
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

Lecture 8

Dynamic Programming I: Introduction,
Memoization, Rod Cutting, Knapsack

Dynamic Programming

Technique for solving optimization problems.

Solve problem by solving sub-problems and combine:

This is called Optimal substructure property.

Design and Analysis of Algorithms

Dynamic Programming

Technique for solving optimization problems.

Solve problem by solving sub-problems and combine:

This is called Optimal substructure property.

➢ Similar to divide-and-conquer: recursion (for
solving sub-problems)

➢ Sub-problems overlap: solve them only once!

 DP = recursion + re-use (Memoization)

Design and Analysis of Algorithms

Example: Given a positive integer numbers 𝑛,
compute Fibonacci 𝐹𝑛. Definition: 𝐹1 = 𝐹2 = 1 and
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2.

Design and Analysis of Algorithms

Dynamic Programming

Recursion (slow):

Example: Given a positive integer numbers 𝑛,
compute Fibonacci 𝐹𝑛. Definition: 𝐹1 = 𝐹2 = 1 and
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2.

Design and Analysis of Algorithms

Dynamic Programming

Recursion (slow):
Why is it slow?

Example: Given a positive integer numbers 𝑛,
compute Fibonacci 𝐹𝑛. Definition: 𝐹1 = 𝐹2 = 1 and
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2.

Design and Analysis of Algorithms

Dynamic Programming

Recursion (slow):
Why is it slow? F(6)

Red nodes: Recursive calls.
Green nodes: Bases cases.
F(5) is computed once, F(4) twice,
F(3) three times, F(2) five times, F(1) three times

Example: Given a positive integer numbers 𝑛,
compute Fibonacci 𝐹𝑛. Definition: 𝐹1 = 𝐹2 = 1 and
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2.

Design and Analysis of Algorithms

Dynamic Programming

Recursion (slow):
Exponential time

Red nodes: Recursive calls.
Green nodes: Bases cases.
F(5) is computed once, F(4) twice,
F(3) three times, F(2) five times, F(1) three times

Example: Given a positive integer numbers 𝑛,
compute Fibonacci 𝐹𝑛. Definition: 𝐹1 = 𝐹2 = 1 and
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2.

Design and Analysis of Algorithms

Dynamic Programming

Memoization (fast):

Example: Given a positive integer numbers 𝑛,
compute Fibonacci 𝐹𝑛. Definition: 𝐹1 = 𝐹2 = 1 and
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2.

Design and Analysis of Algorithms

Dynamic Programming

Memoization (fast):
Linear time: Let’s see F(6)

Fib(𝑛) will be invoked twice: (a) first
recursion and (b) second memoization

Design and Analysis of Algorithms

Dynamic Programming
 DP = recursion + re-use (Memoization)

Two approaches in Dynamic Programming

1. Top-down approach:

If solution is stored in the array,
return it (memoization).
Otherwise solves
subproblems recursively

Design and Analysis of Algorithms

Dynamic Programming
 DP = recursion + re-use (Memoization)

Two approaches in Dynamic Programming

2. Bottom-up approach:
Solves subproblems iteratively
in the order of smallest
to largest subproblems.

Design and Analysis of Algorithms

 Case study I: Rod cutting problem
Problem: You are given a rod of size 𝑛 and a table of prices 𝑝1, … , 𝑝𝑛
where 𝑝𝑖 is the price in the market of a rod of size 𝑖. Determine the
maximum revenue obtained by cutting the rode into pieces and selling
these to the market

 Example: 𝑛 = 9,

Design and Analysis of Algorithms

 Case study I: Rod cutting problem
Problem: You are given a rod of size 𝑛 and a table of prices 𝑝1, … , 𝑝𝑛
where 𝑝𝑖 is the price in the market of a rod of size 𝑖. Determine the
maximum revenue obtained by cutting the rode into pieces and selling
these to the market

 Example: 𝑛 = 9,

Answer: Cut the rod in two pieces, 3 and 6 and get revenue
𝑝3 + 𝑝6 = 25.

Design and Analysis of Algorithms

 Case study I: Rod cutting problem
Problem: You are given a rod of size 𝑛 and a table of prices 𝑝1, … , 𝑝𝑛
where 𝑝𝑖 is the price in the market of a rod of size 𝑖. Determine the
maximum revenue obtained by cutting the rode into pieces and selling
these to the market

 Example: 𝑛 = 9,

Answer: Cut the rod in two pieces, 3 and 6 and get revenue
𝑝3 + 𝑝6 = 25.

Brute force (slow): For each possible cut, compute the revenue and
keep the maximum. How many possibilities? For 𝑛 = 4, we have

1+1+1+1, 1+1+2, 1+2+1, 2+1+1, 2+2, 1+3, 3+1, 4.

Design and Analysis of Algorithms

 Case study I: Rod cutting problem
Problem: You are given a rod of size 𝑛 and a table of prices 𝑝1, … , 𝑝𝑛
where 𝑝𝑖 is the price in the market of a rod of size 𝑖. Determine the
maximum revenue obtained by cutting the rode into pieces and selling
these to the market

 Example: 𝑛 = 9,

Answer: Cut the rod in two pieces, 3 and 6 and get revenue
𝑝3 + 𝑝6 = 25.

Brute force (slow): For each possible cut, compute the revenue and
keep the maximum. How many possibilities? For 𝑛 = 4, we have

1+1+1+1, 1+1+2, 1+2+1, 2+1+1, 2+2, 1+3, 3+1, 4.

Exponential many 𝟐𝒏−𝟏
Hence exponential time

Case study I: Rod cutting problem

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘] be the maximum value I can get
from rod with size 𝑘.

Design and Analysis of Algorithms

General Approach

Case study I: Rod cutting problem

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘] be the maximum value I can get
from rod with size 𝑘.

Step 2: Define the goal/output given Step 1.

Design and Analysis of Algorithms

General Approach

Case study I: Rod cutting problem

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘] be the maximum value I can get
from rod with size 𝑘.

Step 2: Define the goal/output given Step 1.

It is 𝑫𝑷[𝒏].

Design and Analysis of Algorithms

General Approach

Case study I: Rod cutting problem

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘] be the maximum value I can get
from rod with size 𝑘.

Step 2: Define the goal/output given Step 1.

It is 𝑫𝑷[𝒏].

Step 3: Define the base cases

Design and Analysis of Algorithms

General Approach

Case study I: Rod cutting problem

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘] be the maximum value I can get
from rod with size 𝑘.

Step 2: Define the goal/output given Step 1.

It is 𝑫𝑷[𝒏].

Step 3: Define the base cases

It is 𝐷𝑃[0] = 0.

Step 4: Define the recurrence
Design and Analysis of Algorithms

General Approach

Case study I: Rod cutting problem

Step 4: Define the recurrence.

Create a recursive relationship between the
subproblems (the tricky part).

Question: Given a rod of size 𝑘, where should I cut
it first?

Design and Analysis of Algorithms

General Approach

Case study I: Rod cutting problem

Step 4: Define the recurrence.

Create a recursive relationship between the
subproblems (the tricky part).

Question: Given a rod of size 𝑘, where should I cut
it first? Cut at index 𝑖 gives price of 𝑖 and 𝐷𝑃[𝑘 − 𝑖]

Design and Analysis of Algorithms

General Approach

Length 𝑘 − 𝑖Length 𝑖

Case study I: Rod cutting problem

Step 4: Define the recurrence.

Create a recursive relationship between the
subproblems (the tricky part).

Question: Given a rod of size 𝑘, where should I cut
it first? Cut at index 𝑖 gives price of 𝑖 and 𝐷𝑃[𝑘 − 𝑖]

Design and Analysis of Algorithms

General Approach

Case study I: Rod cutting problem

 Rod of size 𝑛 = 4

size of
piece

1 2 3 4

market
price

2 5 7 8

0

DP[0] DP[1] DP[2]DP[3]DP[4]

𝐷𝑃[𝑘] = maximum value from rod with size 𝑘.
𝐷𝑃 𝑘 = max

1≤𝑖≤𝑘
 𝑝𝑖 + 𝐷𝑃[𝑘 − 𝑖]

𝐷𝑃 0 = 0

Design and Analysis of Algorithms

Case study I: Rod cutting problem

 Rod of size 𝑛 = 4

size of
piece

1 2 3 4

market
price

2 5 7 8

𝐷𝑃[𝑘] = maximum value from rod with size 𝑘.
𝐷𝑃 𝑘 = max

1≤𝑖≤𝑘
 {𝑝𝑖 + 𝐷𝑃[𝑘 − 𝑖]}

𝐷𝑃 0 = 0

Design and Analysis of Algorithms

0 2

DP[0] DP[1] DP[2]DP[3]DP[4]

+2
DP[1] = p1 +DP[0] = 2

Case study I: Rod cutting problem

 Rod of size 𝑛 = 4

size of
piece

1 2 3 4

market
price

2 5 7 8

𝐷𝑃[𝑘] = maximum value from rod with size 𝑘.
𝐷𝑃 𝑘 = max

1≤𝑖≤𝑘
 {𝑝𝑖 + 𝐷𝑃[𝑘 − 𝑖]}

𝐷𝑃 0 = 0

Design and Analysis of Algorithms

0 2 5

DP[0] DP[1] DP[2]DP[3]DP[4]

+5

+2

DP[2]= max{p2 +DP[0], p1 +DP[1]}

= max{5+0,2+ 2}

Case study I: Rod cutting problem

 Rod of size 𝑛 = 4

size of
piece

1 2 3 4

market
price

2 5 7 8

𝐷𝑃[𝑘] = maximum value from rod with size 𝑘.
𝐷𝑃 𝑘 = max

1≤𝑖≤𝑘
 {𝑝𝑖 + 𝐷𝑃[𝑘 − 𝑖]}

𝐷𝑃 0 = 0

Design and Analysis of Algorithms

0 2 5 7

DP[0] DP[1] DP[2]DP[3]DP[4]

+7

+5
+2

DP[3] = max{p3 +DP[0], p2 +DP[1], p1 +DP[2]}

= max{7+ 0,5+2,2+ 5}

Case study I: Rod cutting problem

 Rod of size 𝑛 = 4

size of
piece

1 2 3 4

market
price

2 5 7 8

𝐷𝑃[𝑘] = maximum value from rod with size 𝑘.
𝐷𝑃 𝑘 = max

1≤𝑖≤𝑘
 {𝑝𝑖 + 𝐷𝑃[𝑘 − 𝑖]}

𝐷𝑃 0 = 0

Design and Analysis of Algorithms

0 2 5 7 10

DP[0] DP[1] DP[2]DP[3]DP[4]

+8

+7
+5

+2

DP[4]=

max{p4 +DP[0], p3 +DP[1], p2 +DP[2], p1 +DP[3]}

= max{8+ 0, 7+ 2,5+ 5,2 + 7}

Design and Analysis of Algorithms

 Case study I: Rod cutting problem

Pseudocode:

Design and Analysis of Algorithms

 Case study I: Rod cutting problem

Pseudocode:

Base case

Implement recursive
formula with double
for-loop

GOAL

Design and Analysis of Algorithms

 Case study I: Rod cutting problem

Pseudocode:

Base case

Implement recursive
formula with double
for-loop

GOAL

Design and Analysis of Algorithms

 Case study I: Rod cutting problem

Pseudocode:

Base case

Implement recursive
formula with double
for-loop

GOAL

Case study I: Rod cutting problem

len 0 1 2 3 4 5 6 7 8 9

DP[] 0 1 5 8 10 13 17 18 22 25

S[] 0 0 0 0 2 2 0 1 2 3

Example: 𝑛 = 9

Solution for 𝑛 = 9:
Need to cut at 𝑆[9] = 3. Then remaining length is 9-3=6.
Need to cut at 𝑆[6] = 0. The solution is 3+6 which give 8+17=25

Design and Analysis of Algorithms

Case study I: Rod cutting problem

len 0 1 2 3 4 5 6 7 8 9

DP[] 0 1 5 8 10 13 17 18 22 25

S[] 0 0 0 0 2 2 0 1 2 3

Example: 𝑛 = 9

Solution for 𝑛 = 9:
Need to cut at 𝑆[9] = 3. Then remaining length is 9-3=6.
Need to cut at 𝑆[6] = 0. The solution is 3+6 which give 8+17=25

Solution for 𝑛 = 5:
Need to cut at 𝑆[5] = 2. Then remaining length is 5-2=3.
Need to cut at 𝑆[3] = 0. The solution is 2+3 which give 5+8=13

Design and Analysis of Algorithms

Design and Analysis of Algorithms

Case study II: 0/1 Knapsack
Problem: A set of 𝑛 items, with each item 𝑖 having positive weight
𝑤𝑖 and positive benefit 𝑣𝑖. You are asked to choose items with
maximum total benefit so that the total weight is at most 𝑊

Weight:
Benefit:

4 lbs 2 lbs 2 lbs 6 lbs 2 lbs

$20 $3 $6 $25 $80

Items:

Solution:
• item 5 ($80, 2 lbs)
• item 3 ($6, 2lbs)
• item 1 ($20, 4lbs)

“knapsack” with 9

lbs capacity

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg

Design and Analysis of Algorithms

Idea: Dynamic Programming (first attempt).

Case study II: 0/1 Knapsack

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘] be the maximum value I can
get from items {1, … , 𝑘} without exceeding 𝑊.

Step 2: Define the goal/output given Step 1.
It is 𝑫𝑷[𝒏].

Step 3: Define the base cases
It is 𝐷𝑃[0] = 0.

Step 4: Define the recurrence

Design and Analysis of Algorithms

Idea: Dynamic Programming (first attempt).

Item 𝑘 will be used or not.

 𝐷𝑃[𝑘] = max(𝐷𝑃[𝑘 − 1], 𝐷𝑃[𝑘 − 1] + 𝑣𝑘)

But how do we know that DP[k-1] does not exceed 𝑊 − 𝑤𝑘 in

weight so we can use 𝑘?

Case study II: 0/1 Knapsack

Step 4: Define the recurrence

Design and Analysis of Algorithms

Idea: Dynamic Programming (correct attempt).

Case study II: 0/1 Knapsack

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘, 𝑗] be the maximum value I can
get from items {1, … , 𝑘} without exceeding 𝑗.

Design and Analysis of Algorithms

Idea: Dynamic Programming (correct attempt).

Case study II: 0/1 Knapsack

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘, 𝑗] be the maximum value I can
get from items {1, … , 𝑘} without exceeding 𝑗.

Step 2: Define the goal/output given Step 1.
It is 𝑫𝑷[𝒏, 𝑾].

Design and Analysis of Algorithms

Idea: Dynamic Programming (correct attempt).

Case study II: 0/1 Knapsack

Step 1: Define the problem and subproblems.

Answer: Let 𝐷𝑃[𝑘, 𝑗] be the maximum value I can
get from items {1, … , 𝑘} without exceeding 𝑗.

Step 2: Define the goal/output given Step 1.
It is 𝑫𝑷[𝒏, 𝑾].

Step 3: Define the base cases
It is 𝐷𝑃[0, 𝑗] = 0 for all 𝑗 and 𝐷𝑃[𝑖, 0] = 0 for all 𝑖.

Step 4: Define the recurrence

Design and Analysis of Algorithms

Idea: Dynamic Programming (correct attempt).

Item 𝑘 will be used or not.

 𝐷𝑃 𝑘 [𝑗] = max(𝐃𝐏[𝐤 − 𝟏][𝐣 − 𝐰𝐤] + 𝐯𝐤, 𝐃𝐏[𝐤 − 𝟏][𝐣])

Case study II: 0/1 Knapsack

Step 4: Define the recurrence

Design and Analysis of Algorithms

Idea: Dynamic Programming (correct attempt).

Item 𝑘 will be used or not.

 𝐷𝑃 𝑘 [𝑗] = max(𝐃𝐏[𝐤 − 𝟏][𝐣 − 𝐰𝐤] + 𝐯𝐤, 𝐃𝐏[𝐤 − 𝟏][𝐣])

Question: How do we know that item 𝑘 does not have weight

more than 𝑗?

Case study II: 0/1 Knapsack

Step 4: Define the recurrence

Design and Analysis of Algorithms

Idea: Dynamic Programming (correct attempt).

Item 𝑘 will be used or not.

𝐷𝑃[𝑘][𝑗] = if 𝑤𝑘 ≤ 𝑗 max(𝐃𝐏[𝐤 − 𝟏][𝐣 − 𝐰𝐤] + 𝐯𝐤, 𝐃𝐏[𝐤 − 𝟏][𝐣])

 If 𝑤𝑘 > 𝑗 𝑫𝑷[𝒌 − 𝟏][𝒋]

Answer: Add an if statement in the recurrence.

Case study II: 0/1 Knapsack

Step 4: Define the recurrence

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0

2 0

3 0

Case study II: 0/1 Knapsack

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 (𝑗 < 𝑤1)

2 0 0 (𝑗 < 𝑤2)

3 0 0 (𝑗 < 𝑤3)

Case study II: 0/1 Knapsack

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 max(0,𝑣1+0)

2 0 0

3 0 0

Case study II: 0/1 Knapsack

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1

2 0 0 max(1,𝑣2+0)

3 0 0

Case study II: 0/1 Knapsack

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1

2 0 0 1

3 0 0 1 (𝑗 < 𝑤3)

Case study II: 0/1 Knapsack

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 max(0,𝑣1+0)

2 0 0 1

3 0 0 1

Case study II: 0/1 Knapsack

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1

2 0 0 1 max(1,𝑣2+0)

3 0 0 1

Case study II: 0/1 Knapsack

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1

2 0 0 1 1

3 0 0 1 max(1,𝑣3+0)

Case study II: 0/1 Knapsack

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 max(0,𝑣1+0)

2 0 0 1 1

3 0 0 1 5

Case study II: 0/1 Knapsack

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 1

2 0 0 1 1 max(1,𝑣2+1)

3 0 0 1 5

Case study II: 0/1 Knapsack

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 1

2 0 0 1 1 2

3 0 0 1 5 max(2,0+𝑣3)

Case study II: 0/1 Knapsack

j=0 1 2 3 4

i=0 0 0 0 0 0

1 0 0 1 1 1

2 0 0 1 1 2

3 0 0 1 5 5

Case study II: 0/1 Knapsack

Design and Analysis of Algorithms

Bottom up filliing DP

Case study II: 0/1 Knapsack

Pseudocode:

Initialization

 Goal

Design and Analysis of Algorithms

Bottom up filliing DP

Case study II: 0/1 Knapsack

Initialization

 Goal

Pseudocode:

	Slide 1: Lecture 8 Dynamic Programming I: Introduction, Memoization, Rod Cutting, Knapsack
	Slide 2: Dynamic Programming
	Slide 3: Dynamic Programming
	Slide 4: Dynamic Programming
	Slide 5: Dynamic Programming
	Slide 6: Dynamic Programming
	Slide 7: Dynamic Programming
	Slide 8: Dynamic Programming
	Slide 9: Dynamic Programming
	Slide 10: Dynamic Programming
	Slide 11: Dynamic Programming
	Slide 12: Case study I: Rod cutting problem
	Slide 13: Case study I: Rod cutting problem
	Slide 14: Case study I: Rod cutting problem
	Slide 15: Case study I: Rod cutting problem
	Slide 16: Case study I: Rod cutting problem
	Slide 17: Case study I: Rod cutting problem
	Slide 18: Case study I: Rod cutting problem
	Slide 19: Case study I: Rod cutting problem
	Slide 20: Case study I: Rod cutting problem
	Slide 21: Case study I: Rod cutting problem
	Slide 22: Case study I: Rod cutting problem
	Slide 23: Case study I: Rod cutting problem
	Slide 24: Case study I: Rod cutting problem
	Slide 25: Case study I: Rod cutting problem
	Slide 26: Case study I: Rod cutting problem
	Slide 27: Case study I: Rod cutting problem
	Slide 28: Case study I: Rod cutting problem
	Slide 29: Case study I: Rod cutting problem
	Slide 30: Case study I: Rod cutting problem
	Slide 31: Case study I: Rod cutting problem
	Slide 32: Case study I: Rod cutting problem
	Slide 33: Case study I: Rod cutting problem
	Slide 34: Case study I: Rod cutting problem
	Slide 35: Case study II: 0/1 Knapsack
	Slide 36: Case study II: 0/1 Knapsack
	Slide 37: Case study II: 0/1 Knapsack
	Slide 38: Case study II: 0/1 Knapsack
	Slide 39: Case study II: 0/1 Knapsack
	Slide 40: Case study II: 0/1 Knapsack
	Slide 41: Case study II: 0/1 Knapsack
	Slide 42: Case study II: 0/1 Knapsack
	Slide 43: Case study II: 0/1 Knapsack
	Slide 44: Case study II: 0/1 Knapsack
	Slide 45: Case study II: 0/1 Knapsack
	Slide 46: Case study II: 0/1 Knapsack
	Slide 47: Case study II: 0/1 Knapsack
	Slide 48: Case study II: 0/1 Knapsack
	Slide 49: Case study II: 0/1 Knapsack
	Slide 50: Case study II: 0/1 Knapsack
	Slide 51: Case study II: 0/1 Knapsack
	Slide 52: Case study II: 0/1 Knapsack
	Slide 53: Case study II: 0/1 Knapsack
	Slide 54: Case study II: 0/1 Knapsack
	Slide 55: Case study II: 0/1 Knapsack
	Slide 56
	Slide 57

