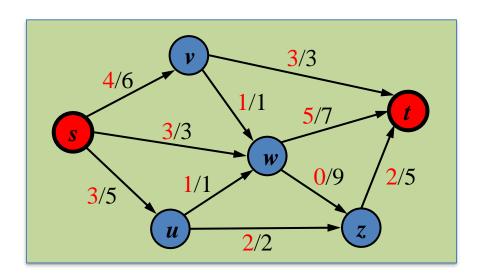
Answer

• Focusing on Cut 3, it should be at most 6+3+1+2=12.



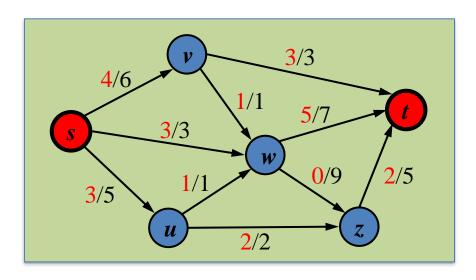
Answer

- Focusing on Cut 3, it should be at most 6+3+1+2=12.
- Focusing on Cut 4, it should be at most 3+1+3+1+2=10.



Answer

- The above is a flow function (satisfies all conditions)
- The value of the flow is 4+3+3 = 10.



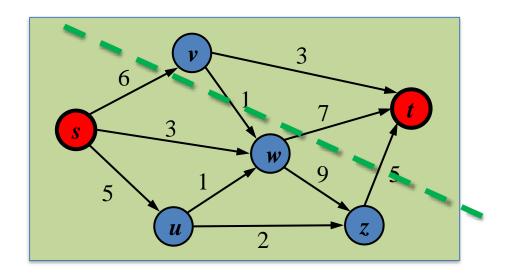
Answer

- The above is a flow function (satisfies all conditions)
- The value of the flow is 4+3+3 = 10.

Maxflow should be ≤ 10 and found a flow with |f| = 10

Cut

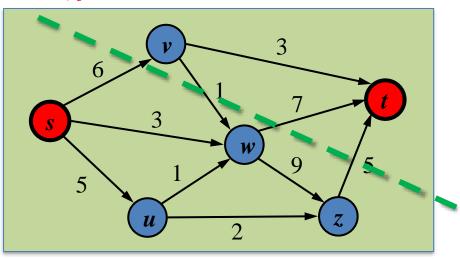
Definition: Given a network G, source s, sink t and capacities on the edges, a cut is a partition of vertices in two parts V_s , V_t with s in V_s and t in V_t .



$$V_S = \{s, u, w, z\} \text{ and } V_t = \{v, t\}$$

Cut

Cut χ

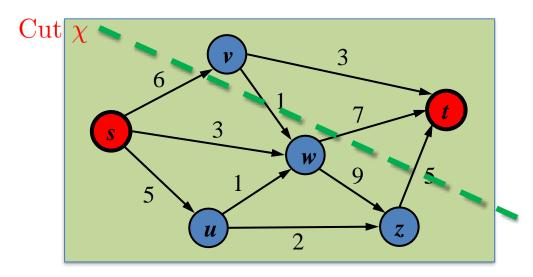


$$V_S = \{s, u, w, z\} \text{ and } V_t = \{v, t\}$$

Forward edge: origin in V_s and destination in V_t Forward Edges in χ : (s, v), (w, t), (z, t).

Backward edge: origin in V_t and destination in V_s Backward Edges in χ : (v, w).

Cut



$$V_S = \{s, u, w, z\} \text{ and } V_t = \{v, t\}$$

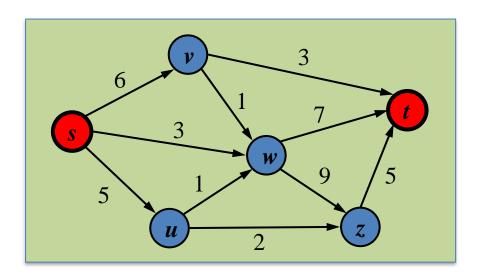
Forward edge: origin in V_s and destination in V_t Forward Edges in χ : (s, v), (w, t), (z, t).

Backward edge: origin in V_t and destination in V_s Backward Edges in χ : (v, w).

Capacity of a cut: Total capacity of forward edges.

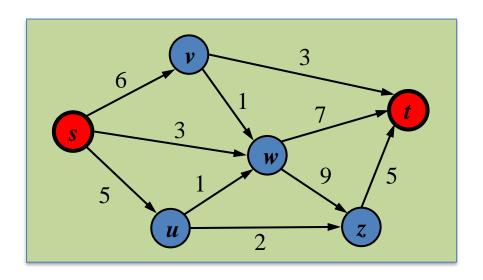
$$c(\chi) = 5 + 6 + 7 = 18$$

Maxflow = Min Cut



There are 16 cuts (why)?

Maxflow = Min Cut

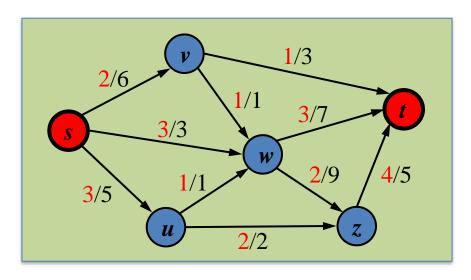


There are 16 cuts (why)?

Theorem: The minimum capacity cut equals the maxflow value.

We are given a network G with edge capacities c and a flow f. Let (u, v) be an edge from u to v.

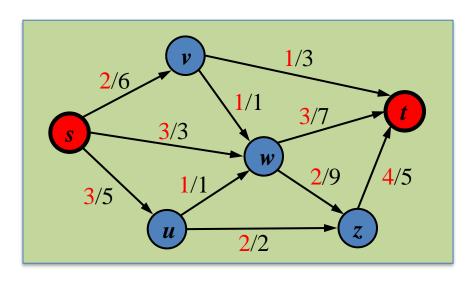
Residual capacity from u to v is $\Delta_f(u, v) = c(u, v) - f(u, v)$.



$$\Delta_f(s,v) = ?$$

We are given a network G with edge capacities c and a flow f. Let (u, v) be an edge from u to v.

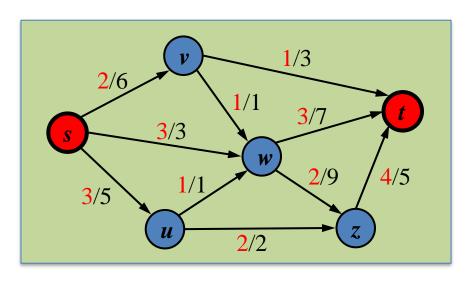
Residual capacity from u to v is $\Delta_f(u, v) = c(u, v) - f(u, v)$.



$$\Delta_f(s, v) = 4$$
$$\Delta_f(v, w) = ?$$

We are given a network G with edge capacities c and a flow f. Let (u, v) be an edge from u to v.

Residual capacity from u to v is $\Delta_f(u, v) = c(u, v) - f(u, v)$.



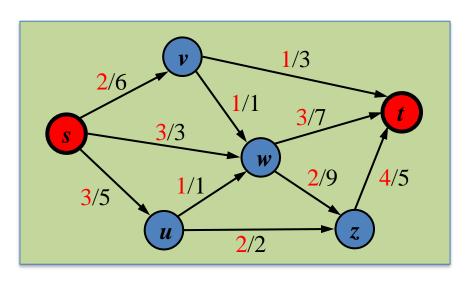
$$\Delta_f(s, v) = 4$$

$$\Delta_f(v, w) = 0$$

$$\Delta_f(w, u) = ?$$

We are given a network G with edge capacities c and a flow f. Let (u, v) be an edge from u to v.

Residual capacity from u to v is $\Delta_f(u, v) = c(u, v) - f(u, v)$.



$$\Delta_f(s, v) = 4$$

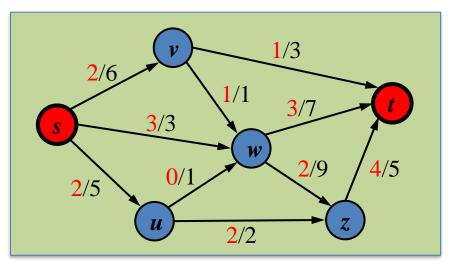
$$\Delta_f(v, w) = 0$$

$$\Delta_f(w, u) = 1$$

We are given a network G with edge capacities c and a flow f. Let (u, v) be an edge from u to v.

Residual capacity from u to v is $\Delta_f(u, v) = c(u, v) - f(u, v)$.

Residual capacity from v to u is $\Delta_f(v, u) = f(u, v)$



Augmenting path: Path from **s** to **t** with positive residual capacities.

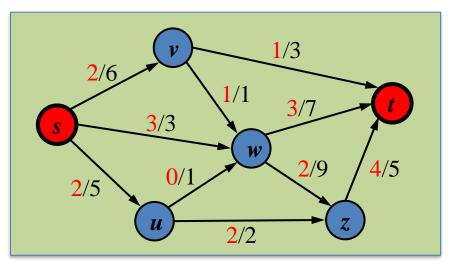
$$s \rightarrow v \rightarrow t$$
 augmenting path

$$s \rightarrow u \rightarrow w \rightarrow v \rightarrow t$$
 augmenting path

We are given a network G with edge capacities c and a flow f. Let (u, v) be an edge from u to v.

Residual capacity from u to v is $\Delta_f(u, v) = c(u, v) - f(u, v)$.

Residual capacity from v to u is $\Delta_f(v, u) = f(u, v)$



Augmenting path: Path from **s** to **t** with positive residual capacities.

$$s \rightarrow v \rightarrow t$$
 augmenting path

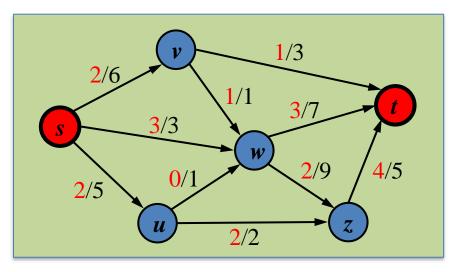
$$s \rightarrow u \rightarrow w \rightarrow v \rightarrow t$$
 augmenting path

$$s \rightarrow u \rightarrow z \rightarrow t$$
 is **not**

We are given a network G with edge capacities c and a flow f. Let (u, v) be an edge from u to v.

Residual capacity from u to v is $\Delta_f(u, v) = c(u, v) - f(u, v)$.

Residual capacity from v to u is $\Delta_f(v, u) = f(u, v)$



 $s \rightarrow v \rightarrow t$: 2 units of flow can be pushed (min over residual capacities).

 $s \rightarrow u \rightarrow w \rightarrow v \rightarrow t$: 1 unit of flow can be pushed

 $s \rightarrow u \rightarrow z \rightarrow t$: No flow can be pushed

Main idea: Repeatedly search for an augmenting path π :

• If there is an augmenting path, augment flow with $\Delta_f(\pi)$ (minimum residual capacity among the edges of π) along the edges of π .

Main idea: Repeatedly search for an augmenting path π :

- If there is an augmenting path, augment flow with $\Delta_f(\pi)$ (minimum residual capacity among the edges of π) along the edges of π .
- If there is no augmenting path, terminate.

Remark: You can use DFS (or BFS) to search for an augmenting path.

Running time: ?

Main idea: Repeatedly search for an augmenting path π :

- If there is an augmenting path, augment flow with $\Delta_f(\pi)$ (minimum residual capacity among the edges of π) along the edges of π .
- If there is no augmenting path, terminate.

Remark: You can use DFS (or BFS) to search for an augmenting path.

Running time:

Time to search for an augmenting path \times number of updates.

Main idea: Repeatedly search for an augmenting path π :

- If there is an augmenting path, augment flow with $\Delta_f(\pi)$ (minimum residual capacity among the edges of π) along the edges of π .
- If there is no augmenting path, terminate.

Remark: You can use DFS (or BFS) to search for an augmenting path.

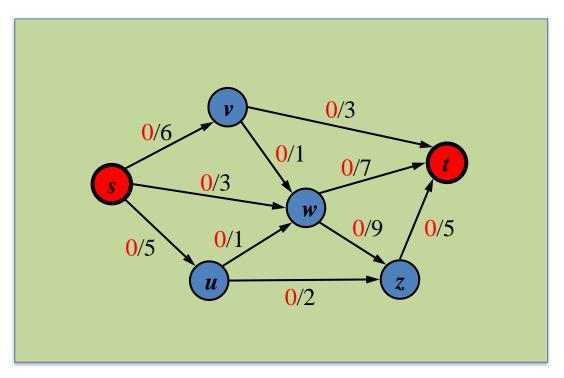
Running time:

Time to search for an augmenting path \times number of updates.

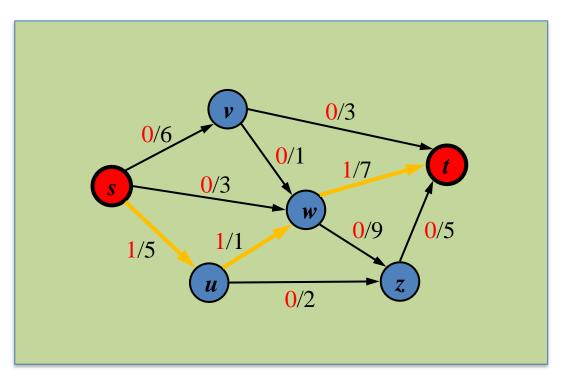
$$\Theta(|V| + |E|) \cdot |f^*|$$

Running time of DFS or BFS

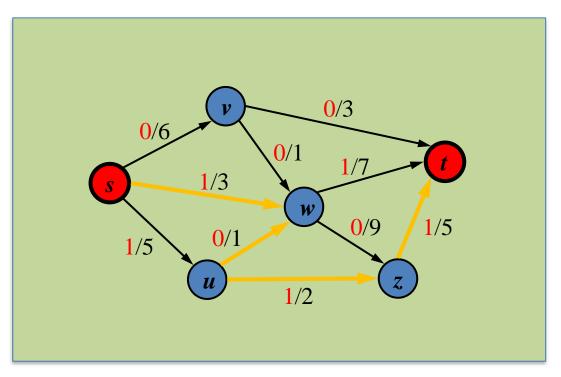
Updates increase flow by 1 unit only



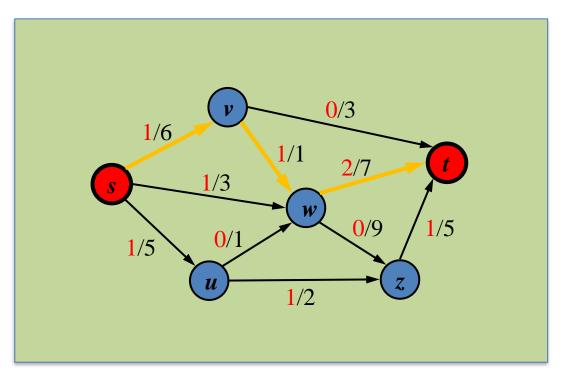
Total Flow
$$|f| = 0$$



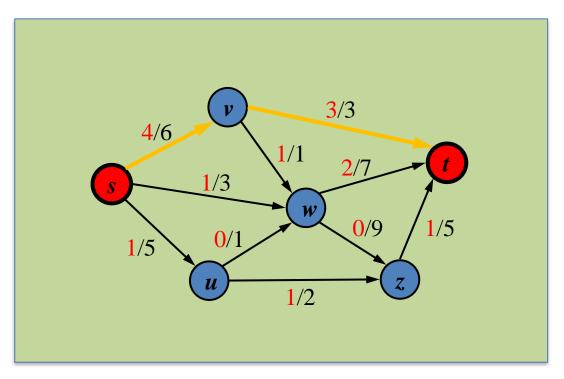
Total Flow
$$|f| = 1$$



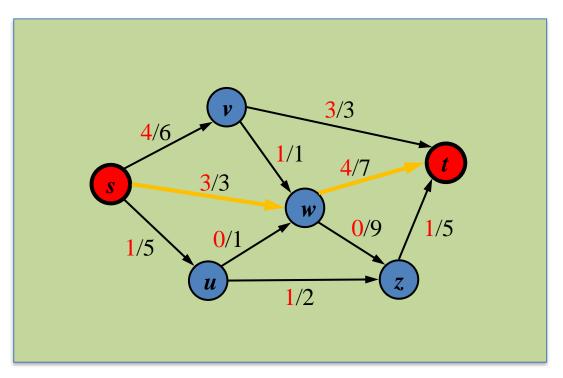
Total Flow
$$|f| = 2$$



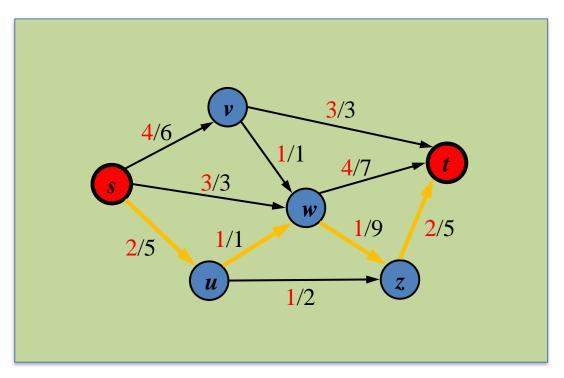
Total Flow
$$|f| = 3$$



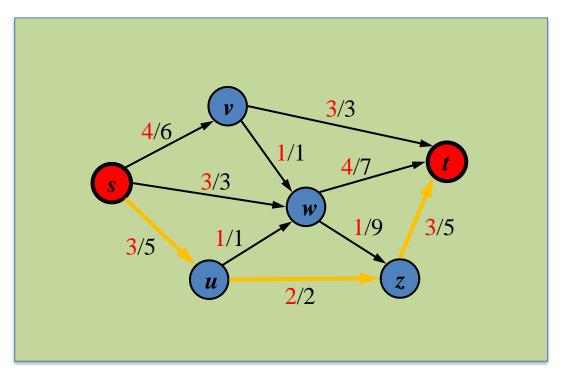
Total Flow
$$|f| = 6$$



Total Flow
$$|f| = 8$$

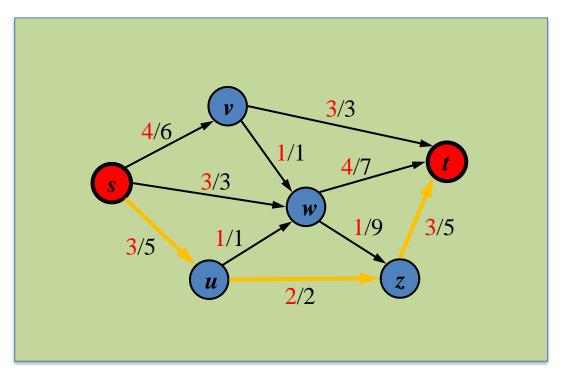


Total Flow
$$|f| = 9$$



Total Flow
$$|f| = 10$$

Example:

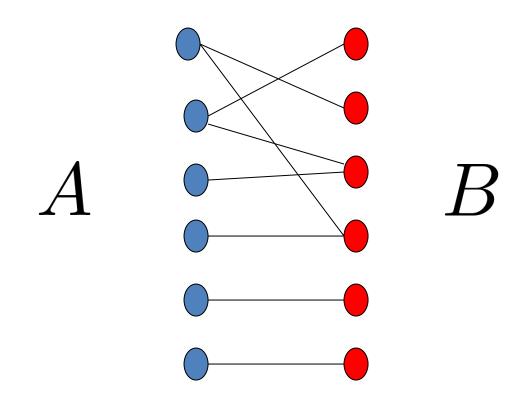


Total Flow
$$|f| = 10$$

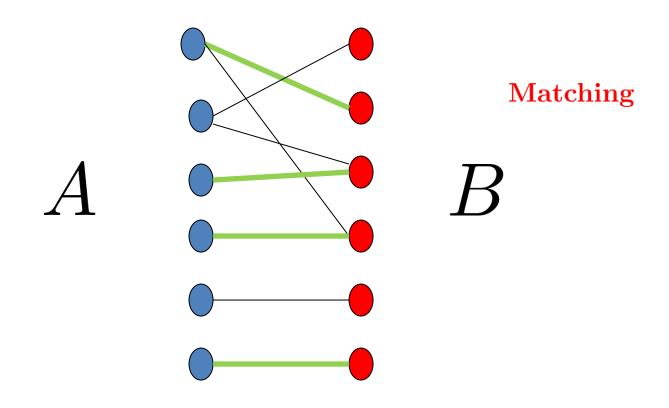
No more augmenting paths!

Pseudocode:

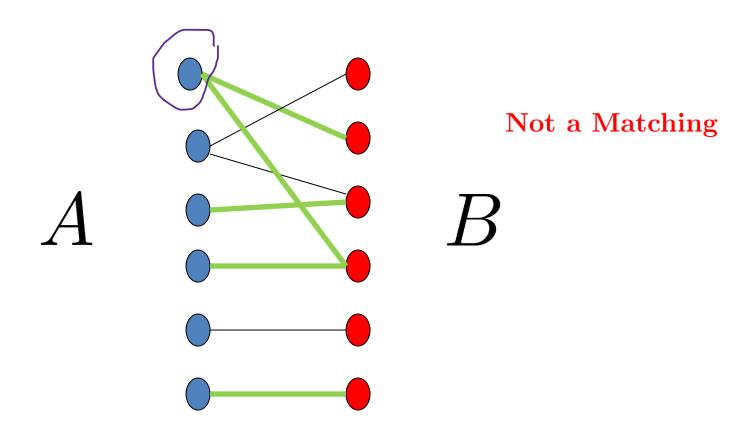
```
Algorithm MaxFlowFordFulkerson
   Input: Flow network (G, c, s, t)
   Output: A maximum flow f
  for each edge e
                                    Initialization f = 0
       f(e) \leftarrow 0
  stop \leftarrow false
  repeat
      traverse G starting at s to find an augmenting path for f
      if an augmenting path \pi exists then
           // Compute the residual capacity \Delta_f(\pi) of \pi
           \Delta \leftarrow +\infty
           for each edge e \in \pi do
                                                  \Delta: min residual capacity on aug. path
               if \Delta_f(e) < \Delta then
                    \Delta \leftarrow \Delta_f(e)
           for each edge e \in \pi do // push \Delta = \Delta_f(\pi) units along \pi
               if e is a forward edge then
                                                             Update flow on aug. path
                    f(e) \leftarrow f(e) + \Delta
               else
                    f(e) \leftarrow f(e) - \Delta
                                        // e is a backward edge
      else
                                                                    No more aug. paths
                            // f is a maximum flow
           stop \leftarrow true
  until stop
```



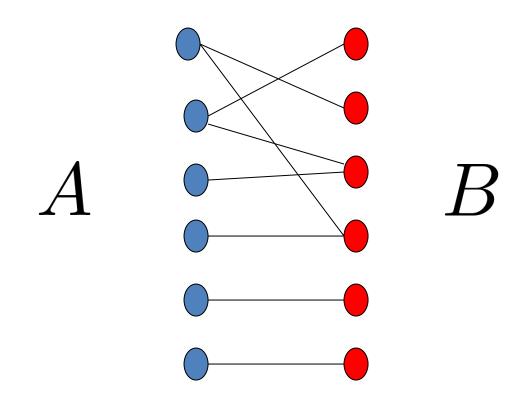
Definition: Given a **bipartite** graph, a **matching** is just a collection of edges that do not share a vertex.



Definition: Given a **bipartite** graph, a **matching** is just a collection of edges that do not share a vertex.



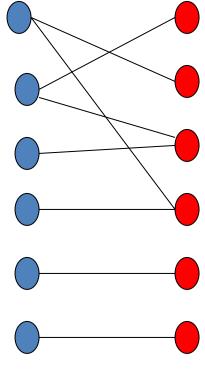
Definition: Given a **bipartite** graph, a **matching** is just a collection of edges that do not share a vertex.



Problem: Given a **bipartite** graph, compute/find a maximum matching.

Problem: Given a **bipartite** graph, compute/find a maximum matching.

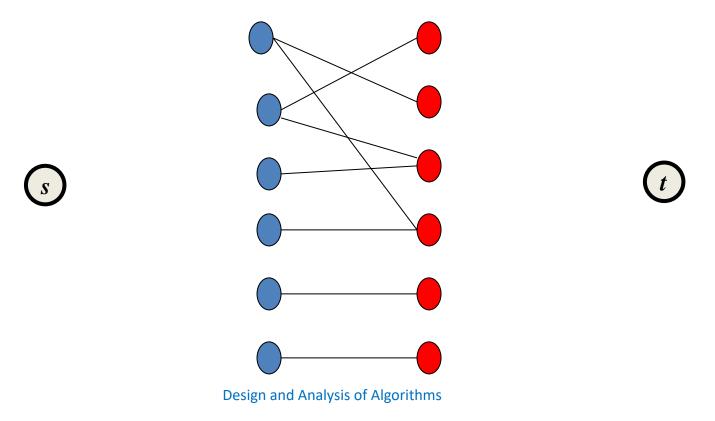
Idea: **Reduce** it to Maxflow problem. To do that, we need a network flow and *s*, *t*.



Design and Analysis of Algorithms

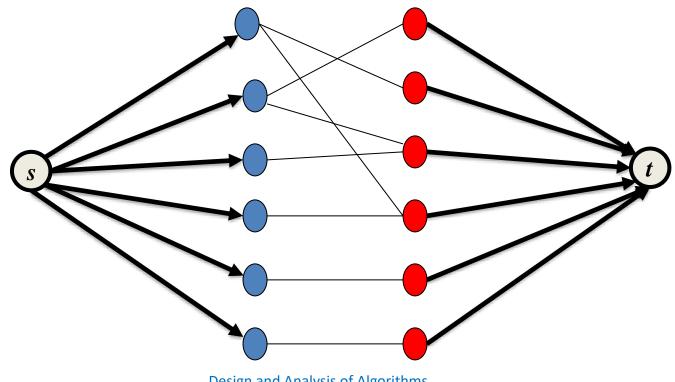
Problem: Given a **bipartite** graph, compute/find a maximum matching.

Idea: **Reduce** it to Maxflow problem. To do that, we need a network flow and *s*, *t*.



Problem: Given a bipartite graph, compute/find a maximum matching.

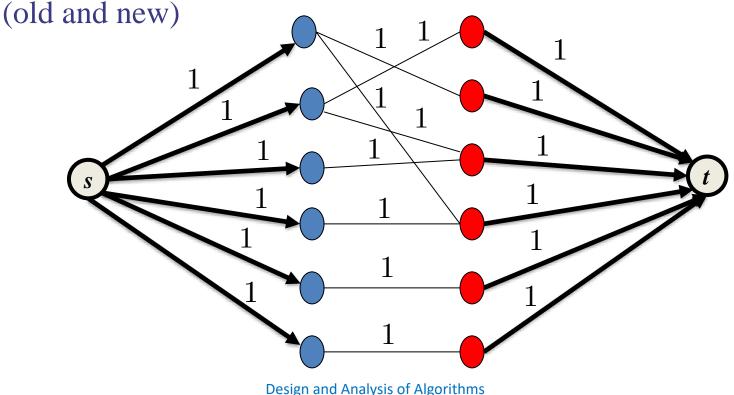
Idea: **Reduce** it to Maxflow problem. To do that, we need a network flow and s, t.



Design and Analysis of Algorithms

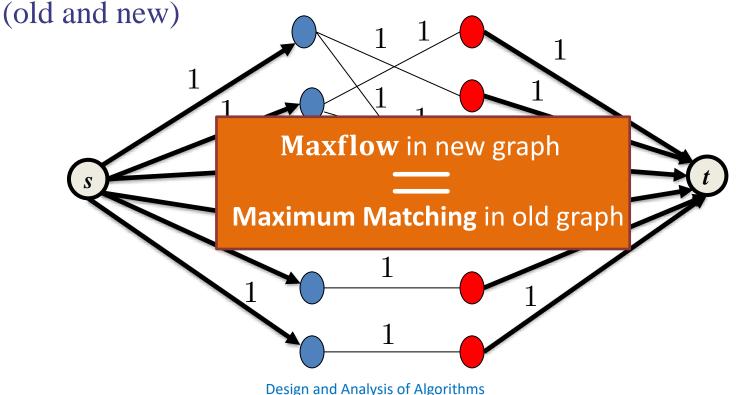
Problem: Given a **bipartite** graph, compute/find a maximum matching.

Idea: **Reduce** it to Maxflow problem. To do that, we need a network flow and *s*, *t*. Put capacity one for all edges



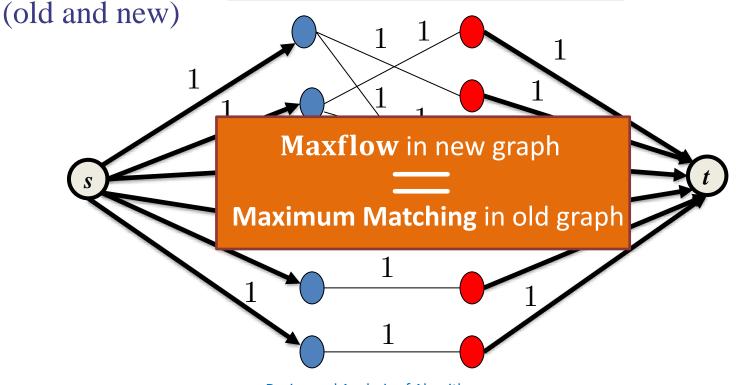
Problem: Given a **bipartite** graph, compute/find a maximum matching.

Idea: **Reduce** it to Maxflow problem. To do that, we need a network flow and *s*, *t*. Put capacity one for all edges



Problem: Given a **bipartite** graph, compute/find a maximum matching.

Idea: Reduce it to Maxflow problem. To do that, we need a network flow and Running time $O((V + E) \cdot V)$ ges



Design and Analysis of Algorithms