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Dynamic Programming II: Knapsack, 
Interval Scheduling, Bellman-Ford 



Dynamic Programming

Technique for solving optimization problems.

Solve problem by solving sub-problems and combine:

This is called Optimal substructure property.

➢ Similar to divide-and-conquer: recursion (for   
solving sub-problems)

➢ Sub-problems overlap: solve them only once!

DP = recursion + re-use (Memoization)
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Case study II: 0/1 Knapsack 
Problem: A set of 𝑛 items, with each item 𝑖 having positive weight 
𝑤𝑖 and positive benefit 𝑣𝑖.  You are asked to choose items with 
maximum total benefit so that the total weight is at most 𝑊

Weight:
Benefit:

4 lbs 2 lbs 2 lbs 6 lbs 2 lbs

$20 $3 $6 $25 $80

Items:

Solution:
• item 5 ($80, 2 lbs)
• item 3 ($6, 2lbs)
• item 1 ($20, 4lbs)

“knapsack” with 9 

lbs capacity

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg


Design and Analysis of Algorithms

Idea: Dynamic Programming.

Case study II: 0/1 Knapsack 

Step 1:  Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘, 𝑗] be the maximum value I can 
get from items {1, … , 𝑘} without exceeding 𝑗.
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Step 1:  Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘, 𝑗] be the maximum value I can 
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Step 2: Define the goal/output given Step 1. 
It is 𝑫𝑷[𝒏, 𝑾].
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Idea: Dynamic Programming.

Case study II: 0/1 Knapsack 

Step 1:  Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘, 𝑗] be the maximum value I can 
get from items {1, … , 𝑘} without exceeding 𝑗.

Step 2: Define the goal/output given Step 1. 
It is 𝑫𝑷[𝒏, 𝑾].

Step 3: Define the base cases
It is 𝐷𝑃[0, 𝑗] = 0 for all 𝑗 and 𝐷𝑃[𝑖, 0] = 0 for all 𝑖.

Step 4: Define the recurrence
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Idea: Dynamic Programming.

Item 𝑘 will be used or not. 

 𝐷𝑃[𝑘, 𝑗]  =  max(𝐃𝐏[𝐤 − 𝟏, 𝐣 − 𝐰𝐤] + 𝐯𝐤, 𝐃𝐏[𝐤 − 𝟏, 𝐣])

Case study II: 0/1 Knapsack 

Step 4: Define the recurrence
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Idea: Dynamic Programming.

Item 𝑘 will be used or not. 

 𝐷𝑃[𝑘, 𝑗]  =  max(𝐃𝐏[𝐤 − 𝟏, 𝐣 − 𝐰𝐤] + 𝐯𝐤, 𝐃𝐏[𝐤 − 𝟏, 𝐣])

Question: How do we know that item 𝑘 does not have weight 

more than 𝑗?

Case study II: 0/1 Knapsack 

Step 4: Define the recurrence
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Idea: Dynamic Programming.

Item 𝑘 will be used or not. 

𝐷𝑃[𝑘, 𝑗] =  if 𝑤𝑘 ≤ 𝑗    max(𝐃𝐏[𝐤 − 𝟏, 𝐣 − 𝐰𝐤] + 𝐯𝐤, 𝐃𝐏[𝐤 − 𝟏, 𝐣])

       If 𝑤𝑘 > 𝑗    𝑫𝑷[𝒌 − 𝟏, 𝒋]

Answer: Add an if statement in the recurrence.

Case study II: 0/1 Knapsack 

Step 4: Define the recurrence



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0

2 0

3 0

Case study II: 0/1 Knapsack 
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j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 (𝑗 < 𝑤1)

2 0 0 (𝑗 < 𝑤2)

3 0 0 (𝑗 < 𝑤3)

Case study II: 0/1 Knapsack 
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j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 max(0,𝑣1+0)

2 0 0

3 0 0

Case study II: 0/1 Knapsack 
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j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1

2 0 0 max(1,𝑣2+0)

3 0 0

Case study II: 0/1 Knapsack 
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j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1

2 0 0 1

3 0 0 1 (𝑗 < 𝑤3)

Case study II: 0/1 Knapsack 
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j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 max(0,𝑣1+0)

2 0 0 1

3 0 0 1

Case study II: 0/1 Knapsack 
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j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1

2 0 0 1 max(1,𝑣2+0)

3 0 0 1

Case study II: 0/1 Knapsack 
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j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1

2 0 0 1 1

3 0 0 1 max(1,𝑣3+0)

Case study II: 0/1 Knapsack 
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j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 max(0,𝑣1+0)

2 0 0 1 1

3 0 0 1 5

Case study II: 0/1 Knapsack 
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j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 1

2 0 0 1 1 max(1,𝑣2+1)

3 0 0 1 5

Case study II: 0/1 Knapsack 
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j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 1

2 0 0 1 1 2

3 0 0 1 5 max(2,0+𝑣3)

Case study II: 0/1 Knapsack 
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j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 1

2 0 0 1 1 2

3 0 0 1 5 5

Case study II: 0/1 Knapsack 

Design and Analysis of Algorithms
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Bottom up filliing DP

Case study II: 0/1 Knapsack 

Pseudocode:

Initialization

 Goal
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Bottom up filliing DP

Case study II: 0/1 Knapsack 

Initialization

 Goal

Pseudocode:
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Case study III: Bellman-Ford 

Problem: Given a directed graph 𝐺(𝑉, 𝐸), with edge-weights 𝑤𝑒 for 
every edge 𝑒 and a source node 𝑠, find all shortest-path weights 
from 𝑠 to all other vertices. 

Remark: A path 𝑝 = ⟨𝑣0, 𝑣1, … , 𝑣𝑘⟩ has weight  σ𝑖=1
𝑘 𝑤(𝑣𝑖−1, 𝑣𝑖).

s

a

b

c

2

6

5

-12

5
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Design and Analysis of Algorithms

Case study III: Bellman-Ford 

Assumption: There are no negative cycles. Otherwise, the question 
of shortest-path is ill-posed. Why? 
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Case study III: Bellman-Ford 

Assumption: There are no negative cycles. Otherwise, the question 
of shortest-path is ill-posed. Why? 

 Shortest path −∞!
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Idea: Dynamic Programming.

Step 1:  Define the problem and subproblems.

Answer: Let 𝑑 𝒗, 𝒌  be the shortest weight from   
𝑠 to 𝒗 using at most 𝒌 edges.

Case study III: Bellman-Ford 



Design and Analysis of Algorithms

Idea: Dynamic Programming.

Step 1:  Define the problem and subproblems.

Answer: Let 𝑑 𝒗, 𝒌  be the shortest weight from
𝑠 to 𝒗 using at most 𝒌 edges.

Step 2: Define the goal/output given Step 1. 
It is 𝒅[𝒘, 𝒏 − 𝟏] for shortest weight from 𝑠 to 𝑤.

Case study III: Bellman-Ford 



Design and Analysis of Algorithms

Idea: Dynamic Programming.

Step 1:  Define the problem and subproblems.

Answer: Let 𝑑 𝒗, 𝒌  be the shortest weight from 
𝑠 to 𝒗 using at most 𝒌 edges.

Step 2: Define the goal/output given Step 1. 
It is 𝒅[𝒘, 𝒏 − 𝟏] for shortest weight from 𝑠 to 𝑤.

Step 3: Define the base cases
It is 𝑑[𝒔, 𝑘] = 0 for all 𝑘, 𝑑[𝑣, 0] = ∞ for all 𝑣 ≠ 𝑠.

Step 4: Define the recurrence

Case study III: Bellman-Ford 
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Idea: Dynamic Programming.

Shortest path from 𝑠 to 𝑣 uses 𝑘 edges via an 

intermediate edge (𝒖, 𝒗) or at most 𝑘 − 1 edges. 

 

Case study III: Bellman-Ford 

 Step 4: Define the recurrence

u

v

s
Shortest path uses
 at most 𝑘 − 1 edges

Shortest Path uses 
via 𝑢 at most 𝑘 edges



Design and Analysis of Algorithms

Idea: Dynamic Programming.

Shortest path from 𝑠 to 𝑣 uses 𝑘 edges via an 

intermediate edge (𝒖, 𝒗) or at most 𝑘 − 1 edges. 

 

Case study III: Bellman-Ford 

 Step 4: Define the recurrence

u

v

s
Shortest path uses
 at most 𝑘 − 1 edges

Shortest Path uses 
via 𝑢 at most 𝑘 edges

𝑑[𝑣, 𝑘] = 𝑚𝑖𝑛(min
𝑢

{𝑑[𝑢, 𝑘 − 1] + 𝑤 𝑢, 𝑣 }, 𝑑[𝑣, 𝑘 − 1])
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Bottom up filliing DP

Case study III: Bellman-Ford

Pseudocode:

Initialization

 Goal (shortest path 
   from 𝑠 to 𝑤)



Design and Analysis of Algorithms

Bottom up filliing DP

Case study III: Bellman-Ford

Pseudocode: Why 2D? We can use less memory.

Initialization

 Goal (shortest path 
   from 𝑠 to 𝑤)
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Bottom up filliing DP

Case study III: Bellman-Ford

Pseudocode: Algorithm to know.

Initialization

 Goal (shortest path 
   from 𝑠 to 𝑤)
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Bottom up filliing DP

Case study III: Bellman-Ford

Pseudocode: Algorithm to know.

Initialization

 Goal (shortest path 
   from 𝑠 to 𝑤)
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Case study III: Bellman-Ford

In words: 𝑑[𝑠] = 0, 𝑑[𝑢] = +∞ for 𝑢 ≠ 𝑠.

For 𝑛 − 1 times, relax all the edges (𝑢, 𝑣).



Design and Analysis of Algorithms

Case study III: Bellman-Ford

In words: 𝑑[𝑠] = 0, 𝑑[𝑢] = +∞ for 𝑢 ≠ 𝑠.

For 𝑛 − 1 times, relax all the edges (𝑢, 𝑣).

Property: Suppose we relax all edges one more 
time. If 𝑑[] decreases for a vertex then there is a 
negative cycle. If 𝑑[] remains the same, no 
negative cycle.



Case study III: Bellman-Ford 

Design and Analysis of Algorithms

Find the shortest weight path from node 0.
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Case study III: Bellman-Ford 
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Case study III: Bellman-Ford 
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Case study III: Bellman-Ford 
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Case study III: Bellman-Ford 
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Case study III: Bellman-Ford 

Design and Analysis of Algorithms

Find the shortest weight path from node 0.
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Case study IV: Interval Scheduling 

Problem: You are given a collection of 𝑛 intervals represented by 

start time, finish time, and value: (𝑠𝑗 , 𝑓𝑗 , 𝑣𝑗). Find a non-

overlapping set of intervals with maximum total value.
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Case study IV: Interval Scheduling 

Problem: You are given a collection of 𝑛 intervals represented by 

start time, finish time, and value: (𝑠𝑗 , 𝑓𝑗 , 𝑣𝑗). Find a non-

overlapping set of intervals with maximum total value.
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Case study IV: Interval Scheduling 

Step 1:  Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑗] be the maximum value that can 
be obtained from a set of non-overlapping 
intervals with indices in the range {1, … , 𝑗}
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Case study IV: Interval Scheduling 

Step 1:  Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑗] be the maximum value that can 
be obtained from a set of non-overlapping 
intervals with indices in the range {1, … , 𝑗}
Step 2: Define the goal/output given Step 1. 
It is 𝑫𝑷[𝒏].
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Case study IV: Interval Scheduling 

Step 1:  Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑗] be the maximum value that can 
be obtained from a set of non-overlapping 
intervals with indices in the range {1, … , 𝑗}
Step 2: Define the goal/output given Step 1. 
It is 𝑫𝑷[𝒏].
Step 3: Define the base cases
It is 𝐷𝑃[0] = 0.

Step 4: Define the recurrence
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Interval 𝑗 belongs to the optimal solution or not. 

 𝐷𝑃[𝑗]  =  max(𝐃𝐏[$] + 𝐯𝐣, 𝐃𝐏[𝐣 − 𝟏])

What is $ ?

Case study IV: Interval Scheduling 

Step 4: Define the recurrence
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Interval 𝑗 belongs to the optimal solution or not. 

 𝐷𝑃[𝑗]  =  max(𝐃𝐏[$] + 𝐯𝐣, 𝐃𝐏[𝐣 − 𝟏])

$ should be the interval with highest index in {1, … , 𝑗 − 1} that 

does not intersect with 𝑗 (since 𝑗 is chosen). 

Let 𝑝[𝑗] be the highest index in {1, … , 𝑗 − 1} that does not 

intersect with 𝑗. Then the recurrence becomes

    𝐷𝑃[𝑗]  =  max(𝐃𝐏[𝐩[𝐣]] + 𝐯𝐣, 𝐃𝐏[𝐣 − 𝟏])

Case study IV: Interval Scheduling 

Step 4: Define the recurrence
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Bottom up filliing DP

Case study IV: Interval Scheduling 

Pseudocode:

Initialization

   Goal
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Bottom up filliing DP

Case study IV: Interval Scheduling 

Pseudocode:

Initialization

   Goal

Question: How can we compute 𝑝[𝑗] for 1 ≤ 𝑗 ≤ 𝑛 
in Θ(𝑛 log 𝑛) time?
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Case study IV: Interval Scheduling 

Question: How can we compute 𝑝[𝑗] for 1 ≤ 𝑗 ≤ 𝑛 
in Θ(𝑛 log 𝑛) time?

Answer: 
● Sort first the intervals in increasing order of 

finishing times.
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Case study IV: Interval Scheduling 

Question: How can we compute 𝑝[𝑗] for 1 ≤ 𝑗 ≤ 𝑛 
in Θ(𝑛 log 𝑛) time?

Answer: 
● Sort first the intervals in increasing order of 

finishing times.
● For every 𝑗, do binary search to find the interval 

before 𝑗 with finishing time at most 𝑠𝑗
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