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Dynamic Programming I: Introduction, 
Memoization, Rod Cutting, Knapsack



Dynamic Programming

Technique for solving optimization problems.

Solve problem by solving sub-problems and combine:

This is called Optimal substructure property.
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Dynamic Programming

Technique for solving optimization problems.

Solve problem by solving sub-problems and combine:

This is called Optimal substructure property.

➢ Similar to divide-and-conquer: recursion (for   
solving sub-problems)

➢ Sub-problems overlap: solve them only once!

     

   DP = recursion + re-use (Memoization)
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Example: Given a positive integer numbers 𝑛, 
compute Fibonacci 𝐹𝑛. Definition: 𝐹1 = 𝐹2 = 1 and 
𝐹𝑛  =  𝐹𝑛−1  +  𝐹𝑛−2.
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Example: Given a positive integer numbers 𝑛, 
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𝐹𝑛  =  𝐹𝑛−1  +  𝐹𝑛−2.
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Dynamic Programming

Recursion (slow):
Why is it slow?



Example: Given a positive integer numbers 𝑛, 
compute Fibonacci 𝐹𝑛. Definition: 𝐹1 = 𝐹2 = 1 and 
𝐹𝑛  =  𝐹𝑛−1  +  𝐹𝑛−2.
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Dynamic Programming

Recursion (slow):
Why is it slow? F(6)

Red nodes: Recursive calls.
Green nodes: Bases cases.
F(5) is computed once, F(4) twice,
F(3) three times, F(2) five times, F(1) three times 



Example: Given a positive integer numbers 𝑛, 
compute Fibonacci 𝐹𝑛. Definition: 𝐹1 = 𝐹2 = 1 and 
𝐹𝑛  =  𝐹𝑛−1  +  𝐹𝑛−2.
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Dynamic Programming

Recursion (slow):
Exponential time

Red nodes: Recursive calls.
Green nodes: Bases cases.
F(5) is computed once, F(4) twice,
F(3) three times, F(2) five times, F(1) three times 



Example: Given a positive integer numbers 𝑛, 
compute Fibonacci 𝐹𝑛. Definition: 𝐹1 = 𝐹2 = 1 and 
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Example: Given a positive integer numbers 𝑛, 
compute Fibonacci 𝐹𝑛. Definition: 𝐹1 = 𝐹2 = 1 and 
𝐹𝑛  =  𝐹𝑛−1  +  𝐹𝑛−2.
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Dynamic Programming

Memoization (fast):
Linear time: Let’s see F(6)

Fib(𝑛) will be invoked twice: (a) first 
recursion and (b) second memoization
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Dynamic Programming
  DP = recursion + re-use (Memoization)

Two approaches in Dynamic Programming

1. Top-down approach:

If solution is stored in the array,
return it (memoization). 
Otherwise solves 
subproblems recursively
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Dynamic Programming
  DP = recursion + re-use (Memoization)

Two approaches in Dynamic Programming

2. Bottom-up approach:
Solves subproblems iteratively
in the order of smallest 
to largest subproblems.
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  Case study I: Rod cutting problem
Problem: You are given a rod of size 𝑛 and a table of prices 𝑝1, … , 𝑝𝑛 
where 𝑝𝑖 is the price in the market of a rod of size 𝑖. Determine the 
maximum revenue obtained by cutting the rode into pieces and selling 
these to the market 

 Example: 𝑛 = 9,
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where 𝑝𝑖 is the price in the market of a rod of size 𝑖. Determine the 
maximum revenue obtained by cutting the rode into pieces and selling 
these to the market 

 Example: 𝑛 = 9,

Answer: Cut the rod in two pieces, 3 and 6 and get revenue 
𝑝3 + 𝑝6  = 25.  
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  Case study I: Rod cutting problem
Problem: You are given a rod of size 𝑛 and a table of prices 𝑝1, … , 𝑝𝑛 
where 𝑝𝑖 is the price in the market of a rod of size 𝑖. Determine the 
maximum revenue obtained by cutting the rode into pieces and selling 
these to the market 

 Example: 𝑛 = 9,

Answer: Cut the rod in two pieces, 3 and 6 and get revenue 
𝑝3 + 𝑝6  = 25.  

Brute force (slow): For each possible cut, compute the revenue and 
keep the maximum. How many possibilities? For 𝑛 = 4, we have 

1+1+1+1, 1+1+2, 1+2+1, 2+1+1, 2+2, 1+3, 3+1, 4. 



Design and Analysis of Algorithms

  Case study I: Rod cutting problem
Problem: You are given a rod of size 𝑛 and a table of prices 𝑝1, … , 𝑝𝑛 
where 𝑝𝑖 is the price in the market of a rod of size 𝑖. Determine the 
maximum revenue obtained by cutting the rode into pieces and selling 
these to the market 

 Example: 𝑛 = 9,

Answer: Cut the rod in two pieces, 3 and 6 and get revenue 
𝑝3 + 𝑝6  = 25.  

Brute force (slow): For each possible cut, compute the revenue and 
keep the maximum. How many possibilities? For 𝑛 = 4, we have 

1+1+1+1, 1+1+2, 1+2+1, 2+1+1, 2+2, 1+3, 3+1, 4. 

Exponential many 𝟐𝒏−𝟏 
Hence exponential time



Case study I: Rod cutting problem

Step 1:  Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘] be the maximum value I can get 
from rod with size 𝑘.

Design and Analysis of Algorithms

General Approach
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Step 1:  Define the problem and subproblems.
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Step 2: Define the goal/output given Step 1. 
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Case study I: Rod cutting problem

Step 1:  Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘] be the maximum value I can get 
from rod with size 𝑘.

Step 2: Define the goal/output given Step 1. 

It is 𝑫𝑷[𝒏].

Step 3: Define the base cases

It is 𝐷𝑃[0] = 0.

Step 4: Define the recurrence
Design and Analysis of Algorithms

General Approach



Case study I: Rod cutting problem

Step 4: Define the recurrence. 

Create a recursive relationship between the 
subproblems (the tricky part).

Question: Given a rod of size 𝑘, where should I cut 
it first?

Design and Analysis of Algorithms

General Approach



Case study I: Rod cutting problem

Step 4: Define the recurrence. 

Create a recursive relationship between the 
subproblems (the tricky part).

Question: Given a rod of size 𝑘, where should I cut 
it first? Cut at index 𝑖 gives price of 𝑖 and 𝐷𝑃[𝑘 − 𝑖] 

Design and Analysis of Algorithms

General Approach

Length 𝑘 − 𝑖Length 𝑖



Case study I: Rod cutting problem

Step 4: Define the recurrence. 

Create a recursive relationship between the 
subproblems (the tricky part).

Question: Given a rod of size 𝑘, where should I cut 
it first? Cut at index 𝑖 gives price of 𝑖 and 𝐷𝑃[𝑘 − 𝑖] 
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General Approach



Case study I: Rod cutting problem

     Rod of size 𝑛 = 4

size of 
piece

1 2 3 4

market 
price

2 5 7 8

0

DP[0] DP[1] DP[2]DP[3]DP[4]

𝐷𝑃[𝑘] = maximum value from rod with size 𝑘. 
𝐷𝑃 𝑘 = max

1≤𝑖≤𝑘
 𝑝𝑖 + 𝐷𝑃[𝑘 − 𝑖]  

𝐷𝑃 0 = 0
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size of 
piece
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market 
price

2 5 7 8

𝐷𝑃[𝑘] = maximum value from rod with size 𝑘. 
𝐷𝑃 𝑘 = max

1≤𝑖≤𝑘
 {𝑝𝑖 + 𝐷𝑃[𝑘 − 𝑖]}  

𝐷𝑃 0 = 0
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0 2

DP[0] DP[1] DP[2]DP[3]DP[4]

+2
DP[1] = p1 +DP[0] = 2



Case study I: Rod cutting problem

     Rod of size 𝑛 = 4

size of 
piece

1 2 3 4

market 
price

2 5 7 8

𝐷𝑃[𝑘] = maximum value from rod with size 𝑘. 
𝐷𝑃 𝑘 = max

1≤𝑖≤𝑘
 {𝑝𝑖 + 𝐷𝑃[𝑘 − 𝑖]}  

𝐷𝑃 0 = 0
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0 2 5

DP[0] DP[1] DP[2]DP[3]DP[4]

+5

+2

DP[2]= max{p2 +DP[0], p1 +DP[1]}

= max{5+0,2+ 2}



Case study I: Rod cutting problem

     Rod of size 𝑛 = 4

size of 
piece

1 2 3 4

market 
price

2 5 7 8

𝐷𝑃[𝑘] = maximum value from rod with size 𝑘. 
𝐷𝑃 𝑘 = max

1≤𝑖≤𝑘
 {𝑝𝑖 + 𝐷𝑃[𝑘 − 𝑖]}  

𝐷𝑃 0 = 0
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0 2 5 7

DP[0] DP[1] DP[2]DP[3]DP[4]

+7

+5
+2

DP[3] = max{p3 +DP[0], p2 +DP[1], p1 +DP[2]}

= max{7+ 0,5+2,2+ 5}



Case study I: Rod cutting problem

     Rod of size 𝑛 = 4

size of 
piece

1 2 3 4

market 
price

2 5 7 8

𝐷𝑃[𝑘] = maximum value from rod with size 𝑘. 
𝐷𝑃 𝑘 = max

1≤𝑖≤𝑘
 {𝑝𝑖 + 𝐷𝑃[𝑘 − 𝑖]}  

𝐷𝑃 0 = 0
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0 2 5 7 10

DP[0] DP[1] DP[2]DP[3]DP[4]

+8

+7
+5

+2

DP[4]=

max{p4 +DP[0], p3 +DP[1], p2 +DP[2], p1 +DP[3]}

= max{8+ 0, 7+ 2,5+ 5,2 + 7}
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 Case study I: Rod cutting problem

Pseudocode:
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Base case

Implement recursive 
formula with double 
for-loop

GOAL
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Case study I: Rod cutting problem

len 0 1 2 3 4 5 6 7 8 9

DP[] 0 1 5 8 10 13 17 18 22 25

S[] 0 0 0 0 2 2 0 1 2 3

Example: 𝑛 = 9

Solution for 𝑛 = 9: 
Need to cut at 𝑆[9]  = 3. Then remaining length is 9-3=6. 
Need to cut at 𝑆[6] = 0. The solution is 3+6 which give 8+17=25
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Case study I: Rod cutting problem

len 0 1 2 3 4 5 6 7 8 9

DP[] 0 1 5 8 10 13 17 18 22 25

S[] 0 0 0 0 2 2 0 1 2 3

Example: 𝑛 = 9

Solution for 𝑛 = 9: 
Need to cut at 𝑆[9]  = 3. Then remaining length is 9-3=6. 
Need to cut at 𝑆[6] = 0. The solution is 3+6 which give 8+17=25

Solution for 𝑛 = 5: 
Need to cut at 𝑆[5]  = 2. Then remaining length is 5-2=3. 
Need to cut at 𝑆[3] = 0. The solution is 2+3 which give 5+8=13
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Case study II: 0/1 Knapsack 
Problem: A set of 𝑛 items, with each item 𝑖 having positive weight 
𝑤𝑖 and positive benefit 𝑣𝑖.  You are asked to choose items with 
maximum total benefit so that the total weight is at most 𝑊

Weight:
Benefit:

4 lbs 2 lbs 2 lbs 6 lbs 2 lbs

$20 $3 $6 $25 $80

Items:

Solution:
• item 5 ($80, 2 lbs)
• item 3 ($6, 2lbs)
• item 1 ($20, 4lbs)

“knapsack” with 9 

lbs capacity

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg


Design and Analysis of Algorithms

Idea: Dynamic Programming (first attempt).

Case study II: 0/1 Knapsack 

Step 1:  Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘] be the maximum value I can 
get from items {1, … , 𝑘} without exceeding 𝑊.

Step 2: Define the goal/output given Step 1. 
It is 𝑫𝑷[𝒏].

Step 3: Define the base cases
It is 𝐷𝑃[0] = 0.

Step 4: Define the recurrence



Design and Analysis of Algorithms

Idea: Dynamic Programming (first attempt).

Item 𝑘 will be used or not. 

   𝐷𝑃[𝑘]  =  max(𝐷𝑃[𝑘 − 1], 𝐷𝑃[𝑘 − 1] + 𝑣𝑘)

But how do we know that DP[k-1] does not exceed 𝑊 − 𝑤𝑘 in 

weight so we can use 𝑘?

Case study II: 0/1 Knapsack 

Step 4: Define the recurrence



Design and Analysis of Algorithms

Idea: Dynamic Programming (correct attempt).

Case study II: 0/1 Knapsack 

Step 1:  Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘, 𝑗] be the maximum value I can 
get from items {1, … , 𝑘} without exceeding 𝑗.
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Idea: Dynamic Programming (correct attempt).

Case study II: 0/1 Knapsack 

Step 1:  Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘, 𝑗] be the maximum value I can 
get from items {1, … , 𝑘} without exceeding 𝑗.

Step 2: Define the goal/output given Step 1. 
It is 𝑫𝑷[𝒏, 𝑾].
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Idea: Dynamic Programming (correct attempt).

Case study II: 0/1 Knapsack 

Step 1:  Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘, 𝑗] be the maximum value I can 
get from items {1, … , 𝑘} without exceeding 𝑗.

Step 2: Define the goal/output given Step 1. 
It is 𝑫𝑷[𝒏, 𝑾].

Step 3: Define the base cases
It is 𝐷𝑃[0, 𝑗] = 0 for all 𝑗 and 𝐷𝑃[𝑖, 0] = 0 for all 𝑖.

Step 4: Define the recurrence
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Idea: Dynamic Programming (correct attempt).

Item 𝑘 will be used or not. 

 𝐷𝑃 𝑘 [𝑗]  =  max(𝐃𝐏[𝐤 − 𝟏][𝐣 − 𝐰𝐤] + 𝐯𝐤, 𝐃𝐏[𝐤 − 𝟏][𝐣])

Case study II: 0/1 Knapsack 

Step 4: Define the recurrence



Design and Analysis of Algorithms

Idea: Dynamic Programming (correct attempt).

Item 𝑘 will be used or not. 

 𝐷𝑃 𝑘 [𝑗]  =  max(𝐃𝐏[𝐤 − 𝟏][𝐣 − 𝐰𝐤] + 𝐯𝐤, 𝐃𝐏[𝐤 − 𝟏][𝐣])

Question: How do we know that item 𝑘 does not have weight 

more than 𝑗?

Case study II: 0/1 Knapsack 

Step 4: Define the recurrence
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Idea: Dynamic Programming (correct attempt).

Item 𝑘 will be used or not. 

𝐷𝑃[𝑘][𝑗] =  if 𝑤𝑘 ≤ 𝑗    max(𝐃𝐏[𝐤 − 𝟏][𝐣 − 𝐰𝐤] + 𝐯𝐤, 𝐃𝐏[𝐤 − 𝟏][𝐣])

       If 𝑤𝑘 > 𝑗    𝑫𝑷[𝒌 − 𝟏][𝒋]

Answer: Add an if statement in the recurrence.

Case study II: 0/1 Knapsack 

Step 4: Define the recurrence



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0

2 0

3 0

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 (𝑗 < 𝑤1)

2 0 0 (𝑗 < 𝑤2)

3 0 0 (𝑗 < 𝑤3)

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 max(0,𝑣1+0)

2 0 0

3 0 0

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1

2 0 0 max(1,𝑣2+0)

3 0 0

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1

2 0 0 1

3 0 0 1 (𝑗 < 𝑤3)

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 max(0,𝑣1+0)

2 0 0 1

3 0 0 1

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1

2 0 0 1 max(1,𝑣2+0)

3 0 0 1

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1

2 0 0 1 1

3 0 0 1 max(1,𝑣3+0)

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 max(0,𝑣1+0)

2 0 0 1 1

3 0 0 1 5

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 1

2 0 0 1 1 max(1,𝑣2+1)

3 0 0 1 5

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 1

2 0 0 1 1 2

3 0 0 1 5 max(2,0+𝑣3)

Case study II: 0/1 Knapsack 



j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 1

2 0 0 1 1 2

3 0 0 1 5 5

Case study II: 0/1 Knapsack 
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Bottom up filliing DP

Case study II: 0/1 Knapsack 

Pseudocode:

Initialization

 Goal
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Bottom up filliing DP

Case study II: 0/1 Knapsack 

Initialization

 Goal

Pseudocode:
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