
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 10

Dynamic Programming II: Bellman-
Ford (cont), Interval Scheduling,
Longest Common Subsequence

Design and Analysis of Algorithms

Case study III: Bellman-Ford

In words: 𝑑[𝑠] = 0, 𝑑[𝑢] = +∞ for 𝑢 ≠ 𝑠.

For 𝑛 − 1 times, relax all the edges (𝑢, 𝑣).

Design and Analysis of Algorithms

Case study III: Bellman-Ford

In words: 𝑑[𝑠] = 0, 𝑑[𝑢] = +∞ for 𝑢 ≠ 𝑠.

For 𝑛 − 1 times, relax all the edges (𝑢, 𝑣).

Property: Suppose we relax all edges one more
time. If 𝑑[] decreases for a vertex then there is a
negative cycle. If 𝑑[] remains the same, no
negative cycle.



0







48

7 1

-2 5

-2

3 9

Case study III: Bellman-Ford

Design and Analysis of Algorithms

Find the shortest weight path from node 0.



-2



0







48

7 1

-2 5

-2

3 9



0







48

7 1

-2 5

3 9

8 -2 4

Case study III: Bellman-Ford

Design and Analysis of Algorithms



-2



0







48

7 1

-2 5

-2

3 9



0







48

7 1

-2 5

3 9

-2

-28

0

4



48

7 1

-2 5

3 9



8 -2 4

-15

6
1

9

Case study III: Bellman-Ford

Design and Analysis of Algorithms



-2



0







48

7 1

-2 5

-2

3 9



0







48

7 1

-2 5

3 9

-2

-28

0

4



48

7 1

-2 5

3 9



8 -2 4

-15

6
1

9

-25

0

1

-1

9

48

7 1

-2 5

-2

3 9
4

Case study III: Bellman-Ford

Design and Analysis of Algorithms

Design and Analysis of Algorithms

Case study IV: Interval Scheduling

Problem: You are given a collection of 𝑛 intervals represented by
start time, finish time, and value: (𝑠𝑗 , 𝑓𝑗 , 𝑣𝑗), sorted w.r.t 𝑓𝑗. Find a

non-overlapping set of intervals with maximum total value.

Design and Analysis of Algorithms

Case study IV: Interval Scheduling

Problem: You are given a collection of 𝑛 intervals represented by

start time, finish time, and value: (𝑠𝑗 , 𝑓𝑗 , 𝑣𝑗), sorted w.r.t 𝑓𝑗. Find a

non-overlapping set of intervals with maximum total value.

Design and Analysis of Algorithms

Case study IV: Interval Scheduling

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑗] be the maximum value that can
be obtained from a set of non-overlapping
intervals with indices in the range {1, … , 𝑗}

Design and Analysis of Algorithms

Case study IV: Interval Scheduling

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑗] be the maximum value that can
be obtained from a set of non-overlapping
intervals with indices in the range {1, … , 𝑗}
Step 2: Define the goal/output given Step 1.
It is 𝑫𝑷[𝒏].

Design and Analysis of Algorithms

Case study IV: Interval Scheduling

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑗] be the maximum value that can
be obtained from a set of non-overlapping
intervals with indices in the range {1, … , 𝑗}
Step 2: Define the goal/output given Step 1.
It is 𝑫𝑷[𝒏].
Step 3: Define the base cases
It is 𝐷𝑃[0] = 0.

Step 4: Define the recurrence

Design and Analysis of Algorithms

Interval 𝑗 belongs to the optimal solution or not.

 𝐷𝑃[𝑗] = max(𝐃𝐏[$] + 𝐯𝐣, 𝐃𝐏[𝐣 − 𝟏])

What is $?

Case study IV: Interval Scheduling

Step 4: Define the recurrence

Design and Analysis of Algorithms

Interval 𝑗 belongs to the optimal solution or not.

 𝐷𝑃[𝑗] = max(𝐃𝐏[$] + 𝐯𝐣, 𝐃𝐏[𝐣 − 𝟏])

$ should be the interval with highest index in {1, … , 𝑗 − 1} that

does not intersect with 𝑗 (since 𝑗 is chosen).

Let 𝑝[𝑗] be the highest index in {1, … , 𝑗 − 1} that does not

intersect with 𝑗. Then the recurrence becomes

 𝐷𝑃[𝑗] = max(𝐃𝐏[𝐩[𝐣]] + 𝐯𝐣, 𝐃𝐏[𝐣 − 𝟏])

Case study IV: Interval Scheduling

Step 4: Define the recurrence

Design and Analysis of Algorithms

Bottom up filliing DP

Case study IV: Interval Scheduling

Pseudocode:

Initialization

 Goal

Design and Analysis of Algorithms

Bottom up filliing DP

Case study IV: Interval Scheduling

Pseudocode:

Initialization

 Goal

Question: How can we compute 𝑝[𝑗] for 1 ≤ 𝑗 ≤ 𝑛
in Θ(𝑛 log 𝑛) time?

Design and Analysis of Algorithms

Case study IV: Interval Scheduling

Question: How can we compute 𝑝[𝑗] for 1 ≤ 𝑗 ≤ 𝑛
in Θ(𝑛 log 𝑛) time?

Answer:
● Sort first the intervals in increasing order of

finishing times.

Design and Analysis of Algorithms

Case study IV: Interval Scheduling

Question: How can we compute 𝑝[𝑗] for 1 ≤ 𝑗 ≤ 𝑛
in Θ(𝑛 log 𝑛) time?

Answer:
● Sort first the intervals in increasing order of

finishing times.
● For every 𝑗, do binary search to find the interval

before 𝑗 with finishing time at most 𝑠𝑗

Design and Analysis of Algorithms

Case study V: Longest Common
Subsequence

Problem: You are given two strings 𝑥 = 𝑋1 … 𝑋𝑛 and 𝑦 = 𝑌1 … 𝑌𝑚 of
sizes 𝑛, 𝑚 and you are asked to find the size of a longest common
substring 𝑧 of 𝑥 and 𝑦.

𝑥 = H I E R O G L Y P H O L O G Y
𝑦 = M I C H E L A N G E L O

Design and Analysis of Algorithms

Case study V: Longest Common
Subsequence

Problem: You are given two strings 𝑥 = 𝑋1 … 𝑋𝑛 and 𝑦 = 𝑌1 … 𝑌𝑚 of
sizes 𝑛, 𝑚 and you are asked to find the size of a longest common
substring 𝑧 of 𝑥 and 𝑦.

𝑥 = H I E R O G L Y P H O L O G Y
𝑦 = M I C H E L A N G E L O

𝑧 = H E G L O

Design and Analysis of Algorithms

Case study V: LCS

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑖, 𝑗] be the longest common
substring that can be obtained from substrings
𝑋1𝑋2 … 𝑋𝑖 and 𝑌1𝑌2 … 𝑌𝑗 .

Design and Analysis of Algorithms

Case study V: LCS

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑖, 𝑗] be the longest common
substring that can be obtained from substrings
𝑋1𝑋2 … 𝑋𝑖 and 𝑌1𝑌2 … 𝑌𝑗 .

Step 2: Define the goal/output given Step 1.
It is 𝑫𝑷[𝒏, 𝒎].

Design and Analysis of Algorithms

Case study V: LCS

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑖, 𝑗] be the longest common
substring that can be obtained from substrings
𝑋1𝑋2 … 𝑋𝑖 and 𝑌1𝑌2 … 𝑌𝑗 .

Step 2: Define the goal/output given Step 1.
It is 𝑫𝑷[𝒏, 𝒎].
Step 3: Define the base cases. “One of two strings is
empty”. 𝐷𝑃[0, 𝑗] = 0 for all 𝑗, 𝐷𝑃[𝑖, 0] = 0 for all 𝑖.

Design and Analysis of Algorithms

Case study V: LCS

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑖, 𝑗] be the longest common
substring that can be obtained from substrings
𝑋1𝑋2 … 𝑋𝑖 and 𝑌1𝑌2 … 𝑌𝑗 .

Step 2: Define the goal/output given Step 1.
It is 𝑫𝑷[𝒏, 𝒎].
Step 3: Define the base cases. “One of two strings is
empty”. 𝐷𝑃[0, 𝑗] = 0 for all 𝑗, 𝐷𝑃[𝑖, 0] = 0 for all 𝑖.
Step 4: Define the recurrence

Design and Analysis of Algorithms

Case study V: LCS

Step 4: Define the recurrence

Case 1: 𝑥𝑖 = 𝑋1𝑋2 … 𝑋𝑖−1
𝐴

 𝑦𝑗 = 𝑌1𝑌2 … 𝑌𝑗−1
𝐴

Question: What is the LCS of 𝑥𝑖, 𝑦𝑗?

Design and Analysis of Algorithms

Case study V: LCS

Step 4: Define the recurrence

Case 1: 𝑥𝑖 = 𝑋1𝑋2 … 𝑋𝑖−1
𝐴

 𝑦𝑗 = 𝑌1𝑌2 … 𝑌𝑗−1
𝐴

Question: What is the LCS of 𝑥𝑖, 𝑦𝑗?

Answer: 1 + the LCS of 𝒙𝒊−𝟏, 𝒚𝒋−𝟏

Design and Analysis of Algorithms

Case study V: LCS

Step 4: Define the recurrence

Case 2: 𝑥𝑖 = 𝑋1𝑋2 … 𝑋𝑖−1
𝐴

 𝑦𝑗 = 𝑌1𝑌2 … 𝑌𝑗−1
𝐵

Question: What is the LCS of 𝑥𝑖, 𝑦𝑗?

Design and Analysis of Algorithms

Case study V: LCS

Step 4: Define the recurrence

Case 2: 𝑥𝑖 = 𝑋1𝑋2 … 𝑋𝑖−1
𝐴

 𝑦𝑗 = 𝑌1𝑌2 … 𝑌𝑗−1
𝐵

Question: What is the LCS of 𝑥𝑖, 𝑦𝑗?

Answer: the maximum of the
LCS of 𝒙𝒊−𝟏, 𝒚𝒋 and LCS of 𝒙𝒊, 𝒚𝒋−𝟏

Design and Analysis of Algorithms

Case study V: LCS

Step 4: Define the recurrence

if Xi == Y𝑗 then 𝐷𝑃[𝑖 − 1, 𝑗 − 1] + 1

 𝐷𝑃[𝑖, 𝑗] =

if Xi ≠ Y𝑗 then max(𝐷𝑃[𝑖 − 1, 𝑗], 𝐷𝑃[𝑖, 𝑗 − 1])

 (case 2)

(case 1)

Design and Analysis of Algorithms

Bottom up filliing DP

Case study V: LCS

Pseudocode:

Initialization

 Goal

Design and Analysis of Algorithms

Case study V: LCS
𝑥 is the string "ABCBDAB" and 𝑦 is the string "BDCABA".

Design and Analysis of Algorithms

Case study V: LCS

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0

2 B 0

3 C 0

4 B 0

5 D 0

6 A 0

7 B 0

𝑥 is the string "ABCBDAB" and 𝑦 is the string "BDCABA".

Design and Analysis of Algorithms

Case study V: LCS

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0 0 0 0

2 B 0

3 C 0

4 B 0

5 D 0

6 A 0

7 B 0

𝑥 is the string "ABCBDAB" and 𝑦 is the string "BDCABA".

Design and Analysis of Algorithms

Case study V: LCS

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0 0 0 0 1

2 B 0

3 C 0

4 B 0

5 D 0

6 A 0

7 B 0

𝑥 is the string "ABCBDAB" and 𝑦 is the string "BDCABA".

Design and Analysis of Algorithms

Case study V: LCS

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0 0 0 0 1 1

2 B 0

3 C 0

4 B 0

5 D 0

6 A 0

7 B 0

𝑥 is the string "ABCBDAB" and 𝑦 is the string "BDCABA".

Design and Analysis of Algorithms

Case study V: LCS

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0 0 0 0 1 1 1

2 B 0

3 C 0

4 B 0

5 D 0

6 A 0

7 B 0

𝑥 is the string "ABCBDAB" and 𝑦 is the string "BDCABA".

Design and Analysis of Algorithms

Case study V: LCS

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0 0 0 0 1 1 1

2 B 0 1

3 C 0

4 B 0

5 D 0

6 A 0

7 B 0

𝑥 is the string "ABCBDAB" and 𝑦 is the string "BDCABA".

Design and Analysis of Algorithms

Case study V: LCS

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0 0 0 0 1 1 1

2 B 0 1 1

3 C 0

4 B 0

5 D 0

6 A 0

7 B 0

𝑥 is the string "ABCBDAB" and 𝑦 is the string "BDCABA".

Design and Analysis of Algorithms

Case study V: LCS

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0 0 0 0 1 1 1

2 B 0 1 1 1

3 C 0

4 B 0

5 D 0

6 A 0

7 B 0

𝑥 is the string "ABCBDAB" and 𝑦 is the string "BDCABA".

Design and Analysis of Algorithms

Case study V: LCS

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0 0 0 0 1 1 1

2 B 0 1 1 1 1

3 C 0

4 B 0

5 D 0

6 A 0

7 B 0

𝑥 is the string "ABCBDAB" and 𝑦 is the string "BDCABA".

Design and Analysis of Algorithms

Case study V: LCS

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0 0 0 0 1 1 1

2 B 0 1 1 1 1 2

3 C 0

4 B 0

5 D 0

6 A 0

7 B 0

𝑥 is the string "ABCBDAB" and 𝑦 is the string "BDCABA".

Design and Analysis of Algorithms

Case study V: LCS

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0 0 0 0 1 1 1

2 B 0 1 1 1 1 2 2

3 C 0

4 B 0

5 D 0

6 A 0

7 B 0

𝑥 is the string "ABCBDAB" and 𝑦 is the string "BDCABA".

Design and Analysis of Algorithms

Case study V: LCS

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0 0 0 0 1 1 1

2 B 0 1 1 1 1 2 2

3 C 0 1 1 2 2 2 2

4 B 0 1 1 2 2 3 3

5 D 0 1 2 2 2 3 3

6 A 0 1 2 2 3 3 4

7 B 0 1 2 2 3 4 4

𝑥 is the string "ABCBDAB" and 𝑦 is the string "BDCABA".

Design and Analysis of Algorithms

Case study V: LCS

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0 0 0 0 1 1 1

2 B 0 1 1 1 1 2 2

3 C 0 1 1 2 2 2 2

4 B 0 1 1 2 2 3 3

5 D 0 1 2 2 2 3 3

6 A 0 1 2 2 3 3 4

7 B 0 1 2 2 3 4 4

𝑥 is the string "ABCBDAB" and 𝑦 is the string "BDCABA".

Design and Analysis of Algorithms

Case study V: LCS

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0 0 0 0 1 1 1

2 B 0 1 1 1 1 2 2

3 C 0 1 1 2 2 2 2

4 B 0 1 1 2 2 3 3

5 D 0 1 2 2 2 3 3

6 A 0 1 2 2 3 3 4

7 B 0 1 2 2 3 4 4

𝑥 is the string "ABCBDAB" and 𝑦 is the string "BDCABA".

Design and Analysis of Algorithms

Case study V: LCS

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0 0 0 0 1 1 1

2 B 0 1 1 1 1 2 2

3 C 0 1 1 2 2 2 2

4 B 0 1 1 2 2 3 3

5 D 0 1 2 2 2 3 3

6 A 0 1 2 2 3 3 4

7 B 0 1 2 2 3 4 4

𝑥 is the string "ABCBDAB" and 𝑦 is the string "BDCABA".

Design and Analysis of Algorithms

Case study V: LCS

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0 0 0 0 1 1 1

2 B 0 1 1 1 1 2 2

3 C 0 1 1 2 2 2 2

4 B 0 1 1 2 2 3 3

5 D 0 1 2 2 2 3 3

6 A 0 1 2 2 3 3 4

7 B 0 1 2 2 3 4 4

𝑥 is the string "ABCBDAB" and 𝑦 is the string "BDCABA".

	Slide 1: Lecture 10 Dynamic Programming II: Bellman-Ford (cont), Interval Scheduling, Longest Common Subsequence
	Slide 2
	Slide 3
	Slide 4: Case study III: Bellman-Ford
	Slide 5: Case study III: Bellman-Ford
	Slide 6: Case study III: Bellman-Ford
	Slide 7: Case study III: Bellman-Ford
	Slide 8: Case study IV: Interval Scheduling
	Slide 9: Case study IV: Interval Scheduling
	Slide 10: Case study IV: Interval Scheduling
	Slide 11: Case study IV: Interval Scheduling
	Slide 12: Case study IV: Interval Scheduling
	Slide 13: Case study IV: Interval Scheduling
	Slide 14: Case study IV: Interval Scheduling
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Case study V: LCS
	Slide 22: Case study V: LCS
	Slide 23: Case study V: LCS
	Slide 24: Case study V: LCS
	Slide 25: Case study V: LCS
	Slide 26: Case study V: LCS
	Slide 27: Case study V: LCS
	Slide 28: Case study V: LCS
	Slide 29: Case study V: LCS
	Slide 30
	Slide 31: Case study V: LCS
	Slide 32: Case study V: LCS
	Slide 33: Case study V: LCS
	Slide 34: Case study V: LCS
	Slide 35: Case study V: LCS
	Slide 36: Case study V: LCS
	Slide 37: Case study V: LCS
	Slide 38: Case study V: LCS
	Slide 39: Case study V: LCS
	Slide 40: Case study V: LCS
	Slide 41: Case study V: LCS
	Slide 42: Case study V: LCS
	Slide 43: Case study V: LCS
	Slide 44: Case study V: LCS
	Slide 45: Case study V: LCS
	Slide 46: Case study V: LCS
	Slide 47: Case study V: LCS

