

Lecture 9

Dynamic Programming II: Knapsack, Interval Scheduling, Bellman-Ford

CS 161 Design and Analysis of Algorithms Ioannis Panageas

Dynamic Programming

- Technique for solving optimization problems.
- Solve problem by solving **sub**-problems and combine:
- This is called **Optimal substructure property**.
- Similar to divide-and-conquer: recursion (for solving sub-problems)
- Sub-problems overlap: solve them only once!

DP = recursion + re-use (Memoization)

Problem: A set of n items, with each item i having positive weight w_i and positive benefit v_i . You are asked to choose items with maximum total benefit so that the total weight is at most W

Example:

Items:

Weight:4 lbs2 lbs2 lbs6 lbs2 lbsBenefit:\$20\$3\$6\$25\$80

"knapsack" with 9 lbs capacity

Solution:

- item 5 (\$80, 2 lbs)
- item 3 (\$6, 2lbs)
- item 1 (\$20, 4lbs)

Idea: Dynamic Programming.

Step 1: Define the problem and subproblems. Answer: Let DP[k, j] be the maximum value I can get from items $\{1, ..., k\}$ without exceeding j.

Idea: Dynamic Programming.

- Step 1: Define the problem and subproblems. Answer: Let DP[k, j] be the maximum value I can get from items $\{1, ..., k\}$ without exceeding j. Step 2: Define the goal/output given Step 1.
- It is **DP**[**n**, **W**].

Idea: Dynamic Programming.

- **Step 1**: Define the problem and subproblems.
- Answer: Let DP[k, j] be the maximum value I can get from items $\{1, ..., k\}$ without exceeding j.
- Step 2: Define the goal/output given Step 1. It is DP[n, W].
- Step 3: Define the base cases It is DP[0, j] = 0 for all j and DP[i, 0] = 0 for all i.
- Step 4: Define the recurrence

Idea: Dynamic Programming.

Step 4: Define the recurrence Item k will be **used** or **not**.

 $DP[k,j] = \max(\mathbf{DP}[\mathbf{k}-\mathbf{1},\mathbf{j}-\mathbf{w}_{\mathbf{k}}] + \mathbf{v}_{\mathbf{k}}, \mathbf{DP}[\mathbf{k}-\mathbf{1},\mathbf{j}])$

Idea: Dynamic Programming.

Step 4: Define the recurrence Item k will be **used** or **not**.

 $DP[k,j] = \max(\mathbf{DP}[\mathbf{k}-\mathbf{1},\mathbf{j}-\mathbf{w}_{\mathbf{k}}] + \mathbf{v}_{\mathbf{k}}, \mathbf{DP}[\mathbf{k}-\mathbf{1},\mathbf{j}])$

Question: How do we know that item k does not have weight more than *j*?

Idea: Dynamic Programming.

Step 4: Define the recurrence Item k will be used or not.

 $DP[k,j] = \text{if } w_k \le j \quad \max(\mathbf{DP}[\mathbf{k} - \mathbf{1}, \mathbf{j} - \mathbf{w}_k] + \mathbf{v}_k, \mathbf{DP}[\mathbf{k} - \mathbf{1}, \mathbf{j}])$ If $w_k > j \quad \mathbf{DP}[\mathbf{k} - \mathbf{1}, \mathbf{j}]$

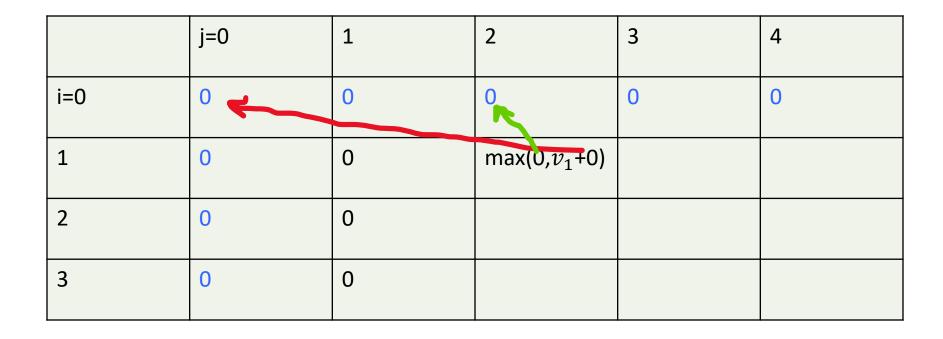
Answer: Add an if statement in the recurrence.

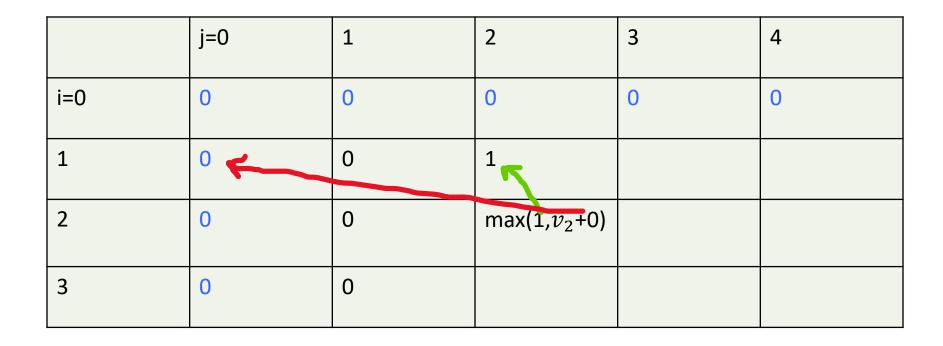
Example: 3 items, W = 4 $w_1 = 2, v_1 = 1, w_2 = 2, v_2 = 1, w_3 = 3, v_3 = 5$

Initialization:

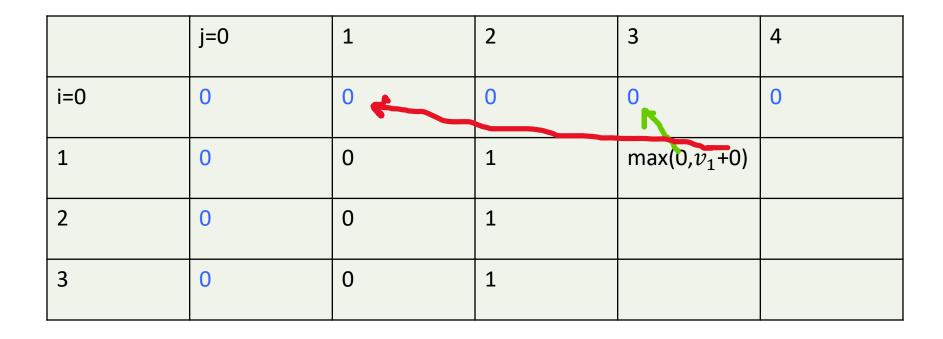
	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0				
2	0				
3	0				

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	$0 (j < w_1)$			
2	0	$0 (j < w_2)$			
3	0	$0 (j < w_3)$			





	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	0	1		
2	0	0	1		
3	0	0	$1 (j < w_3)$		



	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	0	1	1	
2	0	0	1	$max(1, v_2+0)$	
3	0	0	1		

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	0	1	1	
2	0	0	1	1	
3	0	0	1	max(1, v_3 +0)	

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	0	1	1	max(0,v ₁ +0)
2	0	0	1	1	
3	0	0	1	5	

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	0	1	1	1
2	0	0	1	1	max(1,v ₂ +1)
3	0	0	1	5	

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	0	1	1	1
2	0	0	1	1	2
3	0	0	1	5	max(2,0+v ₃)

	j=0	1	2	3	4
i=0	0	0	0	0	0
1	0	0	1	1	1
2	0	0	1	1	2
3	0	0	1	5	5

Pseudocode:

```
Array DP[[[]
For i = 0 to n do
  DP[i, 0] \leftarrow 0
                                         Initialization
For j = 1 to W do
 DP[0, j] \leftarrow 0
For i = 1 to n do
                                     Bottom up filliing DP
  For j = 1 to W do
    If j < w_i then
      DP[i, j] \leftarrow DP[i-1, j]
    else DP[i, j] \leftarrow max(DP[i-1, j], DP[i-1, j-w_i] + v_i)
return DP[n, W]
                                             Goal
```

Pseudocode:

```
Array DP[[[]
For i = 0 to n do
  DP[i, 0] \leftarrow 0
                                         Initialization
For j = 1 to W do
 DP[0, j] \leftarrow 0
For i = 1 to n do
                                     Bottom up filliing DP
  For j = 1 to W do
    If j < w_i then
      DP[i, j] \leftarrow DP[i-1, j]
    else DP[i, j] \leftarrow max(DP[i-1, j], DP[i-1, j-w_i] + v_i)
return DP[n, W]
                                             Goal
```

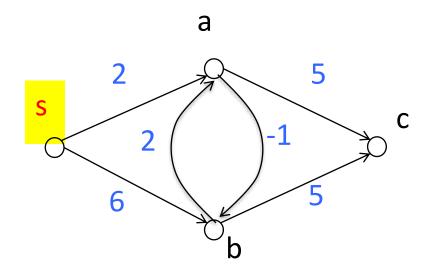
Running time: $\Theta(nW)$

Design and Analysis of Algorithms

Problem: Given a directed graph G(V, E), with edge-weights w_e for every edge e and a source node s, find all shortest-path weights from s to all other vertices.

Remark: A path $p = \langle v_0, v_1, \dots, v_k \rangle$ has weight $\sum_{i=1}^k w(v_{i-1}, v_i)$.

Example:

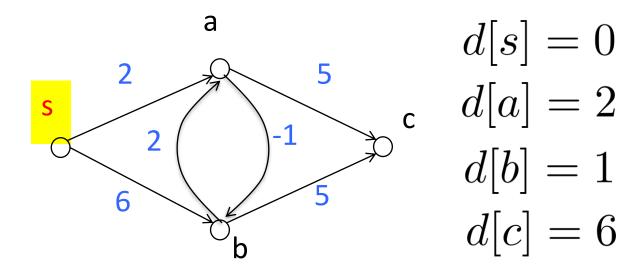


Problem: Given a directed graph G(V, E), with edge-weights w_e for every edge e and a source node s, find all shortest-path weights from s to all other vertices.

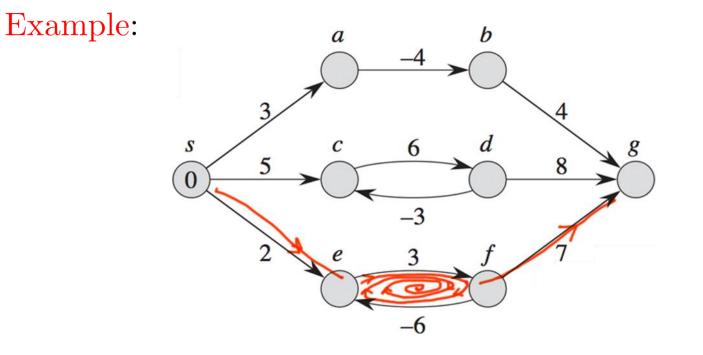
Remark: A path $p = \langle v_0, v_1, ..., v_k \rangle$ has weight $\sum_{i=1}^k w(v_{i-1}, v_i)$.

Example:

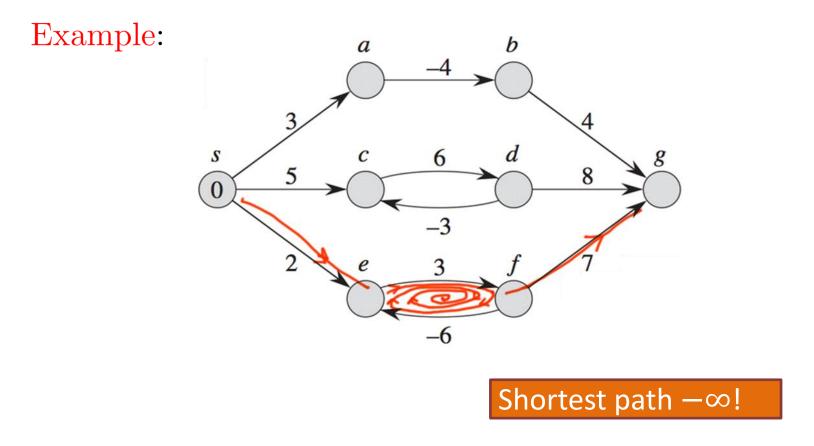
Solution:



Assumption: There are no negative cycles. Otherwise, the question of shortest-path is ill-posed. Why?



Assumption: There are no negative cycles. Otherwise, the question of shortest-path is ill-posed. Why?



Idea: Dynamic Programming.

Step 1: Define the problem and subproblems. Answer: Let d[v, k] be the shortest weight from s to v using at most k edges.

Idea: Dynamic Programming.

Step 1: Define the problem and subproblems. Answer: Let d[v, k] be the shortest weight from s to v using at most k edges.

Step 2: Define the goal/output given Step 1. It is d[w, n - 1] for shortest weight from s to w.

Idea: Dynamic Programming.

Step 1: Define the problem and subproblems. Answer: Let d[v, k] be the shortest weight from s to v using at most k edges.

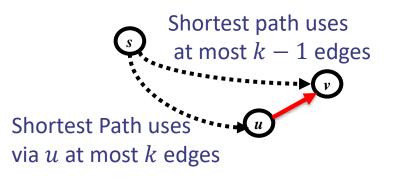
Step 2: Define the goal/output given Step 1. It is d[w, n - 1] for shortest weight from s to w.

Step 3: Define the base cases It is d[s, k] = 0 for all $k, d[v, 0] = \infty$ for all $v \neq s$.

Step 4: Define the recurrence

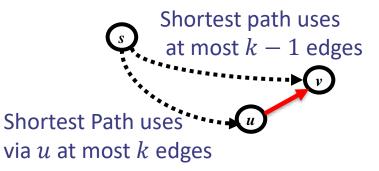
Idea: Dynamic Programming.

Step 4: Define the recurrence Shortest path from s to v uses k edges via an intermediate edge (u, v) or at most k - 1 edges.



Idea: Dynamic Programming.

Step 4: Define the recurrence Shortest path from s to v uses k edges via an intermediate edge (u, v) or at most k - 1 edges.



 $d[v,k] = min(\min_{u} \{d[u,k-1] + w(u,v)\}, d[v,k-1])$

Pseudocode:

Array d|||| For k = 0 to n - 1 do $d[s,k] \leftarrow 0$ For each vertex $u \neq s$ do $d[u,0] \leftarrow +\infty$ For k = 1 to n - 1 do For each edge (u, v) do If d[v, k] > d[u, k - 1] + w(u, v) $d[v,k] \leftarrow d[u,k-1] + w(u,v)$ return DP[w][n-1]

Bottom up filliing DP

 \mathbf{then}

Goal (shortest path from s to w)

Pseudocode: Why 2D? We can use less memory.

Array d|||| For k = 0 to n - 1 do $d[s,k] \leftarrow 0$ For each vertex $u \neq s$ do $d[u,0] \leftarrow +\infty$ For k = 1 to n - 1 do For each edge (u, v) do If d[v, k] > d[u, k - 1] + w(u, v) $d[v,k] \leftarrow d[u,k-1] + w(u,v)$ return DP[w][n-1]

Bottom up filliing DP

 \mathbf{then}

Goal (shortest path from s to w)

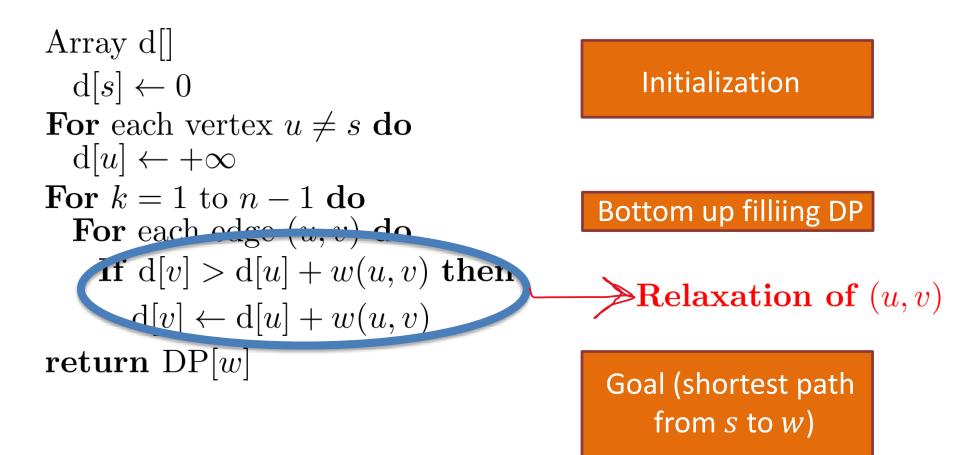
Pseudocode: Algorithm to know.

```
Array d
  d[s] \leftarrow 0
For each vertex u \neq s do
  d[u] \leftarrow +\infty
For k = 1 to n - 1 do
  For each edge (u, v) do
    If d[v] > d[u] + w(u, v) then
       d[v] \leftarrow d[u] + w(u, v)
return DP[w]
```


Bottom up filliing DP

Goal (shortest path from s to w)

Pseudocode: Algorithm to know.



Case study III: Bellman-Ford In words: d[s] = 0, $d[u] = +\infty$ for $u \neq s$. For n-1 times, relax all the edges (u, v). **Relaxation of** (u, v)If d[v] > d[u] + w(u, v) then $d[v] \leftarrow d[u] + w(u, v)$

Running time $\Theta(|V| \cdot |E|)$

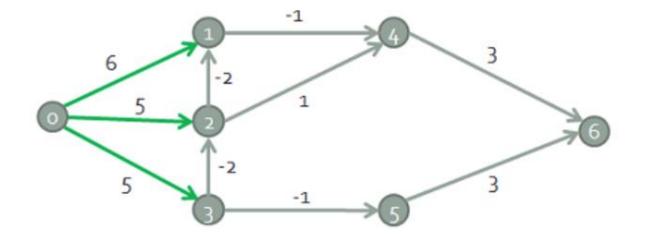
Case study III: Bellman-Ford In words: $d[s] = 0, d[u] = +\infty$ for $u \neq s$. For n - 1 times, relax all the edges (u, v). Relaxation of (u, v)

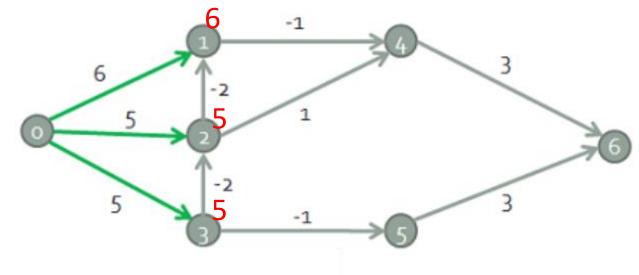
 $\begin{aligned} \mathbf{ff} \ \mathbf{d}[v] > \mathbf{d}[u] + w(u,v) \ \mathbf{then} \\ \mathbf{d}[v] \leftarrow \mathbf{d}[u] + w(u,v) \end{aligned}$

Running time $\Theta(|V| \cdot |E|)$

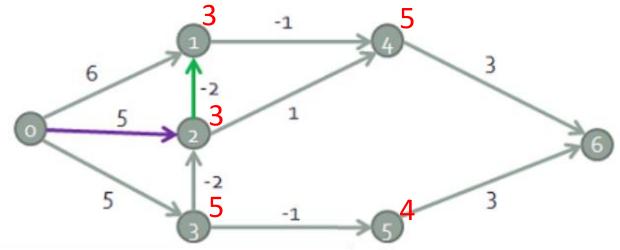
Property: Suppose we relax all edges one more time. If d[] decreases for a vertex then there is a negative cycle. If d[] remains the same, no negative cycle.

Find the shortest weight path from node 0.

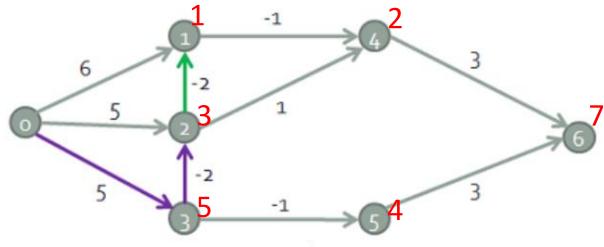




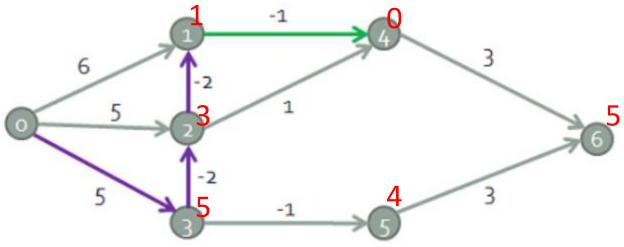
k	1	2	3	4	5	6
1	6	5	5	00	00	00
2						
3						
4						
5						
6						
			Design and A	nalysis of Algor	rithms	



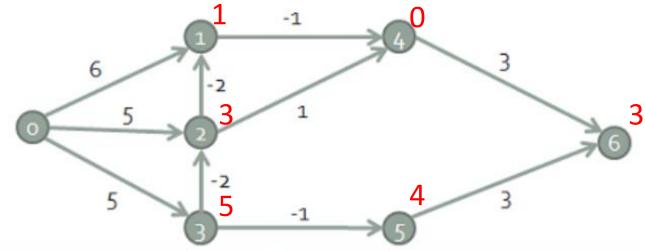
k	1	2	3	4	5	6
1	6	5	5	00	00	00
2	3	3	5	5	4	00
3						
4						
5						
6						



k	1	2	3	4	5	6
1	6	5	5	00	8	8
2	3	3	5	5	4	00
3	1	3	5	2	4	7
4						
5						
6						

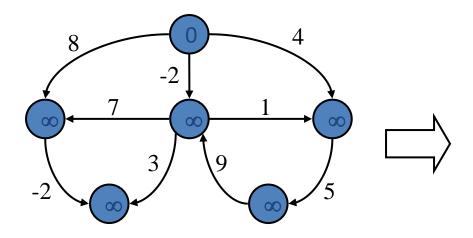


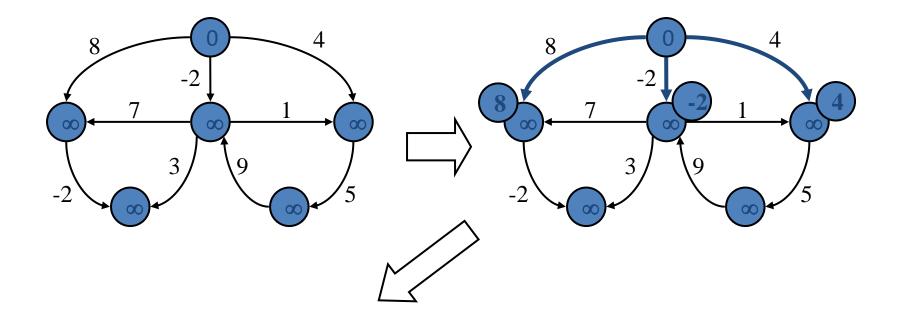
k	1	2	3	4	5	6	
1	6	5	5	00	8	00	
2	3	3	5	5	4	00	
3	1	3	5	2	4	7	
4	1	3	5	0	4	5	
5							
6							

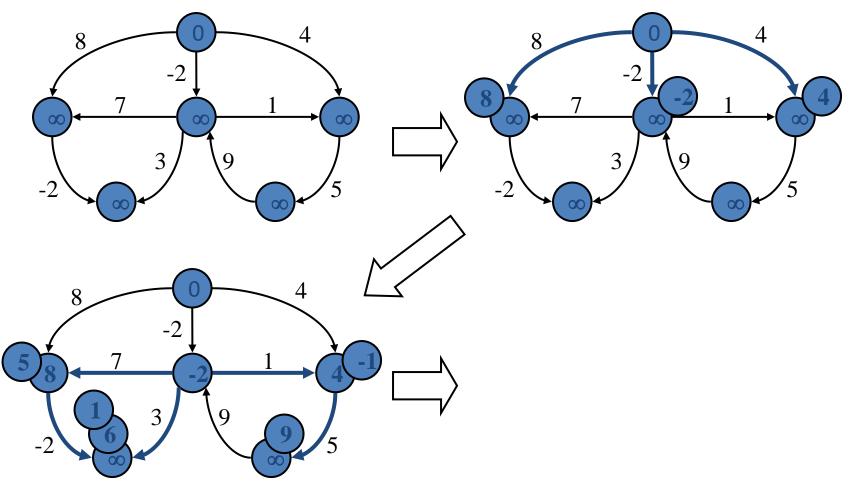


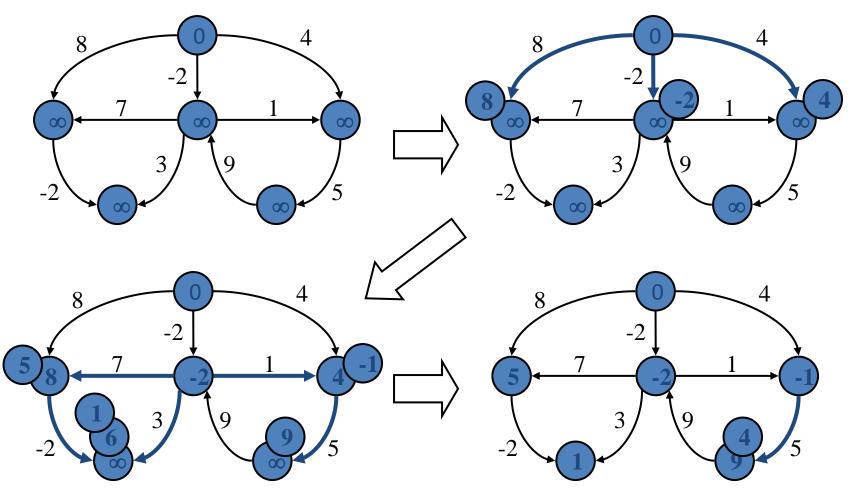
k	1	2	3	4	5	6
1	6	5	5	00	00	00
2	3	3	5	5	4	00
3	1	3	5	2	4	7
4	1	3	5	0	4	5
5	1	3	5	0	4	3
6	1	3	5	0	4	3

Find the shortest weight path from node 0.









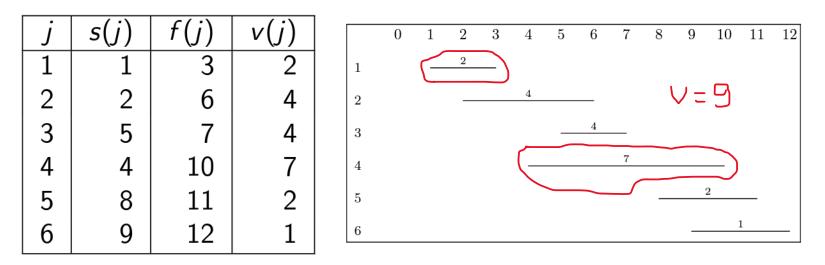
Problem: You are given a collection of n intervals represented by start time, finish time, and value: (s_j, f_j, v_j) . Find a non-overlapping set of intervals with maximum total value.

Example:

j	s(j)	f(j)	v(j)		0	1	2	3	4	5	6	7	8	9	10	11	12
1	1	3	2	1		_	2										
2	2	6	4	2			_		4								
3	5	7	4	3							4						
4	4	10	7	4					_			7					
5	8	11	2	5										:	2		
6	9	12	1	6											1	1	

Problem: You are given a collection of n intervals represented by start time, finish time, and value: (s_j, f_j, v_j) . Find a non-overlapping set of intervals with maximum total value.

Example:



Step 1: Define the problem and subproblems. Answer: Let DP[j] be the maximum value that can be obtained from a set of non-overlapping intervals with indices in the range $\{1, ..., j\}$

Step 1: Define the problem and subproblems. Answer: Let DP[j] be the maximum value that can be obtained from a set of non-overlapping intervals with indices in the range $\{1, ..., j\}$ Step 2: Define the goal/output given Step 1. It is DP[n].

Step 1: Define the problem and subproblems. Answer: Let DP[j] be the maximum value that can be obtained from a set of non-overlapping intervals with indices in the range $\{1, \dots, j\}$ Step 2: Define the goal/output given Step 1. It is *DP*[*n*]. **Step 3**: Define the base cases It is DP[0] = 0.

Step 4: Define the recurrence

Step 4: Define the recurrence

Interval *j* belongs to the optimal solution or **not**.

 $DP[j] = \max(\mathbf{DP}[\$] + \mathbf{v}_{j}, \mathbf{DP}[j - 1])$ What is **\$** ?

Step 4: Define the recurrence

Interval *j* belongs to the optimal solution or **not**.

 $DP[j] = \max(\mathbf{DP}[\$] + \mathbf{v_j}, \mathbf{DP}[j-1])$

\$ should be the interval with highest index in $\{1, ..., j - 1\}$ that does not intersect with *j* (since *j* is chosen).

Let p[j] be the highest index in $\{1, ..., j - 1\}$ that does not intersect with j. Then the recurrence becomes

$$DP[j] = \max(\mathbf{DP}[\mathbf{p}[\mathbf{j}]] + \mathbf{v}_{\mathbf{j}}, \mathbf{DP}[\mathbf{j} - \mathbf{1}])$$

Pseudocode:

Array DP[] $DP[0] \leftarrow 0$ **For** k = 1 to n **do** $DP[k] \leftarrow \max(DP[k-1], DP[p[k]] + v[k])$ Bottom up filliing DP **return** DP[n] Goal

Pseudocode:

Array DP[] $DP[0] \leftarrow 0$ **For** k = 1 to n **do** $DP[k] \leftarrow \max(DP[k-1], DP[p[k]] + v[k])$ Bottom up filliing DP **return** DP[n] Goal

Question: How can we compute p[j] for $1 \le j \le n$ in $\Theta(n \log n)$ time?

Question: How can we compute p[j] for $1 \le j \le n$ in $\Theta(n \log n)$ time?

Answer:

• Sort first the intervals in increasing order of finishing times.

Question: How can we compute p[j] for $1 \le j \le n$ in $\Theta(n \log n)$ time?

Answer:

- Sort first the intervals in increasing order of finishing times.
- For every *j*, do binary search to find the interval before *j* with finishing time at most s_j