
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 9

Dynamic Programming II: Knapsack,
Interval Scheduling, Bellman-Ford

Dynamic Programming

Technique for solving optimization problems.

Solve problem by solving sub-problems and combine:

This is called Optimal substructure property.

➢ Similar to divide-and-conquer: recursion (for
solving sub-problems)

➢ Sub-problems overlap: solve them only once!

DP = recursion + re-use (Memoization)

Design and Analysis of Algorithms

Design and Analysis of Algorithms

Case study II: 0/1 Knapsack
Problem: A set of 𝑛 items, with each item 𝑖 having positive weight
𝑤𝑖 and positive benefit 𝑣𝑖. You are asked to choose items with
maximum total benefit so that the total weight is at most 𝑊

Weight:
Benefit:

4 lbs 2 lbs 2 lbs 6 lbs 2 lbs

$20 $3 $6 $25 $80

Items:

Solution:
• item 5 ($80, 2 lbs)
• item 3 ($6, 2lbs)
• item 1 ($20, 4lbs)

“knapsack” with 9

lbs capacity

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg

Design and Analysis of Algorithms

Idea: Dynamic Programming.

Case study II: 0/1 Knapsack

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘, 𝑗] be the maximum value I can
get from items {1, … , 𝑘} without exceeding 𝑗.

Design and Analysis of Algorithms

Idea: Dynamic Programming.

Case study II: 0/1 Knapsack

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘, 𝑗] be the maximum value I can
get from items {1, … , 𝑘} without exceeding 𝑗.

Step 2: Define the goal/output given Step 1.
It is 𝑫𝑷[𝒏, 𝑾].

Design and Analysis of Algorithms

Idea: Dynamic Programming.

Case study II: 0/1 Knapsack

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘, 𝑗] be the maximum value I can
get from items {1, … , 𝑘} without exceeding 𝑗.

Step 2: Define the goal/output given Step 1.
It is 𝑫𝑷[𝒏, 𝑾].

Step 3: Define the base cases
It is 𝐷𝑃[0, 𝑗] = 0 for all 𝑗 and 𝐷𝑃[𝑖, 0] = 0 for all 𝑖.

Step 4: Define the recurrence

Design and Analysis of Algorithms

Idea: Dynamic Programming.

Item 𝑘 will be used or not.

 𝐷𝑃[𝑘, 𝑗] = max(𝐃𝐏[𝐤 − 𝟏, 𝐣 − 𝐰𝐤] + 𝐯𝐤, 𝐃𝐏[𝐤 − 𝟏, 𝐣])

Case study II: 0/1 Knapsack

Step 4: Define the recurrence

Design and Analysis of Algorithms

Idea: Dynamic Programming.

Item 𝑘 will be used or not.

 𝐷𝑃[𝑘, 𝑗] = max(𝐃𝐏[𝐤 − 𝟏, 𝐣 − 𝐰𝐤] + 𝐯𝐤, 𝐃𝐏[𝐤 − 𝟏, 𝐣])

Question: How do we know that item 𝑘 does not have weight

more than 𝑗?

Case study II: 0/1 Knapsack

Step 4: Define the recurrence

Design and Analysis of Algorithms

Idea: Dynamic Programming.

Item 𝑘 will be used or not.

𝐷𝑃[𝑘, 𝑗] = if 𝑤𝑘 ≤ 𝑗 max(𝐃𝐏[𝐤 − 𝟏, 𝐣 − 𝐰𝐤] + 𝐯𝐤, 𝐃𝐏[𝐤 − 𝟏, 𝐣])

 If 𝑤𝑘 > 𝑗 𝑫𝑷[𝒌 − 𝟏, 𝒋]

Answer: Add an if statement in the recurrence.

Case study II: 0/1 Knapsack

Step 4: Define the recurrence

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0

2 0

3 0

Case study II: 0/1 Knapsack

Design and Analysis of Algorithms

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 (𝑗 < 𝑤1)

2 0 0 (𝑗 < 𝑤2)

3 0 0 (𝑗 < 𝑤3)

Case study II: 0/1 Knapsack

Design and Analysis of Algorithms

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 max(0,𝑣1+0)

2 0 0

3 0 0

Case study II: 0/1 Knapsack

Design and Analysis of Algorithms

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1

2 0 0 max(1,𝑣2+0)

3 0 0

Case study II: 0/1 Knapsack

Design and Analysis of Algorithms

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1

2 0 0 1

3 0 0 1 (𝑗 < 𝑤3)

Case study II: 0/1 Knapsack

Design and Analysis of Algorithms

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 max(0,𝑣1+0)

2 0 0 1

3 0 0 1

Case study II: 0/1 Knapsack

Design and Analysis of Algorithms

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1

2 0 0 1 max(1,𝑣2+0)

3 0 0 1

Case study II: 0/1 Knapsack

Design and Analysis of Algorithms

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1

2 0 0 1 1

3 0 0 1 max(1,𝑣3+0)

Case study II: 0/1 Knapsack

Design and Analysis of Algorithms

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 max(0,𝑣1+0)

2 0 0 1 1

3 0 0 1 5

Case study II: 0/1 Knapsack

Design and Analysis of Algorithms

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 1

2 0 0 1 1 max(1,𝑣2+1)

3 0 0 1 5

Case study II: 0/1 Knapsack

Design and Analysis of Algorithms

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 1

2 0 0 1 1 2

3 0 0 1 5 max(2,0+𝑣3)

Case study II: 0/1 Knapsack

Design and Analysis of Algorithms

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 1

2 0 0 1 1 2

3 0 0 1 5 5

Case study II: 0/1 Knapsack

Design and Analysis of Algorithms

Design and Analysis of Algorithms

Bottom up filliing DP

Case study II: 0/1 Knapsack

Pseudocode:

Initialization

 Goal

Design and Analysis of Algorithms

Bottom up filliing DP

Case study II: 0/1 Knapsack

Initialization

 Goal

Pseudocode:

Design and Analysis of Algorithms

Case study III: Bellman-Ford

Problem: Given a directed graph 𝐺(𝑉, 𝐸), with edge-weights 𝑤𝑒 for
every edge 𝑒 and a source node 𝑠, find all shortest-path weights
from 𝑠 to all other vertices.

Remark: A path 𝑝 = ⟨𝑣0, 𝑣1, … , 𝑣𝑘⟩ has weight σ𝑖=1
𝑘 𝑤(𝑣𝑖−1, 𝑣𝑖).

s

a

b

c

2

6

5

-12

5

Design and Analysis of Algorithms

Case study III: Bellman-Ford

Problem: Given a directed graph 𝐺(𝑉, 𝐸), with edge-weights 𝑤𝑒 for
every edge 𝑒 and a source node 𝑠, find all shortest-path weights
from 𝑠 to all other vertices.

Remark: A path 𝑝 = ⟨𝑣0, 𝑣1, … , 𝑣𝑘⟩ has weight σ𝑖=1
𝑘 𝑤(𝑣𝑖−1, 𝑣𝑖).

s

a

b

c

2

6

5

-12

5

Design and Analysis of Algorithms

Case study III: Bellman-Ford

Assumption: There are no negative cycles. Otherwise, the question
of shortest-path is ill-posed. Why?

Design and Analysis of Algorithms

Case study III: Bellman-Ford

Assumption: There are no negative cycles. Otherwise, the question
of shortest-path is ill-posed. Why?

 Shortest path −∞!

Design and Analysis of Algorithms

Idea: Dynamic Programming.

Step 1: Define the problem and subproblems.

Answer: Let 𝑑 𝒗, 𝒌 be the shortest weight from
𝑠 to 𝒗 using at most 𝒌 edges.

Case study III: Bellman-Ford

Design and Analysis of Algorithms

Idea: Dynamic Programming.

Step 1: Define the problem and subproblems.

Answer: Let 𝑑 𝒗, 𝒌 be the shortest weight from
𝑠 to 𝒗 using at most 𝒌 edges.

Step 2: Define the goal/output given Step 1.
It is 𝒅[𝒘, 𝒏 − 𝟏] for shortest weight from 𝑠 to 𝑤.

Case study III: Bellman-Ford

Design and Analysis of Algorithms

Idea: Dynamic Programming.

Step 1: Define the problem and subproblems.

Answer: Let 𝑑 𝒗, 𝒌 be the shortest weight from
𝑠 to 𝒗 using at most 𝒌 edges.

Step 2: Define the goal/output given Step 1.
It is 𝒅[𝒘, 𝒏 − 𝟏] for shortest weight from 𝑠 to 𝑤.

Step 3: Define the base cases
It is 𝑑[𝒔, 𝑘] = 0 for all 𝑘, 𝑑[𝑣, 0] = ∞ for all 𝑣 ≠ 𝑠.

Step 4: Define the recurrence

Case study III: Bellman-Ford

Design and Analysis of Algorithms

Idea: Dynamic Programming.

Shortest path from 𝑠 to 𝑣 uses 𝑘 edges via an

intermediate edge (𝒖, 𝒗) or at most 𝑘 − 1 edges.

Case study III: Bellman-Ford

 Step 4: Define the recurrence

u

v

s
Shortest path uses
 at most 𝑘 − 1 edges

Shortest Path uses
via 𝑢 at most 𝑘 edges

Design and Analysis of Algorithms

Idea: Dynamic Programming.

Shortest path from 𝑠 to 𝑣 uses 𝑘 edges via an

intermediate edge (𝒖, 𝒗) or at most 𝑘 − 1 edges.

Case study III: Bellman-Ford

 Step 4: Define the recurrence

u

v

s
Shortest path uses
 at most 𝑘 − 1 edges

Shortest Path uses
via 𝑢 at most 𝑘 edges

𝑑[𝑣, 𝑘] = 𝑚𝑖𝑛(min
𝑢

{𝑑[𝑢, 𝑘 − 1] + 𝑤 𝑢, 𝑣 }, 𝑑[𝑣, 𝑘 − 1])

Design and Analysis of Algorithms

Bottom up filliing DP

Case study III: Bellman-Ford

Pseudocode:

Initialization

 Goal (shortest path
 from 𝑠 to 𝑤)

Design and Analysis of Algorithms

Bottom up filliing DP

Case study III: Bellman-Ford

Pseudocode: Why 2D? We can use less memory.

Initialization

 Goal (shortest path
 from 𝑠 to 𝑤)

Design and Analysis of Algorithms

Bottom up filliing DP

Case study III: Bellman-Ford

Pseudocode: Algorithm to know.

Initialization

 Goal (shortest path
 from 𝑠 to 𝑤)

Design and Analysis of Algorithms

Bottom up filliing DP

Case study III: Bellman-Ford

Pseudocode: Algorithm to know.

Initialization

 Goal (shortest path
 from 𝑠 to 𝑤)

Design and Analysis of Algorithms

Case study III: Bellman-Ford

In words: 𝑑[𝑠] = 0, 𝑑[𝑢] = +∞ for 𝑢 ≠ 𝑠.

For 𝑛 − 1 times, relax all the edges (𝑢, 𝑣).

Design and Analysis of Algorithms

Case study III: Bellman-Ford

In words: 𝑑[𝑠] = 0, 𝑑[𝑢] = +∞ for 𝑢 ≠ 𝑠.

For 𝑛 − 1 times, relax all the edges (𝑢, 𝑣).

Property: Suppose we relax all edges one more
time. If 𝑑[] decreases for a vertex then there is a
negative cycle. If 𝑑[] remains the same, no
negative cycle.

Case study III: Bellman-Ford

Design and Analysis of Algorithms

Find the shortest weight path from node 0.

6

5

5

Case study III: Bellman-Ford

Design and Analysis of Algorithms

3

3

5

5

4

Case study III: Bellman-Ford

Design and Analysis of Algorithms

1

3

5

2

4

7

Case study III: Bellman-Ford

Design and Analysis of Algorithms

1

3

5

0

4

5

Case study III: Bellman-Ford

Design and Analysis of Algorithms

1

3

5

0

4

3

Case study III: Bellman-Ford

Design and Analysis of Algorithms

0

48

7 1

-2 5

-2

3 9

Case study III: Bellman-Ford

Design and Analysis of Algorithms

Find the shortest weight path from node 0.

-2

0

48

7 1

-2 5

-2

3 9

0

48

7 1

-2 5

3 9

8 -2 4

Case study III: Bellman-Ford

Design and Analysis of Algorithms

-2

0

48

7 1

-2 5

-2

3 9

0

48

7 1

-2 5

3 9

-2

-28

0

4

48

7 1

-2 5

3 9

8 -2 4

-15

6
1

9

Case study III: Bellman-Ford

Design and Analysis of Algorithms

-2

0

48

7 1

-2 5

-2

3 9

0

48

7 1

-2 5

3 9

-2

-28

0

4

48

7 1

-2 5

3 9

8 -2 4

-15

6
1

9

-25

0

1

-1

9

48

7 1

-2 5

-2

3 9
4

Case study III: Bellman-Ford

Design and Analysis of Algorithms

Design and Analysis of Algorithms

Case study IV: Interval Scheduling

Problem: You are given a collection of 𝑛 intervals represented by

start time, finish time, and value: (𝑠𝑗 , 𝑓𝑗 , 𝑣𝑗). Find a non-

overlapping set of intervals with maximum total value.

Design and Analysis of Algorithms

Case study IV: Interval Scheduling

Problem: You are given a collection of 𝑛 intervals represented by

start time, finish time, and value: (𝑠𝑗 , 𝑓𝑗 , 𝑣𝑗). Find a non-

overlapping set of intervals with maximum total value.

Design and Analysis of Algorithms

Case study IV: Interval Scheduling

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑗] be the maximum value that can
be obtained from a set of non-overlapping
intervals with indices in the range {1, … , 𝑗}

Design and Analysis of Algorithms

Case study IV: Interval Scheduling

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑗] be the maximum value that can
be obtained from a set of non-overlapping
intervals with indices in the range {1, … , 𝑗}
Step 2: Define the goal/output given Step 1.
It is 𝑫𝑷[𝒏].

Design and Analysis of Algorithms

Case study IV: Interval Scheduling

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑗] be the maximum value that can
be obtained from a set of non-overlapping
intervals with indices in the range {1, … , 𝑗}
Step 2: Define the goal/output given Step 1.
It is 𝑫𝑷[𝒏].
Step 3: Define the base cases
It is 𝐷𝑃[0] = 0.

Step 4: Define the recurrence

Design and Analysis of Algorithms

Interval 𝑗 belongs to the optimal solution or not.

 𝐷𝑃[𝑗] = max(𝐃𝐏[$] + 𝐯𝐣, 𝐃𝐏[𝐣 − 𝟏])

What is $?

Case study IV: Interval Scheduling

Step 4: Define the recurrence

Design and Analysis of Algorithms

Interval 𝑗 belongs to the optimal solution or not.

 𝐷𝑃[𝑗] = max(𝐃𝐏[$] + 𝐯𝐣, 𝐃𝐏[𝐣 − 𝟏])

$ should be the interval with highest index in {1, … , 𝑗 − 1} that

does not intersect with 𝑗 (since 𝑗 is chosen).

Let 𝑝[𝑗] be the highest index in {1, … , 𝑗 − 1} that does not

intersect with 𝑗. Then the recurrence becomes

 𝐷𝑃[𝑗] = max(𝐃𝐏[𝐩[𝐣]] + 𝐯𝐣, 𝐃𝐏[𝐣 − 𝟏])

Case study IV: Interval Scheduling

Step 4: Define the recurrence

Design and Analysis of Algorithms

Bottom up filliing DP

Case study IV: Interval Scheduling

Pseudocode:

Initialization

 Goal

Design and Analysis of Algorithms

Bottom up filliing DP

Case study IV: Interval Scheduling

Pseudocode:

Initialization

 Goal

Question: How can we compute 𝑝[𝑗] for 1 ≤ 𝑗 ≤ 𝑛
in Θ(𝑛 log 𝑛) time?

Design and Analysis of Algorithms

Case study IV: Interval Scheduling

Question: How can we compute 𝑝[𝑗] for 1 ≤ 𝑗 ≤ 𝑛
in Θ(𝑛 log 𝑛) time?

Answer:
● Sort first the intervals in increasing order of

finishing times.

Design and Analysis of Algorithms

Case study IV: Interval Scheduling

Question: How can we compute 𝑝[𝑗] for 1 ≤ 𝑗 ≤ 𝑛
in Θ(𝑛 log 𝑛) time?

Answer:
● Sort first the intervals in increasing order of

finishing times.
● For every 𝑗, do binary search to find the interval

before 𝑗 with finishing time at most 𝑠𝑗

	Slide 1: Lecture 9 Dynamic Programming II: Knapsack, Interval Scheduling, Bellman-Ford
	Slide 2: Dynamic Programming
	Slide 3: Case study II: 0/1 Knapsack
	Slide 4: Case study II: 0/1 Knapsack
	Slide 5: Case study II: 0/1 Knapsack
	Slide 6: Case study II: 0/1 Knapsack
	Slide 7: Case study II: 0/1 Knapsack
	Slide 8: Case study II: 0/1 Knapsack
	Slide 9: Case study II: 0/1 Knapsack
	Slide 10: Case study II: 0/1 Knapsack
	Slide 11: Case study II: 0/1 Knapsack
	Slide 12: Case study II: 0/1 Knapsack
	Slide 13: Case study II: 0/1 Knapsack
	Slide 14: Case study II: 0/1 Knapsack
	Slide 15: Case study II: 0/1 Knapsack
	Slide 16: Case study II: 0/1 Knapsack
	Slide 17: Case study II: 0/1 Knapsack
	Slide 18: Case study II: 0/1 Knapsack
	Slide 19: Case study II: 0/1 Knapsack
	Slide 20: Case study II: 0/1 Knapsack
	Slide 21: Case study II: 0/1 Knapsack
	Slide 22
	Slide 23
	Slide 24: Case study III: Bellman-Ford
	Slide 25: Case study III: Bellman-Ford
	Slide 26: Case study III: Bellman-Ford
	Slide 27: Case study III: Bellman-Ford
	Slide 28
	Slide 29: Case study III: Bellman-Ford
	Slide 30: Case study III: Bellman-Ford
	Slide 31: Case study III: Bellman-Ford
	Slide 32: Case study III: Bellman-Ford
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Case study III: Bellman-Ford
	Slide 40: Case study III: Bellman-Ford
	Slide 41: Case study III: Bellman-Ford
	Slide 42: Case study III: Bellman-Ford
	Slide 43: Case study III: Bellman-Ford
	Slide 44: Case study III: Bellman-Ford
	Slide 45: Case study III: Bellman-Ford
	Slide 46: Case study III: Bellman-Ford
	Slide 47: Case study III: Bellman-Ford
	Slide 48: Case study III: Bellman-Ford
	Slide 49: Case study IV: Interval Scheduling
	Slide 50: Case study IV: Interval Scheduling
	Slide 51: Case study IV: Interval Scheduling
	Slide 52: Case study IV: Interval Scheduling
	Slide 53: Case study IV: Interval Scheduling
	Slide 54: Case study IV: Interval Scheduling
	Slide 55: Case study IV: Interval Scheduling
	Slide 56
	Slide 57
	Slide 58
	Slide 59

