TxT
4

Dynamic Programming |: Introduction,
Memoization, Rod Cutting, Knapsack

Lecture 8

CS 161 Design and Analysis of Algorithms

loannis Panageas

Dynamic Programming

Technique for solving optimization problems.

Solve problem by solving sub-problems and combine:
This is called Optimal substructure property.

Design and Analysis of Algorithms

Dynamic Programming

Technique for solving optimization problems.

Solve problem by solving sub-problems and combine:
This is called Optimal substructure property.

» Similar to divide-and-conquer: recursion (for
solving sub-problems)

» Sub-problems overlap: solve them only once!

DP = recursion + re-use (Memoization)

Design and Analysis of Algorithms

Dynamic Programming

Example: Given a positive integer numbers n,
compute Fibonacci E,. Definition: F; = F, = 1 and
Fn = Fhoq + Fus.

Recursion (slow):

Fib(n)
If n <2 then return 1
return Fib(n — 1) 4+ Fib(n — 2)

Design and Analysis of Algorithms

Dynamic Programming

Example: Given a positive integer numbers n,
compute Fibonacci E,. Definition: F; = F, = 1 and
Fo = Fq + Fpos.

Recursion (slow):
Why is it slow?

Fib(n)
If n <2 then return 1
return Fib(n — 1) 4+ Fib(n — 2)

Design and Analysis of Algorithms

Dynamic Programming

Example: Given a positive integer numbers n,
compute Fibonacci E,. Definition: F; = F, = 1 and
Fo = Fq + Fpos.

Recursion (slow):
: Why is it slow? F(6)

Fib(n)
If n <2 then return 1
return Fib(n — 1) 4+ Fib(n — 2)
Red nodes: Recursive calls. g}ﬁ\ Fz2
Green nodes: Bases cases.
F(5) is computed once, F(4) twice, (:2 e

F(3) three times, F(2) five times, F(1) three times i Weu,m%mw

Design and Analysis of Algorithms

Dynamic Programming

Example: Given a positive integer numbers n,
compute Fibonacci E,. Definition: F; = F, = 1 and
Fo = Fq + Fpos.

Recursion (slow):

|
Fib(n) -

If n <2 then return 1
return Fib(n — 1) 4+ Fib(n — 2)

Red nodes: Recursive calls.
Green nodes: Bases cases.
F(5) is computed once, F(4) twice,
F(3) three times, F(2) five times, F(1) three times

Design and Analysis of Algorithms

Dynamic Programming

Example: Given a positive integer numbers n,
compute Fibonacci E,. Definition: F; = F, = 1 and
Fn = Fhoq + Fus.

Memoization (fast):

Array mem|]
Fib(n)
If mem|n| non-empty then
return mem|n|
If n <2 then mem|n] =1

mem|n| = Fib(n — 1) + Fib(n — 2)
return mem|n|

Design and Analysis of Algorithms

Dynamic Programming

Example: Given a positive integer numbers n,
compute Fibonacci E,. Definition: F; = F, = 1 and

Fo = Fq + Fpos.
Linear time: Let’s see F(6)

Memoization (fast): i"l"l"“ l"i" il'i

Array mem|]

Fib(n)

s

If mem|n| non-empty then 5
return mem|n| | T4 / \ra
If n <2 then mem|n] =1
FS.7)

mem|n| = Fib(n — 1) + Fib(n — 2)
return mem|n| ¢ .

Design and Analysis of Algorithms

Dynamic Programming

DP = recursion + re-use (Memoization)
Two approaches in Dynamic Programming

1. Top-down approach:

If solution is stored in the array, veouvs e F6
return it (memoization).
Otherwise solves

subproblems recursively

Design and Analysis of Algorithms

Dynamic Programming

DP = recursion + re-use (Memoization)
Two approaches in Dynamic Programming

2. Bottom-up approach:
Solves subproblems iteratively
in the order of smallest

£
to largest subproblems. 44462& 3 of
SUb Pro bleyic F5 x;z‘{-
Array fib|] bottows -upT4 /ey
fib[1] < 1,fib[2] <+ 1)
For i = 3 ton do T
fibi] = fib(i — 1) + fib(i — 2) "

return fib|n]

Design and Analysis of Algorithms

Case study I: Rod cutting problem

Problem: You are given a rod of size n and a table of prices p4, ..., pn,
where p; is the price in the market of a rod of size i. Determine the
maximum revenue obtained by cutting the rode into pieces and selling

these to the market

lengthi |1 2 3 4 5 6 7 8 9
5 9

Example:n =9, e p [1 8 10 17 17 20 24

Design and Analysis of Algorithms

Case study I: Rod cutting problem

Problem: You are given a rod of size n and a table of prices p4, ..., pn,
where p; is the price in the market of a rod of size i. Determine the
maximum revenue obtained by cutting the rode into pieces and selling

these to the market

lengthi |1 2 3 4 5 6 7 8 9
pricep; |1 5 8 9 10 17 17 20 24

Example:n = 9,

Answer: Cut the rod in two pieces, 3 and 6 and get revenue
P3 + Pe = 25.

Design and Analysis of Algorithms

Case study I: Rod cutting problem

Problem: You are given a rod of size n and a table of prices p4, ..., pn,
where p; is the price in the market of a rod of size i. Determine the
maximum revenue obtained by cutting the rode into pieces and selling

these to the market

lengthi |1 2 3 4 5 6 7 8 9
5 9

Example:n =9, e p [1 8 10 17 17 20 24

Answer: Cut the rod in two pieces, 3 and 6 and get revenue
P3 + Pe = 25.

Brute force (slow): For each possible cut, compute the revenue and
keep the maximum. How many possibilities? For n = 4, we have

1+1+1+1, 1+1+2, 1+2+1, 2+1+1, 2+2, 1+3, 3+1, 4.

Design and Analysis of Algorithms

Case study I: Rod cutting problem

Problem: You are given a rod of size n and a table of prices py, ...,
where p; is the price in the market of a rod of size i. Determine the
maximum revenue obtained by cutting the rode into pieces and selling

these to the market
length i ‘
price p; |

Answer: Cut the rod in two pieces, 3 and 6 and get revenue
P3 + Pe = 25.

2 3 4 5 6 7 8 9
5 8 9 10 17 17 20 24

Example:n = 9, 1

Brute force (slow): For each possible cut, compute the revenue and
keep the maximum. How many possibilities? For n = 4, we have

1+1+1+1, 1+1+2, 1+2+1, 2+1+1, 2+2, 1+3, 3+1, 4.

Exponential many 2™ 1

Hence exponential time

Design and Analysis of Algorithms

Case study I: Rod cutting problem

General Approach
Step 1: Define the problem and subproblem:s.

Answer: Let DP|k] be the maximum value | can get
from rod with size k.

Design and Analysis of Algorithms

Case study I: Rod cutting problem

General Approach
Step 1: Define the problem and subproblems.

Answer: Let DP|k] be the maximum value | can get
from rod with size k.

Step 2: Define the goal/output given Step 1.

Design and Analysis of Algorithms

Case study I: Rod cutting problem

General Approach
Step 1: Define the problem and subproblems.

Answer: Let DP|k] be the maximum value | can get
from rod with size k.

Step 2: Define the goal/output given Step 1.
It is DP|n].

Design and Analysis of Algorithms

Case study I: Rod cutting problem

General Approach
Step 1: Define the problem and subproblem:s.

Answer: Let DP|k] be the maximum value | can get
from rod with size k.

Step 2: Define the goal/output given Step 1.
It is DP|n]|.

Step 3: Define the base cases

Design and Analysis of Algorithms

Case study I: Rod cutting problem

General Approach
Step 1: Define the problem and subproblem:s.

Answer: Let DP|k] be the maximum value | can get
from rod with size k.

Step 2: Define the goal/output given Step 1.
It is DP|[n].
Step 3: Define the base cases

Itis DP[0] = 0.

Step 4: Define the recurrence

Design and Analysis of Algorithms

Case study I: Rod cutting problem

General Approach
Step 4: Define the recurrence.

Create a recursive relationship between the
subproblems (the tricky part).

Question: Given a rod of size k, where should | cut
it first?

length k£

Design and Analysis of Algorithms

Case study I: Rod cutting problem

General Approach
Step 4: Define the recurrence.

Create a recursive relationship between the
subproblems (the tricky part).

Question: Given a rod of size k, where should | cut

it first? Cut at index i gives price of i and DP|k — i]
()

length £ /pi DP[k —N

Length i Length k — i

Design and Analysis of Algorithms

Case study I: Rod cutting problem

General Approach
Step 4: Define the recurrence.

Create a recursive relationship between the
subproblems (the tricky part).

Question: Given a rod of size k, where should | cut

it first? Cut at index i gives price of i and DP|k — i]
()

length k bi DPlk—i
DP|k] is the max of p; + DP|k —i| for all 1 <1¢ < k

Design and Analysis of Algorithms

Case study |: Rod cutting problem

size of 1 2 3 4

piece

MEIL G 2 5 7 8
price

Rod of sizen = 4

DP[k] = maximum value from rod with size k.
DP[k] = max p; + DP[k —i]
pPIO]=0 DPLA)= P, + DPE

0

DP[0] DP[1] DP[2] DP[3] DP[4]

Design and Analysis of Algorithms

Case study |: Rod cutting problem

size of 1 2 3 4

piece

MEIL G 2 5 7 8
price

Rod of sizen = 4

X

DP|k]| = maximum value from rod with size k.
DP|k] = max {p; + DP[k — i]}

© T 1=isk 2 e\ A, 5>
pplo] & DP(31% mek(

DP[1]= p, + DP[0] = 2

=~

=

DP[0] DP[1] DP[2] DP[3] DP[4]

Design and Analysis of Algorithms

Case study |: Rod cutting problg{g\l
size of 1 2 3 4 STW Lll

piece

% ()
market 2 5 7 8))
price A\ ez

Rod of sizen = 4 P‘ED,?J
DP|k]| = maximum value from rod with si
DPlk] = max {p; + DP[k —i]}
<I<
DP10] =0 +5 DP[2]=max{p, + DP[0], p, + DP[1]}
% =max{5+0,2+2} L,
oo 2 | 5 Dﬁ;l—* g:gi

/

T
STk

DP[0] DP[1] DP[2] DP[3] DP[4]

Design and Analysis of Algorithms

Case study |: Rod cutting problem

size of 1
piece
market 2
price

Rod of sizen = 4

DP|

=

3 4

7 8

= maximum value from rod with size k.

DP|k]| = max {p; + DP[k — i]}

DP[0] = 0

1<i<k

+2

DP[3]=max{p, + DP[0], p, + DP[1], p, + DP[2]}
=max{7+0,5+2,2+5}

0%

2

e
5

7

DP[0] DP[1] DP[2] DP[3] DP[4]

Design and Analysis of Algorithms

Case study |: Rod cutting problem

size of

piece

MEIL G
price

1

2

2 3 4

5 7 8

Rod of sizen = 4

DP[k’
DP[k] _
o 1<i<k
DP[0] = 0
+2
+7
5
oo 2 | 5[7|10

DP[0] DP[1] DP[2] DP[3] DP[4]

= maximum value from rod with size k.
= max {p; + DP|k — i]}

DP[4]=
max{p, + DP[0], p, + DP[1], p, + DP[2], p, + DP[3]}
=max{8+0,7+2,5+52+7}

Design and Analysis of Algorithms

Case study |: Rod cutting problem

Pseudocode:

Array DPJ], S]]

DP[0] < 0
For k=1 ton do

max < 0
For : =1 to k do

If max < p[i|+ DP[k —i] then
max < p|i|+ DP[k — i

DP|k] + max
return DP|n]

Design and Analysis of Algorithms

Case study I: Rod cutting problem

Pseudocode:
Array DP][|, S||
DP[0] + 0
For k=1 ton do Implement recursive
max < O formula with double
For : =1 to k do for-loop

If max < p[i|+ DP[k —i] then
max < p|i|+ DP[k — i

DP|k] + max

return DP[n)

Running time: O (n?)

Design and Analysis of Algorithms

Case study I: Rod cutting problem

Pseudocode:
Array DP][|, S||
DP[0] + 0
For k=1 ton do Implement recursive
max < O formula with double
For : =1 to k do for-loop

If max < p[i|+ DP[k —i] then
max < p|i|+ DP[k — i

DP|k] + max

return DP[n)

Question: What is the cut that gives maximum revenue?

Design and Analysis of Algorithms

Case study I: Rod cutting problem

Pseudocode:
Array DP][|, S||
DP[0] + 0
For k=1 ton do Implement recursive
max < O formula with double
For : =1 to k do for-loop

If max < p[i|+ DP[k —i] then
max < p|i|+ DP[k — i
Slk] < i
DP|k] + max

return DP[n)

Answer: Use pointer S

Design and Analysis of Algorithms

Case study I: Rod cutting problem

lengthi |1 2 3 5 6 7

E tn =

xample: n = 9 pricep; |1 5 8 10 17 17 20 24
len 2 3 4 5 6 7 8 9
DP[] 5 8 10 |13 |17 |18 |22 |25

S[] 0 0 0 0 2 2 0 1 2 3

Solution forn = 9:
Need to cut at S|9] = 3. Then remaining length is 9-3=6.
Need to cut at S|6] = 0. The solution is 3+6 which give 8+17=25

Design and Analysis of Algorithms

Case study I: Rod cutting problem

lengthi |1 2 3 5 6 7 8 9
1 5

4
; n =
xample:n =9 price pi | 8§ 9 10 17 17 20 24

len |0 1 2 3 4 5 6 7 8 9

DP[] | O 1 5 3 10 13 17 18 22 25

S[] 0 0 0 0 2 2 0 1 2 3

Solution forn = 9:
Need to cut at S|9] = 3. Then remaining length is 9-3=6.
Need to cut at S|6] = 0. The solution is 3+6 which give 8+17=25

Solution forn = 5:
Need to cut at S|5] = 2. Then remaining length is 5-2=3.
Need to cut at S[3] = 0. The solution is 2+3 which give 5+8=13

Design and Analysis of Algorithms

Case study Il: 0/1 Knapsack

Problem: A set of n items, with each item i having positive weight
w; and positive benefit v;. You are asked to choose items with
maximum total benefit so that the total weight is at most W

Example: “knapsack” with 9

lbs capacity
Items: [

T —

\LEIRITI 5
11 7

/

s L
AL
Weight: 41bs 2Ibs 21lbs 61lbs 2 Ibs Solution:
Benefit: $20 $3 $6 $25 480 e item 5 ($80, 2 Ibs)
e item 3 ($6, 2Ibs)
o item 1 ($20, 4lbs)

Design and Analysis of Algorithms

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg

Case study Il: 0/1 Knapsack

Idea: Dynamic Programming (first attempt).

Step 1:

Define the problem and subproblems.

Answer: Let DP|[k] be the maximum value | can
get from items {1, ..., k} without exceeding W

Step 2:
Itis DP

Step 3:
Itis DP

Step 4.

Define the goal/output given Step 1.
nj.

Define the base cases

0] = 0.

Define the recurrence

Design and Analysis of Algorithms

Case study Il: 0/1 Knapsack

Idea: Dynamic Programming (first attempt).

Step 4: Define the recurrence
ltem k will be used or not.

DP[k] = max(DP[k — 1],DP[k — 1] + v},)

But how do we know that DP[k-1] does not exceed W — wy, in
weight so we can use k?

Design and Analysis of Algorithms

Case study Il: 0/1 Knapsack

Idea: Dynamic Programming (correct attempt).

Step 1: Define the problem and subproblems.

Answer: Let DP|k, j| be the maximum value | can
get from items {1, ..., k} without exceeding j.

Design and Analysis of Algorithms

Case study Il: 0/1 Knapsack

Idea: Dynamic Programming (correct attempt).

Step 1: Define the problem and subproblems.

Answer: Let DP|k, j| be the maximum value | can
get from items {1, ..., k} without exceeding j.

Step 2: Define the goal/output given Step 1.
Itis DP|n, W].

Design and Analysis of Algorithms

Case study Il: 0/1 Knapsack

Idea: Dynamic Programming (correct attempt).

Step 1:

Define the problem and subproblems.

Answer: Let DP|k, j| be the maximum value | can
get from items {1, ..., k} without exceeding j.

Step 2:
Itis DP

Step 3:
Itis DP

Step 4.

Define the goal/output given Step 1.
n, Wj.

Define the base cases

0,j] =0foralljand DP[i, 0] = O for all i.

Define the recurrence

Design and Analysis of Algorithms

Case study Il: 0/1 Knapsack

Idea: Dynamic Programming (correct attempt).

Step 4: Define the recurrence
ltem k will be used or not.

DP|k][j] = max(DP[k — 1][j — w] + vi, DP[k — 1][j])

Design and Analysis of Algorithms

Case study Il: 0/1 Knapsack

Idea: Dynamic Programming (correct attempt).

Step 4: Define the recurrence
ltem k will be used or not.

DP|k][j] = max(DP[k — 1][j — w] + vi, DP[k — 1][j])

Question: How do we know that item k does not have weight
more than j?

Design and Analysis of Algorithms

Case study Il: 0/1 Knapsack

ldea: Dynamic Programming (correct attempt).

Step 4: Define the recurrence

ltem k will be used or not.

DP[k][j] = ifw, <j max(DP[k — 1][j — wy] + vi, DP[k — 1][j])
fw, >j DP[k—1][j]

Answer: Add an if statement in the recurrence.

Design and Analysis of Algorithms

Case study Il: 0/1 Knapsack

3 items, W =4

Example:
w1, = 2,’1)1 = 1,’!1)2 = 2,”02 = 1,’(1]3 = 3,’03 =95

Initialization:
j=0 1 2 3
i=0 0 0 0 0
1 0
2 0
3 0

Case study Il: 0/1 Knapsack

Example: 3 items, W =4
wy = 2,”01 = 1,’!1)2 = 2,”02 = 1,’(1]3 = 3,’03 =
j=0 1 2 3
i=0 0 0 0 0
f
2 0 0(j < w,)
3 0 0(j < ws)

Case study Il: 0/1 Knapsack

3 items, W =4

Example:
w1, = 2,’1)1 = 1,’!1)2 = 2,”{)2 = 1,’(1]3 = 3,’03 =95

i=0 1 2 3
i=0 0 0 o'\ 0
1 0 ‘O\mathO)

2 0 0

3 0 0

Case study Il: 0/1 Knapsack

3 items, W =4

Example:
w1, = 2,’1)1 = 1,’!1)2 = 2,”{)2 = 1,’(1]3 = 3,’03 =95

j=0 1 2

i=0 0 0 0

1 0 0 1

2 0 ¢o\%ﬁm0)
3 0 0

Case study Il: 0/1 Knapsack

3 items, W =4

Example:
w1, = 2,’1)1 = 1,’!1)2 = 2,”02 = 1,’(1]3 = 3,’03 =95

i=0 1 2 3
=0 0 0 0 0
1 0 0 1

2 0 0 %

3 0 0 1(< ws)

Case study Il: 0/1 Knapsack

3 items, W =4

Example:
w1, = 2,’1)1 = 1,’!1)2 = 2,”{)2 = 1,’(1]3 = 3,’03 =95

j=0 1 2 3

i=0 0 0 0 0

1 0 0 Hﬁm
2 0 0 1

3 0 0 1

Case study Il: 0/1 Knapsack

Example:

3 items, W =4

(105 :2,”01 :1,’21)2:2,”02 :1,’(1)3:3,”03 =

=0 3
i=0 0 0
1 0 1
2 0 max(1,v,+0)
3 0

Case study Il: 0/1 Knapsack

Example:

3 items, W =4

(105 :2,”01 :1,’21)2:2,”02 :1,’(1)3:3,”03 =

=0 3
i=0 0 0
1 0 1
2 0 1
3 0 max(1,v3+0)

Case study Il: 0/1 Knapsack

Example:

3 items, W =4
(105 :2,”01 = 1,’!1)2 :2,”02 :1,’(1)3:3,”03 =

j=0 4
i=0 0 0
1 0 max(0,v,+0)
2 0
3 0

Case study Il: 0/1 Knapsack

3 items, W =4

Example:
w1, = 2,”01 = 1,’!1)2 = 2,”02 = 1,’(1]3 = 3,’03 =95

j=0 1 2 3 4
i=0 0 0 0 0 0
1 0 0 1 1 1
2 0 0 1 1 max(1,v,+1)
3 0 0 1 5

Case study Il: 0/1 Knapsack

3 items, W =4

Example:
w1, = 2,”01 = 1,’!1)2 = 2,”02 = 1,’(1]3 = 3,’03 =95

j=0 1 2 3 4
i=0 0 0 0 0 0
1 0 0 1 1 1
2 0 0 1 1 2
3 0 0 1 5 max(2,0+v;)

Case study Il: 0/1 Knapsack

3 items, W =4

Example:
w1, = 2,’1)1 = 1,’!1)2 = 2,”02 = 1,’(1]3 = 3,’03 =95

j=0 1 2 3
i=0 0 0 0 0
1 0 0 1 1
2 0 0 1 1
3 0 0 1 5

Case study Il: 0/1 Knapsack

Pseudocode:

Array DP(][]
For : =0 ton do
DP[i, 0] < 0
For j =1 to W do
DPI0, j] + 0
For : =1 ton do

For j =1to W do Bottom up filliing DP

If j < w; then
DP[i]|j] - DP[i — 1][7]
else DP[i][j] « max(DP[i — 1][§], DP[i — 1][j — w;] + v,
]

return DP [n][IW]

Design and Analysis of Algorithms

Case study Il: 0/1 Knapsack

Pseudocode:

Array DP(][]
For : =0 ton do
DP[i, 0] < 0
For j =1 to W do
DPI0, j] + 0
For : =1 ton do

For j =1to W do Bottom up filliing DP

Ifj < w; then
DPi][j] < DP[i — 1][j]
else DP[i][j] + max(DPi — 1][j], DP[i — 1][j — w,] + v;)
]

return DP[n][IV]
Running time: ©(nWW)

Design and Analysis of Algorithms

	Slide 1: Lecture 8 Dynamic Programming I: Introduction, Memoization, Rod Cutting, Knapsack
	Slide 2: Dynamic Programming
	Slide 3: Dynamic Programming
	Slide 4: Dynamic Programming
	Slide 5: Dynamic Programming
	Slide 6: Dynamic Programming
	Slide 7: Dynamic Programming
	Slide 8: Dynamic Programming
	Slide 9: Dynamic Programming
	Slide 10: Dynamic Programming
	Slide 11: Dynamic Programming
	Slide 12: Case study I: Rod cutting problem
	Slide 13: Case study I: Rod cutting problem
	Slide 14: Case study I: Rod cutting problem
	Slide 15: Case study I: Rod cutting problem
	Slide 16: Case study I: Rod cutting problem
	Slide 17: Case study I: Rod cutting problem
	Slide 18: Case study I: Rod cutting problem
	Slide 19: Case study I: Rod cutting problem
	Slide 20: Case study I: Rod cutting problem
	Slide 21: Case study I: Rod cutting problem
	Slide 22: Case study I: Rod cutting problem
	Slide 23: Case study I: Rod cutting problem
	Slide 24: Case study I: Rod cutting problem
	Slide 25: Case study I: Rod cutting problem
	Slide 26: Case study I: Rod cutting problem
	Slide 27: Case study I: Rod cutting problem
	Slide 28: Case study I: Rod cutting problem
	Slide 29: Case study I: Rod cutting problem
	Slide 30: Case study I: Rod cutting problem
	Slide 31: Case study I: Rod cutting problem
	Slide 32: Case study I: Rod cutting problem
	Slide 33: Case study I: Rod cutting problem
	Slide 34: Case study I: Rod cutting problem
	Slide 35: Case study II: 0/1 Knapsack
	Slide 36: Case study II: 0/1 Knapsack
	Slide 37: Case study II: 0/1 Knapsack
	Slide 38: Case study II: 0/1 Knapsack
	Slide 39: Case study II: 0/1 Knapsack
	Slide 40: Case study II: 0/1 Knapsack
	Slide 41: Case study II: 0/1 Knapsack
	Slide 42: Case study II: 0/1 Knapsack
	Slide 43: Case study II: 0/1 Knapsack
	Slide 44: Case study II: 0/1 Knapsack
	Slide 45: Case study II: 0/1 Knapsack
	Slide 46: Case study II: 0/1 Knapsack
	Slide 47: Case study II: 0/1 Knapsack
	Slide 48: Case study II: 0/1 Knapsack
	Slide 49: Case study II: 0/1 Knapsack
	Slide 50: Case study II: 0/1 Knapsack
	Slide 51: Case study II: 0/1 Knapsack
	Slide 52: Case study II: 0/1 Knapsack
	Slide 53: Case study II: 0/1 Knapsack
	Slide 54: Case study II: 0/1 Knapsack
	Slide 55: Case study II: 0/1 Knapsack
	Slide 56
	Slide 57

