TxT
4

Lecture 12

Network flows, Max flow, Min-cut

CS 161 Design and Analysis of Algorithms

loannis Panageas

Flow Networks

Definition: A flow network consists of

A weighted directed graph ¢ with non-negative integer edge weights
called capacities and denoted by c(e).

e Vertices, s and t of G, called the source and sink; s has no incoming
edges and t has no outgoing edges.

Example:

(w, z) has capacity
c(w,z) =09.

Design and Analysis of Algorithms

Flow of a Network

Definition: Function f : £ — N from edges to non-negative
integers so that for each edge e it holds

0 < f(e) < c(e) Capacity constraint

Zeeoutgoing(u) fle) = Zeeincoming(u) f(e) Conservation rule
for all u # s,

Design and Analysis of Algorithms

Flow of a Network

Definition: Function f : £ — N from edges to non-negative
integers so that for each edge e it holds

0 < f(e) < c(e) Capacity constraint

) = D _ccincoming(w) J (€) ~ Conservation rule
for all u # s,t

™

ZeEoutgoing(u) f(

Example: Capacity constraint:

OO

0<3<5

216

212

Design and Analysis of Algorithms

Flow of a Network

Definition: Function f : £ — N from edges to non-negative
integers so that for each edge e it holds

0 < f(e) < c(e) Capacity constraint

Zeeoutgoing(u) fle) = Zeeincoming(u) f(e) Conservation rule
for all u # s,

Example: Conservation rule:

216 1/3

216

T 1+1=2

Design and Analysis of Algorithms

Flow of a Network

Definition: Function f : £ — N from edges to non-negative
integers so that for each edge e it holds

0 < f(e) <c(e) Capacity constraint

Zeeoutgoing(u) fle) = ZBEincoming(u) f(e) Conservation rule
for all u # s,

Question: if f(e) = 0 forall e, Conservation rule:
is it a flow? Yes.

216 1/3

1+1=2

Design and Analysis of Algorithms

Value of a flow

Definition: Given a flow f, the value of flow |f| is the total flow
from source s, which is the same as the total flow into sink t.

Example: Total Flow [f|=34+3+2 =28

)
3/3

3/5

Design and Analysis of Algorithms

Value of a flow

Definition: Given a flow f, the value of flow |f| is the total flow
from source s, which is the same as the total flow into sink t.

Example: Total Flow |f|=4+3+1=28

1/3 '
3/7

415

Design and Analysis of Algorithms

Maxflow Problem

Problem: Given a network G, a source s and a sink t, and capacities
on the edges, compute the maximum possible flow value |f™|.

Example:

$/2

Find the S to get maxflow |f*|

Design and Analysis of Algorithms

Maxflow Problem

Question: How large can |f| be in terms of the capacities?

Design and Analysis of Algorithms

Maxflow Problem

Question: How large can |f| be in terms of the capacities?
Cut 1

I

6
3

Answer

e Focusing on Cut 1, it should be at most 6+3+5=14.

Design and Analysis of Algorithms

Maxflow Problem

Question: How large can |f| be in terms of the capacities?

Cut2 Cut 2

Answer

e Focusing on Cut 1, it should be at most 6+3+5=14.
® Focusing on Cut 2, it should be at most 3+7+5=15.

Design and Analysis of Algorithms

Maxflow Problem

Cut 3

Answer N

® Focusing on Cut 3, it should be at most 6+3+1+2=12.

Design and Analysis of Algorithms

Maxflow Problem

Cut 4

Answer

® Focusing on Cut 3, it should be at most 6+3+1+2=12.
e Focusing on Cut 4, it should be at most 3+1+3+1+2=10.

Design and Analysis of Algorithms

Maxflow Problem

Answer

e The above is a flow function (satisfies all conditions)
e The value of the flow is 4+3+3 = 10.

Design and Analysis of Algorithms

Maxflow Problem

Answer

e The above is a flow function (satisfies all conditions)
® The value of the flow is 4+3+3 = 10.

Maxflow should be < 10 and
found a flow with [f| = 10

Design and Analysis of Algorithms

Cut

Definition: Given a network G, source s, sink t and capacities
on the edges, a cut is a partition of vertices in two parts I, V;
withsin 1V, and tin V;.

Ve ={s,u,w,z}and V; = {v, t}

Design and Analysis of Algorithms

Ve ={s,u,w,z}and V; = {v, t}

Forward edge: origin in I; and destination in V;
Forward Edges in x: (s,v), (w, t),(z,t).

Backward edge: origin in V/; and destination in V;
Backward Edges in y: (v, w).

Design and Analysis of Algorithms

Cut

Ve ={s,u,w,z}and V; = {v, t}

Forward edge: origin in I; and destination in V/;
Forward Edges in y: (s,v), (w, t),(z,t).

Backward edge: origin in V; and destination in V;
Backward Edges in y: (v, w).

Capacity of a cut: Total capacity of forward edges.
c(x) =5+6+7=18

Design and Analysis of Algorithms

Maxflow = Min Cut

There are 16 cuts (why)?

Design and Analysis of Algorithms

Maxflow = Min Cut

There are 16 cuts (why)?

Theorem: The minimum capacity cut equals
the maxflow value.

Design and Analysis of Algorithms

Augmenting paths

We are given a network G with edge capacities ¢ and a flow f.
Let (u, v) be an edge from u to v.

Residual capacity from u to v is Ar(u, v) = c(u,v) — f(u, v).

Residual capacity from v tou is A (v, u) = f(u,v)

Design and Analysis of Algorithms

Augmenting paths

We are given a network G with edge capacities ¢ and a flow f.
Let (u, v) be an edge from u to v.

Residual capacity from u to v is Ar(u, v) = c(u,v) — f(u, v).

Residual capacity from v tou is A (v, u) = f(u,v)

Design and Analysis of Algorithms

Augmenting paths

We are given a network G with edge capacities ¢ and a flow f.
Let (u, v) be an edge from u to v.

Residual capacity from u to v is Ar(u, v) = c(u,v) — f(u, v).

Residual capacity from v tou is A (v, u) = f(u,v)

Design and Analysis of Algorithms

Augmenting paths

We are given a network G with edge capacities ¢ and a flow f.
Let (u, v) be an edge from u to v.

Residual capacity from u to v is Ar(u, v) = c(u,v) — f(u, v).

Residual capacity from v tou is A (v, u) = f(u,v)

Design and Analysis of Algorithms

Augmenting paths

We are given a network G with edge capacities ¢ and a flow f.
Let (u, v) be an edge from u to v.

Residual capacity from u to v is Ar(u, v) = c(u,v) — f(u, v).

Residual capacity from v tou is A (v, u) = f(u,v)

Augmenting path: Path from sto t
with positive residual capacities.

s = v = t augmenting path
S —u—w - v - taugmenting path

Design and Analysis of Algorithms

Augmenting paths

We are given a network G with edge capacities ¢ and a flow f.
Let (u, v) be an edge from u to v.

Residual capacity from u to v is Ar(u, v) = c(u,v) — f(u, v).

Residual capacity from v tou is A (v, u) = f(u,v)

Augmenting path: Path from sto t
with positive residual capacities.

s = v = t augmenting path
S —u—w - v - taugmenting path

S—>u—2z-tisnot

Design and Analysis of Algorithms

Augmenting paths

We are given a network G with edge capacities ¢ and a flow f.
Let (u, v) be an edge from u to v.

Residual capacity from u to v is Ar(u, v) = c(u,v) — f(u, v).

Residual capacity from v tou is A (v, u) = f(u,v)

s = v = t: 2 units of flow can be pushed
(min over residual capacities).

S—=>u—->w-=v-t:1unitof flow
can be pushed

s > u — z — t: No flow can be pushed

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

Main idea: Repeatedly search for an augmenting path m:
* |If there is an augmenting path, augment flow with A«(r)

(minimum residual capacity among the edges of 1) along the
edges of Tr.

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

Main idea: Repeatedly search for an augmenting path m:

* |If there is an augmenting path, augment flow with A«(r)
(minimum residual capacity among the edges of 1) along the

edges of Tr.
* If there is no augmenting path, terminate.

Remark: You can use DFS (or BFS) to search for an augmenting path.

Running time: ?

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

Main idea: Repeatedly search for an augmenting path m:

* |If there is an augmenting path, augment flow with A«(r)
(minimum residual capacity among the edges of 1) along the

edges of Tr.
* If there is no augmenting path, terminate.

Remark: You can use DFS (or BFS) to search for an augmenting path.

Running time:

Time to search for an augmenting path X number of updates.

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

Main idea: Repeatedly search for an augmenting path m:

* |If there is an augmenting path, augment flow with A«(r)
(minimum residual capacity among the edges of 1) along the

edges of Tr.
* If there is no augmenting path, terminate.

Remark: You can use DFS (or BFS) to search for an augmenting path.

Running time:

Time to search for an augmenting path X number of updates.

Running time of DFS or BFS Updates increase flow by 1 unit only

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

Example:

Total Flow |f| =0

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

Example:

Total Flow |f| =1

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

Example:

Total Flow |f| = 2

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

Example:

Total Flow |f| =3

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

Example:

Total Flow |f| =6

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

Example:

Total Flow |f| =8

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

Example:

Total Flow |f| =9

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

Example:

Total Flow |f| = 10

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

Example:

Total Flow |f| = 10

No more augmenting paths!

Design and Analysis of Algorithms

The Ford-Fulkerson Algorithm

Pseudocode:

Algorithm MaxFlowFordFulkerson
Input: Flow network (G, ¢, s,t)
Output: A maximum flow f

fi hed AP .
P Initialization f = 0

stop <+ false
repeat
traverse G starting at s to find an augmenting path for f
if an augmenting path 7 exists then
// Compute the residual capacity A g(m) of 7
A + 400

for eachedge e € m do : : :
gl A(;hen A: min residual capacity on aug. path
— Af\e

for eachedge e € m do //push A = Ap(m) units along 7
if e isa forward edge then

e e)+ A
L Update flow on aug. path

f(e) « f(e)— A // e is a backward edge

else
stop <« true // f is a maximum flow No more aug. paths

until srop

Design and Analysis of Algorithms

Application: Maximum Matching

A B

Definition: Given a bipartite graph, a matching is just a
collection of edges that do not share a vertex.

Design and Analysis of Algorithms

Application: Maximum Matching

' Matching

Y B

A

Definition: Given a bipartite graph, a matching is just a
collection of edges that do not share a vertex.

Design and Analysis of Algorithms

Application: Maximum Matching

(o /
A Not a Matching
A 0 e p
O O
O O
O O

Definition: Given a bipartite graph, a matching is just a
collection of edges that do not share a vertex.

Design and Analysis of Algorithms

Application: Maximum Matching

A B

Problem: Given a bipartite graph, compute/find a
maximum matching.

Design and Analysis of Algorithms

Application: Maximum Matching

Problem: Given a bipartite graph, compute/find a
maximum matching.

Idea: Reduce it to Maxflow problem. To do that, we need a
network flow and s, t.

Design and Analysis of Algorithms

Application: Maximum Matching

Problem: Given a bipartite graph, compute/find a
maximum matching.

Idea: Reduce it to Maxflow problem. To do that, we need a
network flow and s, t.

O, O,

Design and Analysis of Algorithms

Application: Maximum Matching

Problem: Given a bipartite graph, compute/find a
maximum matching.

Idea: Reduce it to Maxflow problem. To do that, we need a
network flow and s, t.

Design and Analysis of Algorithms

Application: Maximum Matching

Problem: Given a bipartite graph, compute/find a
maximum matching.

Idea: Reduce it to Maxflow problem. To do that, we need a
network flow and s, t. Put capacity one for all edges
(old and new)

Design and Analysis of Algorithms

Application: Maximum Matching

Problem: Given a bipartite graph, compute/find a
maximum matching.

Idea: Reduce it to Maxflow problem. To do that, we need a
network flow and s, t. Put capacity one for all edges
(old and new)

N\
\ Maximum Matching in old graph /

Design and Analysis of Algorithms

Application: Maximum Matching

Problem: Given a bipartite graph, compute/find a
maximum matching.

Idea: Reduce it to Maxflow problem. To do that, we need a
network flow andiULR AT R4 AR Bl ges
(old and new)

‘
— —‘
\ Maximum Matchlng in old graph V

Design and Analysis of Algorithms

	Slide 1: Lecture 12 Network flows, Max flow, Min-cut
	Slide 2: Flow Networks
	Slide 3: Flow of a Network
	Slide 4: Flow of a Network
	Slide 5: Flow of a Network
	Slide 6: Flow of a Network
	Slide 7: Value of a flow
	Slide 8: Value of a flow
	Slide 9: Maxflow Problem
	Slide 10: Maxflow Problem
	Slide 11: Maxflow Problem
	Slide 12: Maxflow Problem
	Slide 13: Maxflow Problem
	Slide 14: Maxflow Problem
	Slide 15: Maxflow Problem
	Slide 16: Maxflow Problem
	Slide 17: Cut
	Slide 18: Cut
	Slide 19: Cut
	Slide 20: Maxflow = Min Cut
	Slide 21: Maxflow = Min Cut
	Slide 22: Augmenting paths
	Slide 23: Augmenting paths
	Slide 24: Augmenting paths
	Slide 25: Augmenting paths
	Slide 26: Augmenting paths
	Slide 27: Augmenting paths
	Slide 28: Augmenting paths
	Slide 29: The Ford-Fulkerson Algorithm
	Slide 30: The Ford-Fulkerson Algorithm
	Slide 31: The Ford-Fulkerson Algorithm
	Slide 32: The Ford-Fulkerson Algorithm
	Slide 33: The Ford-Fulkerson Algorithm
	Slide 34: The Ford-Fulkerson Algorithm
	Slide 35: The Ford-Fulkerson Algorithm
	Slide 36: The Ford-Fulkerson Algorithm
	Slide 37: The Ford-Fulkerson Algorithm
	Slide 38: The Ford-Fulkerson Algorithm
	Slide 39: The Ford-Fulkerson Algorithm
	Slide 40: The Ford-Fulkerson Algorithm
	Slide 41: The Ford-Fulkerson Algorithm
	Slide 42
	Slide 43: Application: Maximum Matching
	Slide 44: Application: Maximum Matching
	Slide 45: Application: Maximum Matching
	Slide 46: Application: Maximum Matching
	Slide 47: Application: Maximum Matching
	Slide 48: Application: Maximum Matching
	Slide 49: Application: Maximum Matching
	Slide 50: Application: Maximum Matching
	Slide 51: Application: Maximum Matching
	Slide 52: Application: Maximum Matching

