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Dynamic Programming II: Knapsack,
Interval Scheduling, Bellman-Ford

Lecture 9

CS 161 Design and Analysis of Algorithms

loannis Panageas



Dynamic Programming

Technique for solving optimization problems.

Solve problem by solving sub-problems and combine:
This is called Optimal substructure property.

» Similar to divide-and-conquer: recursion (for
solving sub-problems)

» Sub-problems overlap: solve them only once!

DP = recursion + re-use (Memoization)
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Case study Il: 0/1 Knapsack

Problem: A set of n items, with each item i having positive weight
w; and positive benefit v;. You are asked to choose items with
maximum total benefit so that the total weight is at most W

Example: “knapsack” with 9

lbs capacity
Items: [

T —

\LEIRITI 5
11 7

/

s L
AL
Weight: 41bs 2Ibs 21lbs 61lbs 2 Ibs Solution:
Benefit: $20 $3 $6 $25 480 e item 5 ($80, 2 Ibs)
e item 3 ($6, 2Ibs)
o item 1 ($20, 4lbs)
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Case study Il: 0/1 Knapsack

Idea: Dynamic Programming.

Step 1: Define the problem and subproblems.

Answer: Let DP|k, j| be the maximum value | can
get from items {1, ..., k} without exceeding j.
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Case study Il: 0/1 Knapsack

Idea: Dynamic Programming.

Step 1: Define the problem and subproblems.

Answer: Let DP|k, j| be the maximum value | can
get from items {1, ..., k} without exceeding j.

Step 2: Define the goal/output given Step 1.
Itis DP|n, W].
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Case study Il: 0/1 Knapsack

Idea: Dynamic Programming.

Step 1:

Define the problem and subproblems.

Answer: Let DP|k, j| be the maximum value | can
get from items {1, ..., k} without exceeding j.

Step 2:
Itis DP

Step 3:
Itis DP

Step 4.

Define the goal/output given Step 1.
n, Wj.

Define the base cases

0,j] =0foralljand DP[i, 0] = O for all i.

Define the recurrence
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Case study Il: 0/1 Knapsack

Idea: Dynamic Programming.

Step 4: Define the recurrence
ltem k will be used or not.

DP|k,j] = max(DP[k—1,j —wg] + v, DP[k —1,j])
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Case study Il: 0/1 Knapsack

Idea: Dynamic Programming.

Step 4: Define the recurrence
ltem k will be used or not.

DP|k,j] = max(DP[k—1,j —wg] + v, DP[k —1,j])

Question: How do we know that item k does not have weight
more than j?
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Case study Il: 0/1 Knapsack

ldea: Dynamic Programming.

Step 4: Define the recurrence

ltem k will be used or not.

DP|k,j] = ifw, <j max(DP[k—1,j — wg| + v, DP[k—1,j])
fw, >j DP[k—1,j]

Answer: Add an if statement in the recurrence.
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Case study Il: 0/1 Knapsack

3 items, W =4

Example:
w1, = 2,’1)1 = 1,’!1)2 = 2,”02 = 1,’(1]3 = 3,’03 =95

Initialization:
j=0 1 2 3
i=0 0 0 0 0
1 0
2 0
3 0
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Case study Il: 0/1 Knapsack

3 items, W =4

Example:
w1, = 2,’1)1 = 1,’!1)2 = 2,”02 = 1,’(1]3 = 3,’03 =95

i=0 1 2 3
=0 0 1‘0 0 0
1 0 0 (j < wy)
2 0 0(j < w,)
3 0 0(j < wa)
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Example:

Case study Il: 0/1 Knapsack

3 items, W =4
w1 :2,’01 = 1,’!1)2 :2,”{)2 :1,’(1)3:3,”03 =

i=0 1 2 3 4
i=0 0 0 o'\ 0 0
1 0 ‘O\mathO)

2 0 0
3 0 0
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Example:

Case study Il: 0/1 Knapsack

3 items, W =4
w1 :2,’01 = 1,’!1)2 :2,”{)2 :1,’(1)3:3,”03 =

j=0 1 2

i=0 0 0 0

1 0 0 1

2 0 ¢o\%ﬁm0)
3 0 0
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Case study Il: 0/1 Knapsack

3 items, W =4

Example:
w1, = 2,’1)1 = 1,’!1)2 = 2,”02 = 1,’(1]3 = 3,’03 =95

j=0 1 2 3 4
i=0 0 0 0 0 0
1 0 0 1
2 0 0 %
3 0 0 1( < ws)
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Example:

Case study Il: 0/1 Knapsack

3 items, W =4

w1 :2,’01 :1,?1)2:2,”{)2 :1,’(1)3:3,”03 =

j=0 1 2 3 4
i=0 0 0 0 0 0
1 0 0 Hﬁm
2 0 0 1
3 0 0 1
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Example:

Case study Il: 0/1 Knapsack

3 items, W =4

(105 :2,’01 :1,’21)2:2,”02 :1,’(1)3:3,”03 =

j=0 3 4
i=0 0 0 0
1 0 1
2 0 max(1,v,+0)
3 0
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Example:

Case study Il: 0/1 Knapsack

3 items, W =4

(105 :2,’01 :1,’21)2:2,”02 :1,’(1)3:3,”03 =

j=0 3 4
i=0 0 0 0
1 0 1
2 0 1
3 0 max(1,v3+0)
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Case study Il: 0/1 Knapsack

Example:

3 items, W =4

(105 :2,’01 :1,’21)2:2,”02 :1,’(1)3:3,”03 =

j=0 1 2 4
i=0 0 0 0 0
1 0 0 1 max(0,v,+0)
2 0 0 1
3 0 0 1
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Case study Il: 0/1 Knapsack

Example:

3 items, W =4

(105 :2,’01 :1,’21)2:2,”02 :1,’(1)3:3,”03 =

j=0 1 2 4
i=0 0 0 0 0
1 0 0 1 1
2 0 0 1 max(1,v,+1)
3 0 0 1
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Case study Il: 0/1 Knapsack

Example:

3 items, W =4

(105 :2,’01 :1,’21)2:2,”02 :1,’(1)3:3,”03 =

j=0 1 2 4
i=0 0 0 0 0
1 0 0 1 1
2 0 0 1 2
3 0 0 1 max(2,0+v3)
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Case study Il: 0/1 Knapsack

3 items, W =4

Example:
w1, = 2,’1)1 = 1,’!1)2 = 2,”02 = 1,’(1]3 = 3,’03 =95

j=0 1 2 3
i=0 0 0 0 0
1 0 0 1 1
2 0 0 1 1
3 0 0 1 5
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Case study Il: 0/1 Knapsack

Pseudocode:

Array DP[|[]
For : =0 to n do

DP[i,0] < 0 initaElization
For j =1to W do
DPI0, j] + 0

For : =1 ton do

For j =1to W do Bottom up filliing DP

If j <w; then
DP|i, j] «+ DP|i — 1, j]
else DPJ[i, j| < max(DP[i — 1, j],DP[i — 1,j — w;] + v;)

return DP[n, W]
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Case study Il: 0/1 Knapsack

Pseudocode:

Array DP[|[]
For : =0 to n do

DP[i,0] < 0 initaElization
For j =1to W do
DPI0, j] + 0

For : =1 ton do

For j =1to W do Bottom up filliing DP

If j <w; then
DP|i, j] «+ DP|i — 1, j]
else DPJ[i, j| < max(DP[i — 1, j],DP[i — 1,j — w;] + v;)

return DP[n, V]
Running time: ©(nWW)
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Case study lll: Bellman-Ford

Problem: Given a directed graph G (V, E), with edge-weights w, for
every edge e and a source node s, find all shortest-path weights

from s to all other vertices.
Remark: A path p = (vy, V4, ..., Vx) has weight Zﬁ‘zl w(vi_1, ;).

Example:
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Case study lll: Bellman-Ford

Problem: Given a directed graph G (V, E), with edge-weights w, for
every edge e and a source node s, find all shortest-path weights

from s to all other vertices.
Remark: A path p = (vy, V4, ..., Vx) has weight Zﬁ‘zl w(vi_1, ;).

Example: Solution:
° dls| =0
dla] = 2

Design and Analysis of Algorithms



Case study lll: Bellman-Ford

Assumption: There are no negative cycles. Otherwise, the question
of shortest-path is ill-posed. Why?

Example:
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Case study lll: Bellman-Ford

Assumption: There are no negative cycles. Otherwise, the question
of shortest-path is ill-posed. Why?

Example:

Shortest path —oo!
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Case study lll: Bellman-Ford

Idea: Dynamic Programming.

Step 1: Define the problem and subproblems.

Answer: Let d|v, k| be the shortest weight from
s to v using at most /& edges.
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Case study lll: Bellman-Ford

Idea: Dynamic Programming.

Step 1: Define the problem and subproblems.

Answer: Let d|v, k| be the shortest weight from
s to v using at most /& edges.

Step 2: Define the goal/output given Step 1.
It is d|w, n — 1] for shortest weight from s to w.
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Case study lll: Bellman-Ford

Idea: Dynamic Programming.

Step 1: Define the problem and subproblems.

Answer: Let d|v, k]| be the shortest weight from
s to v using at most /& edges.

Step 2: Define the goal/output given Step 1.
It is d|w, n — 1] for shortest weight from s to w.

Step 3: Define the base cases

ltisd[s, k] =0

forall k, d|v,0] = oo forall v # s.

Step 4: Define the recurrence
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Case study lll: Bellman-Ford

ldea: Dynamic Programming.

Step 4: Define the recurrence
Shortest path from s to v uses k edges via an

intermediate edge (u, v) or at most k — 1 edges.

Shortest path uses

”. lllllll
Shortest Path use§"'--@ﬂ

via u at most k edges
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Case study lll: Bellman-Ford

ldea: Dynamic Programming.

Step 4: Define the recurrence
Shortest path from s to v uses k edges via an

intermediate edge (u, v) or at most k — 1 edges.

Shortest path uses

”. lllllll
Shortest Path uses'"'--@ﬂ

via u at most k edges

d[v, k] = min(m&n{d[u, k—1]+w(u,v)},d[v,k —1])

Design and Analysis of Algorithms



Case study lll: Bellman-Ford

Pseudocode:
Array d[[[]
For k=0ton—1do

For each vertex u # s do
d|u, 0| <= +o0

For k=1ton—1do Bottom up filliing DP

For each edge (u,v) do
If d[v, k| > d[u,k — 1] + w(u,v) then
dv, k] + du, k — 1] + w(u,v)

return DP|w]|n — 1] Goal (shortest path
from s to w)

Design and Analysis of Algorithms




Case study lll: Bellman-Ford

Pseudocode: Why 2D? We can use less memory.

Array dl]]]
For k=0ton—1do

For each vertex u # s do
d|u, 0| <= +o0

For k=1ton—1do Bottom up filliing DP

For each edge (u,v) do
If d[v, k| > d[u,k — 1] + w(u,v) then
dv, k] + du, k — 1] + w(u,v)

return DP|w]|n — 1] Goal (shortest path
from s to w)
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Case study lll: Bellman-Ford

Pseudocode: Algorithm to know.

Array d|]

For each vertex u # s do
d[u] < 400

For k=1ton—1do
For each edge (u,v) do Bottom up filliing DP
If d[v] > d[u] + w(u,v) then
d[v] « du] + w(u,v)

DP
return DP[w)] Goal (shortest path
from s to w)

Design and Analysis of Algorithms




Case study lll: Bellman-Ford

Pseudocode: Algorithm to know.

Array d|]
For each vertex u # s do
du] <+ +oc

For k= 1ton 1 do
d[v] > d[u| + w(u,v) the
dlv] + du] + w(u,v

return DP|w

Relaxation of (u,v)

7>

Goal (shortest path
from s tow)

Design and Analysis of Algorithms



Case study lll: Bellman-Ford

In words: d[s] = 0,d|u] = +oo foru # s.
For n — 1 times, relax all the edges (u, v).

Relaxation of (u,v)

d[v] > d|u] + w(u,v) thetl
dlv] + dfu] + w(u,v

Running time O(|V| - |E|)
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Case study lll: Bellman-Ford

In words: d[s] = 0,d|u] = +oo foru # s.
For n — 1 times, relax all the edges (u, v).

Relaxation of (u,v)

d[v] > d[u] + w(u,v) thet

dlv] < dlu] + w(u,v

Running time O(|V] - |E|)
Property: Suppose we relax all edges one more
time. If d|] decreases for a vertex then there is a

negative cycle. If d|| remains the same, no
negative cycle.
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Case study lll: Bellman-Ford

Find the shortest weight path from node 0.
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Case study lll: Bellman-Ford

1
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Case study lll: Bellman-Ford
3
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Case study lll: Bellman-Ford
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Case study lll: Bellman-Ford

I S ES YR P P
o0 oo

1 6 5 5 o0

2 3 3 5 5 4 o0
3 1 3 5 2 4 7

4 1 3 5 0 4

5

6
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Case study lll: Bellman-Ford
1 -1

-3

3 S S FYN PO P O
1 6 5 5 o0 o0 0
2 3 3 5 5 4 =
3 = 3 5 2 4 7
4 1 3 5 0 4 5
5 1 3 5 o 4 3
6 1 3 5 o 4 3
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Case study lll: Bellman-Ford

Find the shortest weight path from node 0.

Design and Analysis of Algorithms



Case study lll: Bellman-Ford
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Case study lll: Bellman-Ford
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Case study lll: Bellman-Ford
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Case study IV: Interval Scheduling

Problem: You are given a collection of n intervals represented by

start time, finish time, and value: (s;, f;, v;). Find a non-
overlapping set of intervals with maximum total value.

Example:

5(]) f(j) V(j) o 1 2 3 4 5 6 7 &8 9 10 11 12
3

6
;
10
11
12

OOl B W DN -,

= NN RN

[=2] w = V] (W] —

O 0 H~ 01T N0 =
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Case study IV: Interval Scheduling

Problem: You are given a collection of n intervals represented by

start time, finish time, and value: (s;, f;, v;). Find a non-
overlapping set of intervals with maximum total value.

Example:
j S(j) f(j) V(j) 0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 3 2 . =)
2 2 6 4 2 : V=Y
3 5 { 4 3 -
41 4| 10 71 s L_/_,D
5 3 11 2 5 :
6 0 12 1 6 :
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Case study IV: Interval Scheduling

Step 1: Define the problem and subproblem:s.

Answer: Let DP[j] be the maximum value that can
be obtained from a set of non-overlapping
intervals with indices in the range {1, ..., j}

Design and Analysis of Algorithms



Case study IV: Interval Scheduling

Step 1: Define the problem and subproblem:s.

Answer: Let DP[j] be the maximum value that can
be obtained from a set of non-overlapping
intervals with indices in the range {1, ..., j}

Step 2: Define the goal/output given Step 1.
It is DP|n].
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Case study IV: Interval Scheduling

Step 1: Define the problem and subproblem:s.

Answer: Let DP[j] be the maximum value that can
be obtained from a set of non-overlapping
intervals with indices in the range {1, ..., j}

Step 2: Define the goal/output given Step 1.

It is DP|n].
Step 3: Define the base cases
Itis DP[0] = 0.

Step 4: Define the recurrence
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Case study IV: Interval Scheduling

Step 4: Define the recurrence

Interval j belongs to the optimal solution or not.

DP[j] = max(DP[$] + v;, DP[j — 1])
What is S ?

Design and Analysis of Algorithms



Case study IV: Interval Scheduling

Step 4: Define the recurrence

Interval j belongs to the optimal solution or not.

DP[j] = max(DP[$] + v;, DP[j — 1])
S should be the interval with highest index in {1, ...,j — 1} that
does not intersect with j (since j is chosen).

Let p|j] be the highestindexin {1, ...,j — 1} that does not
intersect with j. Then the recurrence becomes

DP[j] = max(DP[pl[j]] +v;, DP[j — 1])

Design and Analysis of Algorithms



Case study IV: Interval Scheduling

Pseudocode:

Array DP||

DP(0] ¢ 0

For k=1 ton do

DP[k] < max(DP[k — 1], DP[p[k]] + v[k]) It Ao
return DP[n]

Design and Analysis of Algorithms



Case study IV: Interval Scheduling

Pseudocode:

Array DP||

DP(0] ¢ 0

For k=1 ton do

DP[k] < max(DP[k — 1], DP[p[k]] + v[k]) It Ao
return DP[n]

Question: How can we compute p[j]for1 <j < n
in O@(nlogn) time?

Design and Analysis of Algorithms



Case study IV: Interval Scheduling

Question: How can we compute p|jlfor1 <j <n
in O(nlogn) time?

Answer:
e Sort first the intervals in increasing order of
finishing times.

Design and Analysis of Algorithms



Case study IV: Interval Scheduling

Question: How can we compute p|jlfor1 <j <n
in O(nlogn) time?

Answer:

e Sort first the intervals in increasing order of
finishing times.

e Forevery j, do binary search to find the interval
before j with finishing time at most s;

Design and Analysis of Algorithms
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