

Lecture 10

Dynamic Programming II: Bellman-Ford (cont), Interval Scheduling, Longest Common Subsequence

CS 161 Design and Analysis of Algorithms
Ioannis Panageas

In words: d[s] = 0, $d[u] = +\infty$ for $u \neq s$.

For n-1 times, relax all the edges (u, v).

Relaxation of (u, v)

If
$$d[v] > d[u] + w(u, v)$$
 then $d[v] \leftarrow d[u] + w(u, v)$

Running time $\Theta(|V| \cdot |E|)$

In words: d[s] = 0, $d[u] = +\infty$ for $u \neq s$.

For n-1 times, relax all the edges (u, v).

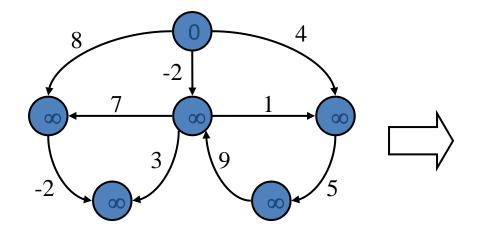
Relaxation of (u, v)

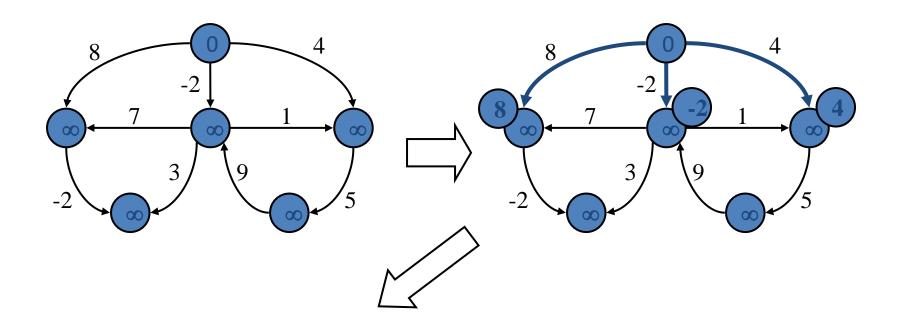
If
$$d[v] > d[u] + w(u, v)$$
 then $d[v] \leftarrow d[u] + w(u, v)$

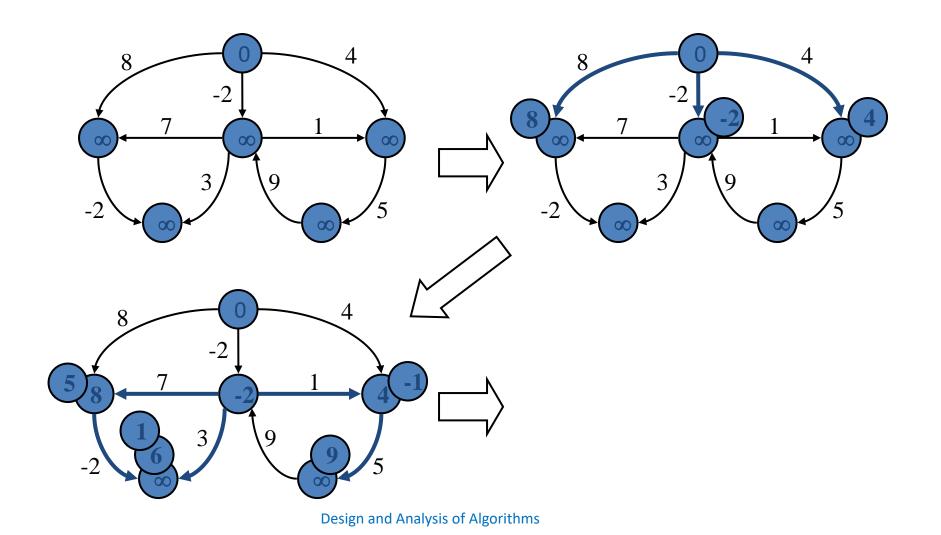
Running time $\Theta(|V| \cdot |E|)$

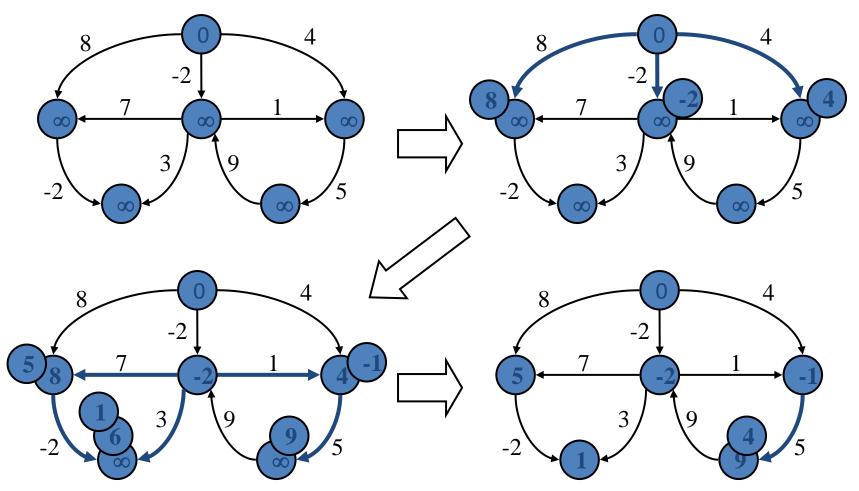
Property: Suppose we relax all edges one more time. If d[] decreases for a vertex then there is a negative cycle. If d[] remains the same, no negative cycle.

Find the shortest weight path from node 0.





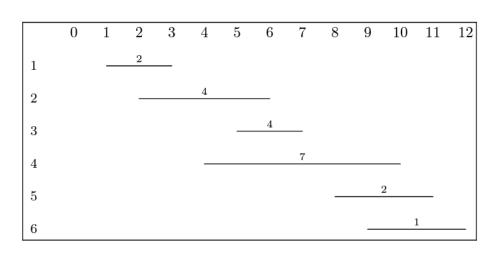




Problem: You are given a collection of n intervals represented by start time, finish time, and value: (s_j, f_j, v_j) , sorted w.r.t f_j . Find a non-overlapping set of intervals with maximum total value.

Example:

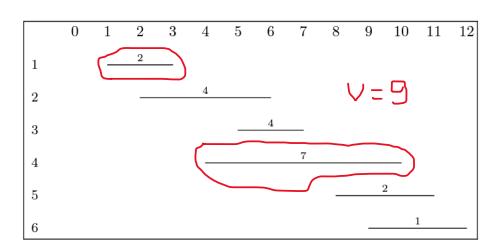
j	s(j)	f(j)	<i>v</i> (<i>j</i>)
1	1	3	2
2	2	6	4
3	5	7	4
4	4	10	7
5	8	11	2
6	9	12	1



Problem: You are given a collection of n intervals represented by start time, finish time, and value: (s_j, f_j, v_j) , sorted w.r.t f_j . Find a non-overlapping set of intervals with maximum total value.

Example:

j	s(j)	f(j)	v(j)
1	1	3	2
2	2	6	4
3	5	7	4
4	4	10	7
5	8	11	2
6	9	12	1



Step 1: Define the problem and subproblems.

Answer: Let DP[j] be the maximum value that can be obtained from a set of non-overlapping intervals with indices in the range $\{1, ..., j\}$

Step 1: Define the problem and subproblems.

Answer: Let DP[j] be the maximum value that can be obtained from a set of non-overlapping intervals with indices in the range $\{1, ..., j\}$ Step 2: Define the goal/output given Step 1. It is DP[n].

Step 1: Define the problem and subproblems.

Answer: Let DP[j] be the maximum value that can be obtained from a set of non-overlapping intervals with indices in the range $\{1, ..., j\}$ Step 2: Define the goal/output given Step 1. It is DP[n].

Step 3: Define the base cases It is DP[0] = 0.

Step 4: Define the recurrence

Step 4: Define the recurrence

Interval *j* belongs to the optimal solution or **not**.

$$DP[j] = \max(\mathbf{DP}[\$] + \mathbf{v_j}, \mathbf{DP}[j-1])$$

What is \$?

Step 4: Define the recurrence

Interval *j* belongs to the optimal solution or **not**.

$$DP[j] = \max(\mathbf{DP}[\$] + \mathbf{v_j}, \mathbf{DP}[j-1])$$

\$ should be the interval with highest index in $\{1, ..., j-1\}$ that does not intersect with j (since j is chosen).

Let p[j] be the highest index in $\{1, ..., j-1\}$ that does not intersect with j. Then the recurrence becomes

$$DP[j] = \max(\mathbf{DP[p[j]]} + \mathbf{v_j}, \mathbf{DP[j-1]})$$

Pseudocode:

```
Array DP[]  \begin{aligned} & \text{DP}[0] \leftarrow 0 & \text{Initialization} \end{aligned} \\ & \textbf{For } k = 1 \text{ to } n \textbf{ do} \\ & \text{DP}[k] \leftarrow \max(\text{DP}[k-1], \text{DP}[p[k]] + v[k]) & \text{Bottom up filliing DP} \end{aligned} \\ & \textbf{return } \text{DP}[n] \end{aligned}
```

Pseudocode:

Question: How can we compute p[j] for $1 \le j \le n$ in $\Theta(n \log n)$ time?

Question: How can we compute p[j] for $1 \le j \le n$ in $\Theta(n \log n)$ time?

Answer:

 Sort first the intervals in increasing order of finishing times.

Question: How can we compute p[j] for $1 \le j \le n$ in $\Theta(n \log n)$ time?

Answer:

- Sort first the intervals in increasing order of finishing times.
- For every j, do binary search to find the interval before j with finishing time at most s_i

Case study V: Longest Common Subsequence

Problem: You are given two strings $x = X_1 ... X_n$ and $y = Y_1 ... Y_m$ of sizes n, m and you are asked to find the size of a longest common substring z of x and y.

Example:

$$x = HIEROGLYPHOLOGY$$

 $y = MICHELANGELO$

Case study V: Longest Common Subsequence

Problem: You are given two strings $x = X_1 ... X_n$ and $y = Y_1 ... Y_m$ of sizes n, m and you are asked to find the size of a longest common substring z of x and y.

Example:

$$x = HIEROGLYPHOLOGY$$

 $y = MICHELANGELO$

$$z = H E G L O$$

Step 1: Define the problem and subproblems.

Answer: Let DP[i, j] be the longest common substring that can be obtained from substrings $X_1X_2 \dots X_i$ and $Y_1Y_2 \dots Y_j$.

Step 1: Define the problem and subproblems.

Answer: Let DP[i, j] be the longest common substring that can be obtained from substrings $X_1X_2 \dots X_i$ and $Y_1Y_2 \dots Y_j$.

Step 2: Define the goal/output given Step 1. It is DP[n, m].

Step 1: Define the problem and subproblems.

Answer: Let DP[i, j] be the longest common substring that can be obtained from substrings $X_1X_2 \dots X_i$ and $Y_1Y_2 \dots Y_j$.

Step 2: Define the goal/output given Step 1. It is DP[n, m].

Step 3: Define the base cases. "One of two strings is empty". DP[0,j] = 0 for all j, DP[i,0] = 0 for all i.

Step 1: Define the problem and subproblems.

Answer: Let DP[i, j] be the longest common substring that can be obtained from substrings $X_1X_2 \dots X_i$ and $Y_1Y_2 \dots Y_j$.

Step 2: Define the goal/output given Step 1. It is DP[n, m].

Step 3: Define the base cases. "One of two strings is empty". DP[0,j] = 0 for all j, DP[i,0] = 0 for all i. Step 4: Define the recurrence

Step 4: Define the recurrence

Case 1:
$$x_i = X_1 X_2 ... X_{i-1} A$$

 $y_j = Y_1 Y_2 ... Y_{j-1} A$

Question: What is the LCS of x_i , y_j ?

Step 4: Define the recurrence

Case 1:
$$x_i = X_1 X_2 ... X_{i-1} A$$

 $y_j = Y_1 Y_2 ... Y_{j-1} A$

Question: What is the LCS of x_i , y_j ?

Answer: $\mathbf{1}$ + the LCS of x_{i-1} , y_{j-1}

Step 4: Define the recurrence

Case 2:
$$x_i = X_1 X_2 ... X_{i-1} A$$

 $y_j = Y_1 Y_2 ... Y_{j-1} B$

Question: What is the LCS of x_i , y_j ?

Step 4: Define the recurrence

Case 2:
$$x_i = X_1 X_2 ... X_{i-1} A$$

 $y_j = Y_1 Y_2 ... Y_{j-1} B$

Question: What is the LCS of x_i , y_j ?

Answer: the maximum of the

LCS of x_{i-1} , y_i and LCS of x_i , y_{i-1}

Step 4: Define the recurrence

$$DP[i,j] = \begin{cases} \text{if } X_i == Y_j \text{ then } DP[i-1,j-1] + 1\\ \text{if } X_i \neq Y_j \text{ then } \max(DP[i-1,j], DP[i,j-1])\\ \text{(case 2)} \end{cases}$$

Pseudocode:

```
Array DP[][], X[], Y[]
For i = 1 to n do
  DP[i, 0] \leftarrow 0
For j = 1 to m do
  DP[0,j] \leftarrow 0
For i = 1 to n do
 For j = 1 to m do
   If X[i] == Y[j] then
     DP[i, j] \leftarrow DP[i - 1, j - 1] + 1
   else \mathrm{DP}[i,j] \leftarrow \max(\mathrm{DP}[i-1,j],\mathrm{DP}[i,j-1])
return DP[n, m]
```

Initialization

Bottom up filliing DP

Goal

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	X _i	0	0	0	0	0	0	0
1	Α	0						
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	X _i	0	0	0	0	0	0	0
1	Α	0	0	0	0			
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	\mathbf{x}_{i}	0	0	0	0	0	0	0
1	Α	0	0	0	0	1		
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		Υ _j	В	D	С	Α	В	Α
0	\mathbf{x}_{i}	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	X _i	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	X _i	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1					
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	\mathbf{x}_{i}	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1				
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	\mathbf{x}_{i}	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1			
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	x _i	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1		
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	\mathbf{x}_{i}	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	X _i	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	X_{i}	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	С	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	4
7	В	0	1	2	2	3	4	4

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	\mathbf{x}_{i}	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	С	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	4
7	В	0	1	2	2	3	4	4

	j	0	1	2	3	4	5	6
i		Yj	B	D	(C)	Α	B	A
0	X _i	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	B	0	1	1	1	1	2	2
3	(Ç	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	A	0	1	2	2	3	3	4
7	В	0	1	2	2	3	4	4

	j	0	1	2	3	4	5	6
i		Υ _j	В	D	С	Α	В	Α
0	X _i	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	С	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	4
7	В	0	1	2	2	3	4	4

	j	0	1	2	3	4	5	6
i		Уj	В		С	A	В	Α
0	x _i	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	С	0	1	1	2	2	2	2
4	B	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	A	0	1	2	2	3	3	4
7	B	0	1	2	2	3	4	4