
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 12

Network flows, Max flow, Min-cut 



Flow Networks

Design and Analysis of Algorithms
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Definition: A flow network consists of

• A weighted directed graph 𝐺 with non-negative integer edge weights 
called capacities and denoted by 𝒄(𝒆). 

• Vertices, 𝒔 and 𝒕 of 𝐺, called the source and sink; s has no incoming 
edges and t has no outgoing edges.

Example:

(𝑤, 𝑧) has capacity

c 𝑤, 𝑧 = 9.



Design and Analysis of Algorithms

Flow of a Network
Definition: Function    from edges to non-negative 
integers so that for each edge 𝑒 it holds
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Design and Analysis of Algorithms

Flow of a Network
Definition: Function    from edges to non-negative 
integers so that for each edge 𝑒 it holds
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Question: if 𝑓 𝑒 = 0 for all 𝑒,
      is it a flow? Yes.
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Value of a flow
Definition: Given a flow 𝑓, the value of flow |𝑓| is the total flow 
from source 𝒔, which is the same as the total flow into sink 𝒕.
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Design and Analysis of Algorithms

Value of a flow
Definition: Given a flow 𝑓, the value of flow |𝑓| is the total flow 
from source 𝒔, which is the same as the total flow into sink 𝒕.
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Design and Analysis of Algorithms

Maxflow Problem 
Problem: Given a network 𝐺, a source 𝒔 and a sink 𝒕, and capacities 
on the edges, compute the maximum possible flow value |𝑓∗|.

w
s

v

u

t

z

$/3

$/9

$/1

$/3

$/7

$/6

$/5$/1
$/5

$/2

Find the $ to get maxflow |𝑓∗|
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Maxflow Problem 
Question: How large can |𝑓| be in terms of the capacities?
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Maxflow Problem 
Question: How large can |𝑓| be in terms of the capacities?
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Answer

● Focusing on Cut 1, it should be at most 6+3+5=14.
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Maxflow Problem 
Question: How large can |𝑓| be in terms of the capacities?
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Answer

● Focusing on Cut 1, it should be at most 6+3+5=14.

● Focusing on Cut 2, it should be at most 3+7+5=15.
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Maxflow Problem 
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Answer

● Focusing on Cut 3, it should be at most 6+3+1+2=12. 
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Maxflow Problem 
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Answer

● Focusing on Cut 3, it should be at most 6+3+1+2=12.
● Focusing on Cut 4, it should be at most 3+1+3+1+2=10. 
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Maxflow Problem
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Answer

● The above is a flow function (satisfies all conditions)
● The value of the flow is 4+3+3 = 10.
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Maxflow Problem
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Answer

● The above is a flow function (satisfies all conditions)
● The value of the flow is 4+3+3 = 10.

Maxflow should be ≤ 𝟏𝟎 and               
   found a flow with |𝑓| = 𝟏𝟎
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Cut

Definition: Given a network 𝐺, source 𝒔, sink 𝒕 and capacities 
on the edges, a cut is a partition of vertices in two parts 𝑉𝑠, 𝑉𝑡 
with 𝒔 in 𝑉𝑠 and 𝒕 in 𝑉𝑡.

w
s

v

u

t

z

3

9

1

3

7

6

51
5

2

𝑉𝑠 = {𝑠, 𝑢, 𝑤, 𝑧} and 𝑉𝑡 = {𝑣, 𝑡}  
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𝑉𝑠 = {𝑠, 𝑢, 𝑤, 𝑧} and 𝑉𝑡 = {𝑣, 𝑡}  

Forward edge: origin in 𝑉𝑠 and destination in 𝑉𝑡
  Forward Edges in 𝜒: (𝑠, 𝑣), (𝑤, 𝑡), (𝑧, 𝑡).
 
Backward edge: origin in 𝑉𝑡 and destination in 𝑉𝑠

   Backward Edges in 𝜒: (𝑣, 𝑤).
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𝑉𝑠 = {𝑠, 𝑢, 𝑤, 𝑧} and 𝑉𝑡 = {𝑣, 𝑡}  

Forward edge: origin in 𝑉𝑠 and destination in 𝑉𝑡
  Forward Edges in 𝜒: (𝑠, 𝑣), (𝑤, 𝑡), (𝑧, 𝑡).
Backward edge: origin in 𝑉𝑡 and destination in 𝑉𝑠

   Backward Edges in 𝜒: (𝑣, 𝑤).
Capacity of a cut: Total capacity of forward edges.

   𝒄 𝜒 = 5 + 6 + 7 = 18  
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Maxflow = Min Cut
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There are 16 cuts (why)?
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Maxflow = Min Cut
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There are 16 cuts (why)?

Theorem: The minimum capacity cut equals 
the maxflow value.
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Augmenting paths
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We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓. 
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.  

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)
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We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓. 
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.  

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)
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We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓. 
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.  

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)
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We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓. 
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.  

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)
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Augmenting paths
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Augmenting path: Path from 𝒔 to 𝒕 
with positive residual capacities.

𝑠 → 𝑣 → 𝑡 augmenting path
𝑠 → 𝑢 → 𝑤 → 𝑣 → 𝑡 augmenting path

We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓. 
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.  

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)
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Augmenting paths

We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓. 
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.  

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)
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Augmenting path: Path from 𝒔 to 𝒕 
with positive residual capacities.

𝑠 → 𝑣 → 𝑡 augmenting path
𝑠 → 𝑢 → 𝑤 → 𝑣 → 𝑡 augmenting path

𝑠 → 𝑢 → 𝑧 → 𝑡 is not
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Augmenting paths

We are given a network 𝐺 with edge capacities 𝑐 and a flow 𝑓. 
Let (𝑢, 𝑣) be an edge from 𝑢 to 𝑣.  

Residual capacity from 𝑢 to 𝑣 is Δ𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 .

Residual capacity from 𝑣 to 𝑢 is Δ𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)
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𝑠 → 𝑣 → 𝑡: 2 units of flow can be pushed 
(min over residual capacities).

𝑠 → 𝑢 → 𝑤 → 𝑣 → 𝑡: 1 unit of flow
can be pushed

𝑠 → 𝑢 → 𝑧 → 𝑡: No flow can be pushed



The Ford-Fulkerson Algorithm 
 

Design and Analysis of Algorithms

Main idea: Repeatedly search for an augmenting path 𝝅:

• If there is an augmenting path, augment flow with Df(p) 
(minimum residual capacity among the edges of π) along the 
edges of π.
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Design and Analysis of Algorithms

Main idea: Repeatedly search for an augmenting path 𝝅:

• If there is an augmenting path, augment flow with Df(p) 
(minimum residual capacity among the edges of π) along the 
edges of π.

• If there is no augmenting path, terminate.

Remark: You can use DFS (or BFS) to search for an augmenting path.

Running time: ?
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Main idea: Repeatedly search for an augmenting path 𝝅:

• If there is an augmenting path, augment flow with Df(p) 
(minimum residual capacity among the edges of π) along the 
edges of π.

• If there is no augmenting path, terminate.

Remark: You can use DFS (or BFS) to search for an augmenting path.

Running time: 

Time to search for an augmenting path × number of updates. 



The Ford-Fulkerson Algorithm 
 

Design and Analysis of Algorithms

Main idea: Repeatedly search for an augmenting path 𝝅:

• If there is an augmenting path, augment flow with Df(p) 
(minimum residual capacity among the edges of π) along the 
edges of π.

• If there is no augmenting path, terminate.

Remark: You can use DFS (or BFS) to search for an augmenting path.

Running time: 

Time to search for an augmenting path × number of updates. 
Θ |𝑉| + |𝐸| ⋅ |𝑓∗|

Updates increase flow by 1 unit onlyRunning time of DFS or BFS
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The Ford-Fulkerson Algorithm 
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The Ford-Fulkerson Algorithm 
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The Ford-Fulkerson Algorithm 
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The Ford-Fulkerson Algorithm 
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The Ford-Fulkerson Algorithm 
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The Ford-Fulkerson Algorithm 
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No more augmenting paths!
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The Ford-Fulkerson Algorithm 

Pseudocode:

Initialization 𝑓 = 0

Δ: min residual capacity on aug. path

Update flow on aug. path

No more aug. paths



Application: Maximum Matching

Design and Analysis of Algorithms

Definition: Given a bipartite graph, a matching is just a 
collection of edges that do not share a vertex.
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Design and Analysis of Algorithms

Problem: Given a bipartite graph, compute/find a 
maximum matching.
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Problem: Given a bipartite graph, compute/find a 
maximum matching.

Idea: Reduce it to Maxflow problem. To do that, we need a 
network flow and 𝑠, 𝑡.
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Application: Maximum Matching

Design and Analysis of Algorithms

Problem: Given a bipartite graph, compute/find a 
maximum matching.

Idea: Reduce it to Maxflow problem. To do that, we need a 
network flow and 𝑠, 𝑡. Put capacity one for all edges 
(old and new)
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Design and Analysis of Algorithms

Problem: Given a bipartite graph, compute/find a 
maximum matching.

Idea: Reduce it to Maxflow problem. To do that, we need a 
network flow and 𝑠, 𝑡. Put capacity one for all edges 
(old and new)

s t

𝐌𝐚𝐱𝐟𝐥𝐨𝐰 in new graph
   
Maximum Matching in old graph



Application: Maximum Matching

Design and Analysis of Algorithms

Problem: Given a bipartite graph, compute/find a 
maximum matching.

Idea: Reduce it to Maxflow problem. To do that, we need a 
network flow and 𝑠, 𝑡. Put capacity one for all edges 
(old and new)

s t

𝐌𝐚𝐱𝐟𝐥𝐨𝐰 in new graph
   
Maximum Matching in old graph

Running time 𝑶( 𝑽 + 𝑬 ⋅ 𝑽)


	Slide 1:        Lecture 12  Network flows, Max flow, Min-cut 
	Slide 2: Flow Networks
	Slide 3: Flow of a Network
	Slide 4: Flow of a Network
	Slide 5: Flow of a Network
	Slide 6: Flow of a Network
	Slide 7: Value of a flow
	Slide 8: Value of a flow
	Slide 9: Maxflow Problem  
	Slide 10: Maxflow Problem  
	Slide 11: Maxflow Problem  
	Slide 12: Maxflow Problem  
	Slide 13: Maxflow Problem  
	Slide 14: Maxflow Problem  
	Slide 15: Maxflow Problem
	Slide 16: Maxflow Problem
	Slide 17: Cut
	Slide 18: Cut
	Slide 19: Cut
	Slide 20: Maxflow = Min Cut
	Slide 21: Maxflow = Min Cut
	Slide 22: Augmenting paths
	Slide 23: Augmenting paths
	Slide 24: Augmenting paths
	Slide 25: Augmenting paths
	Slide 26: Augmenting paths
	Slide 27: Augmenting paths
	Slide 28: Augmenting paths
	Slide 29: The Ford-Fulkerson Algorithm    
	Slide 30: The Ford-Fulkerson Algorithm    
	Slide 31: The Ford-Fulkerson Algorithm    
	Slide 32: The Ford-Fulkerson Algorithm    
	Slide 33: The Ford-Fulkerson Algorithm  
	Slide 34: The Ford-Fulkerson Algorithm  
	Slide 35: The Ford-Fulkerson Algorithm  
	Slide 36: The Ford-Fulkerson Algorithm  
	Slide 37: The Ford-Fulkerson Algorithm  
	Slide 38: The Ford-Fulkerson Algorithm  
	Slide 39: The Ford-Fulkerson Algorithm  
	Slide 40: The Ford-Fulkerson Algorithm  
	Slide 41: The Ford-Fulkerson Algorithm  
	Slide 42
	Slide 43: Application: Maximum Matching 
	Slide 44: Application: Maximum Matching 
	Slide 45: Application: Maximum Matching 
	Slide 46: Application: Maximum Matching 
	Slide 47: Application: Maximum Matching 
	Slide 48: Application: Maximum Matching 
	Slide 49: Application: Maximum Matching 
	Slide 50: Application: Maximum Matching 
	Slide 51: Application: Maximum Matching 
	Slide 52: Application: Maximum Matching 

