

Lecture 6

Divide and Conquer IV: integer multiplication, further examples

CS 161 Design and Analysis of Algorithms Ioannis Panageas

Divide and Conquer (recap)

Steps of method:

- Divide input into parts (smaller problems)
- Conquer (solve) each part recursively
- Combine results to obtain solution of original

 $T(n) = \text{divide time} + T(n_1) + T(n_2) + \dots + T(n_k) + \text{combine time}$

Problem: Given two n-digit numbers a, b in binary, compute $a \cdot b$.

Example: a = 101, b = 111. Answer: 100011.

Problem: Given two n-digit numbers a, b in binary, compute $a \cdot b$.

Example: a = 101, b = 111. Answer: 100011.

Standard Algorithm: $\Theta(n^2)$ time. Summing two *n*-bit numbers takes $\Theta(n)$ time.

Addition

Multiplication

Problem: Given two n-digit numbers a, b in binary, compute $a \cdot b$.

Multiplication

Example: a = 101, b = 111. Answer: 100011.

Standard Algorithm: $\Theta(n^2)$ time. Summing two *n*-bit numbers takes $\Theta(n)$ time.

Idea: Divide and conquer.

Design and Analysis of Algorithms

Idea: Divide and conquer.

Design and Analysis of Algorithms

Idea (modified): Divide and conquer.

Design and Analysis of Algorithms

Idea (modified): Divide and conquer.

Design and Analysis of Algorithms

Idea (modified): Divide and conquer.

Design and Analysis of Algorithms

Problem: Given two positive integers numbers a, n compute a^n .

Example: a = 3, n = 4. Answer: 81.

Problem: Given two positive integers numbers a, n compute a^n .

Example: a = 3, n = 4. Answer: 81.

Obvious approach:

ans $\leftarrow 1$ For i = 1 to n do ans $\leftarrow a \cdot$ ans return ans $\Theta(n)$ operations

Can we do better?

Problem: Given two positive integers numbers a, n compute a^n .

Example: a = 3, n = 4. Answer: 81.

Idea: Divide and Conquer.

Divide *n* in n/2 and n/2. Compute $x = a^{n/2}$ recursively. Return x^2 . Be careful on the parity of *n*.

Problem: Given two positive integers numbers a, n compute a^n .

Example: a = 3, n = 4. Answer: 81.

Idea: Divide and Conquer.

Power(a, n)If n == 1 then return a $x \leftarrow Pow(a, \lfloor n/2 \rfloor)$ If $n \mod 2 == 0$ then return $x \cdot x$ else return $a \cdot x \cdot x$

Problem: Given two positive integers numbers a, n compute a^n .

Example: a = 3, n = 4. Answer: 81.

Idea: Divide and Conquer.

Power(a, n)If n == 1 then return a $x \leftarrow Pow(a, \lfloor n/2 \rfloor)$ If $n \mod 2 == 0$ then return $x \cdot x$ else return $a \cdot x \cdot x$

Problem: Given two positive integers numbers a, n compute a^n .

Example: a = 3, n = 4. Answer: 81.

Idea: Divide and Conquer.

Power(a, n)If n == 1 then return a $x \leftarrow Pow(a, \lfloor n/2 \rfloor)$ If $n \mod 2 == 0$ then return $x \cdot x$ else return $a \cdot x \cdot x$

Running time: $T(n) = T\left(\frac{n}{2}\right) + \Theta(1) \rightarrow \Theta(\log n)$ by Master thm

Design and Analysis of Algorithms

Problem: Given two positive integers numbers a, n compute a^n .

Example: a = 3, n = 4. Answer: 81.

Idea: Divide and Conquer.

Remark: Same works for powers of Matrices.

Power(a, n)If n == 1 then return a $x \leftarrow Pow(a, \lfloor n/2 \rfloor)$ If $n \mod 2 == 0$ then return $x \cdot x$ else return $a \cdot x \cdot x$

Base case Divide + Conquer Combine

Running time: $T(n) = T\left(\frac{n}{2}\right) + \Theta(1) \rightarrow \Theta(\log n)$ by Master thm

Design and Analysis of Algorithms

Problem: Given a positive integer numbers n, compute Fibonacci F_n .

Definition: $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$.

First 10 numbers of sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Problem: Given a positive integer numbers n, compute Fibonacci F_n .

Definition:
$$F_1 = F_2 = 1$$
 and $F_n = F_{n-1} + F_{n-2}$.

First 10 numbers of sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Obvious approach:

```
ans 1 \leftarrow 1
ans 2 \leftarrow 1
If n \leq 2 then return 1
For i = 3 to n do
temp \leftarrow ans 1
ans 1 \leftarrow ans 1 + ans 2
ans 2 \leftarrow temp
return ans
Design and Analysis of Algorithms
```

Problem: Given a positive integer numbers n, compute Fibonacci F_n .

Definition: $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$.

First 10 numbers of sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Obvious approach:

ans $1 \leftarrow 1$ ans $2 \leftarrow 1$ If $n \leq 2$ then return 1 For i = 3 to n do temp \leftarrow ans 1 ans 1 \leftarrow ans 1 + ans 2 ans 2 \leftarrow temp return ans Design and Analysis of Algorithms $\Theta(n)$ operations

Can we do better?

Problem: Given a positive integer numbers n, compute Fibonacci F_n .

2xL

2a+56 Jary 2a+56 Jary

Definition: $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$.

First 10 numbers of sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Idea: Express F_n as a power of a Matrix.

Problem: Given a positive integer numbers n, compute Fibonacci F_n . Idea: Express F_n as a power of a Matrix.

Problem: Given a positive integer numbers n, compute Fibonacci F_n . Idea: Express F_n as a power of a Matrix.

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-2} \begin{pmatrix} F_2 \\ F_1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Problem: Given a positive integer numbers n, compute Fibonacci F_n . Idea: Express F_n as a power of a Matrix.

Design and Analysis of Algorithms

Problem: Given a positive integer numbers n, compute Fibonacci F_n . Solution:

Compute matrix $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-2}$ in $\Theta(\log n)$ time. Return the sum of the entries of first row.

Problem: Suppose you have an array A of n intervals $(x_1, y_1), ..., (x_n, y_n)$, where x_i, y_i are positive integers such that $x_i \leq y_i$. The interval (x_i, y_i) represents the set of integers between x_i and y_i . For example, the interval (3, 8) represents the set {3, 4, 5, 6, 7, 8}.

Define the **overlap** of two intervals to be the number of integers that are members of both intervals. For example (3, 8) and (4, 9) have overlap 5 (numbers 4, 5, 6, 7, 8) and (1, 2) and (3, 4) have overlap 0. Find the size of maximum overlap among all possible pairs of intervals.

Example: (1, 2), (3, 4), (3, 8), (4, 9). Answer: 5.

Obvious approach: For every pair *i*, *j* of intervals, find the overlap. Keep the maximum.

Obvious approach: For every pair *i*, *j* of intervals, find the overlap. Keep the maximum.

Suppose $x_i \le x_j$. (x_i, y_i) and (x_j, y_j) have overlap

 $\Theta(n^2)$ running time

Idea: Use divide and conquer. Suppose we first sort the intervals in increasing order of *x*-coordinate.

Idea: Use divide and conquer. Suppose we first sort the intervals in increasing order of *x*-coordinate.

- Divide the intervals in two parts *L* and *R*.
- Recursively find max overlap for each part maxL and maxR.

 Combine step? an algorithm (5) Design

Idea: Use divide and conquer. Suppose we first sort the intervals in increasing order of *x*-coordinate.

- Divide the intervals in two parts *L* and *R*.
- Recursively find max overlap for each part maxL and maxR.
- Combine step: maximum of maxL and maxR?

Idea: Use divide and conquer. Suppose we first sort the intervals in increasing order of *x*-coordinate.

- Divide the intervals in two parts L and R.
- Recursively find max overlap for each part maxL and maxR.
- Combine step: Check overlap between an interval in L and an interval in R. This should be in $\Theta(n)$.

We will scan the intervals once. One index for *L* and one index for *R*.

Combine step: Black is in *L*, red in *R*.

$$\begin{array}{ccc} x_i & & y_i \\ & & x_j & & y_j \end{array}$$

Overlap is $(y_j - x_j + 1)$. We can remove interval j from R.

Combine step: Black is in *L*, red in *R*.

Overlap is $(y_i - x_j + 1)$. We can remove interval *i* from *L*.

Combine step: Black is in *L*, red in *R*.

$$\begin{array}{cccc} x_i & y_i \\ & x_j & y_j \end{array} \end{array} \quad y_j$$

Overlap is $(y_i - x_j + 1)$. We can remove interval *i* from *L*.

All intervals after *j* in *R* will not give larger overlap with interval *i*.

Pseudocode:

Maxoverlap(A[1:n])If n == 1 return 0 $\max \mathbf{L} \leftarrow \operatorname{Maxoverlap}(A[1:n/2])$ $\max \mathbf{R} \leftarrow \operatorname{Maxoverlap}(A[n/2 + 1 : n])$ $maxComb \leftarrow 0$ $i \leftarrow 1, j \leftarrow n/2 + 1$ While $i \le n/2$ and $j \le n$ do If maxComb < overlap(i, j) then $\max Comb = overlap(i, j)$ If case 1 then $j \leftarrow j+1$ else If case 2 then $i \leftarrow i+1$ return maximum of maxL, maxR and maxComb

Pseudocode:

Maxoverlap(A[1:n])

If n == 1 return 0

 $\max \mathbf{L} \leftarrow \operatorname{Maxoverlap}(A[1:n/2])$

 $\begin{array}{l} \mathbf{maxR} \leftarrow \mathrm{Maxoverlap}(A[n/2+1:n]) & \textit{T(n/2)} \text{ Running time} \\ \mathbf{maxComb} \leftarrow 0 \end{array} \end{array}$

T(n/2) Running time

 $\Theta(n)$ Running time

 $i \leftarrow 1, \, j \leftarrow n/2 + 1$

While $i \le n/2$ and $j \le n$ do

 $\begin{array}{ll} \mathbf{If} \ \mathrm{maxComb} \ < \mathrm{overlap}(i,j) & \mathbf{then} \\ \mathrm{maxComb} = \mathrm{overlap}(i,j) \end{array} \\ \end{array}$

If case 1 then $j \leftarrow j + 1$

else If case 2 then $i \leftarrow i+1$

 $\mathbf{return}\ \mathrm{maximum}\ \mathrm{of}\ \mathrm{maxL}, \mathrm{maxR}\ \mathrm{and}\ \mathrm{maxComb}$

Case study IX: From practice problems $\Theta(n \log n)$ Running time Pseudocode: Maxoverlap(A[1:n])If n == 1 return 0 $\max \mathbf{L} \leftarrow \operatorname{Maxoverlap}(A[1:n/2])$ T(n/2) Running time $\max \mathbf{R} \leftarrow \operatorname{Maxoverlap}(A[n/2+1:n])$ T(n/2) Running time $maxComb \leftarrow 0$ $i \leftarrow 1, j \leftarrow n/2 + 1$ While $i \leq n/2$ and $j \leq n$ do $\Theta(n)$ Running time If maxComb < overlap(i, j) then $\max Comb = overlap(i, j)$ If case 1 then $j \leftarrow j+1$ else If case 2 then $i \leftarrow i+1$ return maximum of maxL, maxR and maxComb