

Lecture 6

Divide and Conquer IV: integer multiplication, further examples

CS 161 Design and Analysis of Algorithms
Ioannis Panageas

Divide and Conquer (recap)

Steps of method:

- Divide input into parts (smaller problems)
- Conquer (solve) each part <u>recursively</u>
- Combine results to obtain solution of original

$$T(n) =$$
divide time
+ $T(n_1) + T(n_2) + ... + T(n_k)$
+ combine time

Problem: Given two n-digit numbers a, b in binary, compute $a \cdot b$.

Example: a = 101, b = 111. Answer: 100011.

Problem: Given two n-digit numbers a, b in binary, compute $a \cdot b$.

Example: a = 101, b = 111. Answer: 100011.

Standard Algorithm: $\Theta(n^2)$ time. Summing two n-bit numbers takes $\Theta(n)$ time.

Addition

<mark>1</mark>	1	1	1	1	1	0	1	
	1	1	0	1	0	1	0	1
+	0	1	1	1	1	1	0	1
1	0	1	0	1	0	0	1	0

Multiplication

Problem: Given two n-digit numbers a, b in binary, compute $a \cdot b$.

Example: a = 101, b = 111. Answer: 100011. Multiplication Standard Algorithm: $\Theta(n^2)$ time. Summing two n-bit numbers takes $\Theta(n)$ time. Can we do better? Addition

Idea: Divide and conquer.

Idea: Divide and conquer.

Idea: Divide and conquer.

$$a = a_1 a_2 \dots a_{n/2} \ a_{n/2+1} \dots a_n$$

$$a_L \qquad a_R$$

$$b = b_1 b_2 \dots b_{n/2} \ b_{n/2+1} \dots b_n$$
Recursively
$$b_L \qquad b_R$$

$$a \cdot b = a_R \cdot b_R + 2^{\frac{n}{2}} a_L \cdot b_R + a_R \cdot 2^{\frac{n}{2}} b_L + 2^{\frac{n}{2}} a_L \cdot 2^{\frac{n}{2}} b_L$$

Running time:
$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n) \rightarrow \Theta(n^2)$$
 by Master thm

Idea (modified): Divide and conquer.

$$a = a_{1}a_{2} \dots a_{n/2} \ a_{n/2+1} \dots a_{n}$$

$$a_{L} \qquad a_{R}$$

$$b = b_{1}b_{2} \dots b_{n/2} \ b_{n/2+1} \dots b_{n}$$

$$b_{L} \qquad b_{R}$$

$$a \cdot b = 2^{\frac{n}{2}} a_{L} \cdot 2^{\frac{n}{2}} b_{L} + a_{R} \cdot b_{R} +$$

$$2^{\frac{n}{2}} ((a_{L} - a_{R}) \cdot (b_{R} - b_{L}) + a_{L} \cdot b_{L} + a_{R} \cdot b_{R})$$

Design and Analysis of Algorithms

Idea (modified): Divide and conquer.

$$b = b_1 b_2 \dots b_{n/2} b_{n/2+1} \dots b_n$$

$$b_L \qquad b_R$$

Recursively compute

- 1. $(a_L a_R)(b_R b_L)$
- 2. $a_L \cdot b_L$
- 3. $a_R \cdot b_R$

$$a \cdot b = 2^{\frac{n}{2}} a_L \cdot 2^{\frac{n}{2}} b_L + a_R \cdot b_R + 2^{\frac{n}{2}} ((a_L - a_R) \cdot (b_R - b_L) + a_L \cdot b_L + a_R \cdot b_R)$$

Idea (modified): Divide and conquer.

$$a = a_1 a_2 \dots a_{n/2} \quad a_{n/2+1} \dots a_n$$

$$a_L \qquad a_R$$

$$b = b_1 b_2 \dots b_{n/2} \quad b_{n/2+1} \dots b_n$$

$$b_L \qquad b_R$$

Recursively compute

- 1. $(a_L a_R)(b_R b_L)$
- 2. $a_L \cdot b_L$
- 3. $a_R \cdot b_R$

$$\Theta(n^{1.585})$$

Running time:
$$T(n) = 3T(\frac{n}{2}) + \Theta(n) \rightarrow \Theta(n^{\log_2 3})$$
 by Master thm

Problem: Given two positive integers numbers a, n compute a^n .

Example: a = 3, n = 4. Answer: 81.

Problem: Given two positive integers numbers a, n compute a^n .

Example: a = 3, n = 4. Answer: 81.

Obvious approach:

 $ans \leftarrow 1$ For i = 1 to n do $ans \leftarrow a \cdot ans$ return ans

 $\Theta(n)$ operations

Can we do better?

Problem: Given two positive integers numbers a, n compute a^n .

Example: a = 3, n = 4. Answer: 81.

Idea: Divide and Conquer.

Divide n in n/2 and n/2. Compute $x = a^{n/2}$ recursively. Return x^2 . Be careful on the parity of n.

Problem: Given two positive integers numbers a, n compute a^n .

Example: a = 3, n = 4. Answer: 81.

Idea: Divide and Conquer.

```
Power(a, n)
If n == 1 then return a
x \leftarrow \text{Pow}(a, \lfloor n/2 \rfloor)
If n \mod 2 == 0 then
return x \cdot x
else return a \cdot x \cdot x
```

Problem: Given two positive integers numbers a, n compute a^n .

Example: a = 3, n = 4. Answer: 81.

Idea: Divide and Conquer.

Power(a, n)If n == 1 then return a $x \leftarrow \text{Pow}(a, \lfloor n/2 \rfloor)$ If $n \mod 2 == 0$ then return $x \cdot x$ else return $a \cdot x \cdot x$

Base case

Divide + Conquer

Combine

Problem: Given two positive integers numbers a, n compute a^n .

Example: a = 3, n = 4. Answer: 81.

Idea: Divide and Conquer.

Power(a, n)If n == 1 then return a $x \leftarrow \text{Pow}(a, \lfloor n/2 \rfloor)$ If $n \mod 2 == 0$ then return $x \cdot x$ else return $a \cdot x \cdot x$

Base case

Divide + Conquer

Combine

Running time:
$$T(n) = T\left(\frac{n}{2}\right) + \Theta(1) \rightarrow \Theta(\log n)$$
 by Master thm

Design and Analysis of Algorithms

Problem: Given two positive integers numbers a, n compute a^n .

Example: a = 3, n = 4. Answer: 81.

Idea: Divide and Conquer.

Remark: Same works for powers of Matrices.

Power(a, n)If n == 1 then return a $x \leftarrow \text{Pow}(a, \lfloor n/2 \rfloor)$ If $n \mod 2 == 0$ then
return $x \cdot x$ else return $a \cdot x \cdot x$

Base case

Divide + Conquer

Combine

Running time: $T(n) = T\left(\frac{n}{2}\right) + \Theta(1) \rightarrow \Theta(\log n)$ by Master thm

Design and Analysis of Algorithms

Problem: Given a positive integer numbers n, compute Fibonacci F_n .

Definition: $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$.

First 10 numbers of sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Problem: Given a positive integer numbers n, compute Fibonacci F_n .

Definition: $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$.

First 10 numbers of sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Obvious approach:

```
ans1 \leftarrow 1

ans2 \leftarrow 1

If n \leq 2 then return 1

For i = 3 to n do

temp \leftarrow ans1

ans1 \leftarrow ans1 + ans2

ans2 \leftarrow temp

return ans
```

Design and Analysis of Algorithms

Problem: Given a positive integer numbers n, compute Fibonacci F_n .

Definition: $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$.

First 10 numbers of sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Obvious approach:

 $ans1 \leftarrow 1$ $ans2 \leftarrow 1$ If $n \leq 2$ then return 1

For i = 3 to n do $temp \leftarrow ans1$ $ans1 \leftarrow ans1 + ans2$ $ans2 \leftarrow temp$ return ans

 $\Theta(n)$ operations

Can we do better?

Design and Analysis of Algorithms

Problem: Given a positive integer numbers n, compute Fibonacci F_n .

Definition: $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$.

First 10 numbers of sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Idea: Express F_n as a power of a Matrix.

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}$$

Problem: Given a positive integer numbers n, compute Fibonacci F_n . Idea: Express F_n as a power of a Matrix.

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}$$
$$\begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} F_{n-2} \\ F_{n-3} \end{pmatrix}$$
$$\vdots$$
$$\begin{pmatrix} F_3 \\ F_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} F_2 \\ F_1 \end{pmatrix}$$

Problem: Given a positive integer numbers n, compute Fibonacci F_n .

Idea: Express F_n as a power of a Matrix.

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-2} \begin{pmatrix} F_2 \\ F_1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Problem: Given a positive integer numbers n, compute Fibonacci F_n .

Idea: Express F_n as a power of a Matrix.

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-2} \begin{pmatrix} F_2 \\ F_1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

 F_n is a + b and F_{n-1} is c + d!

Problem: Given a positive integer numbers n, compute Fibonacci F_n . Solution:

Compute matrix $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-2}$ in $\Theta(\log n)$ time.

Return the sum of the entries of first row.

Problem: Suppose you have an array A of n intervals $(x_1, y_1), \dots, (x_n, y_n)$, where x_i, y_i are positive integers such that $x_i \leq y_i$. The interval (x_i, y_i) represents the set of integers between x_i and y_i . For example, the interval (3, 8) represents the set $\{3, 4, 5, 6, 7, 8\}$.

Define the **overlap** of two intervals to be the number of integers that are members of both intervals. For example (3,8) and (4,9) have overlap 5 (numbers 4,5,6,7,8) and (1,2) and (3,4) have overlap 0. Find the size of maximum overlap among all possible pairs of intervals.

Example: (1, 2), (3, 4), (3, 8), (4, 9). Answer: 5.

Obvious approach: For every pair i, j of intervals, find the overlap. Keep the maximum.

Suppose
$$x_i \le x_j$$
.
 (x_i, y_i) and (x_j, y_j) have overlap

Obvious approach: For every pair i, j of intervals, find the overlap. Keep the maximum.

Suppose $x_i \le x_j$. (x_i, y_i) and (x_j, y_j) have overlap

 $\Theta(n^2)$ running time

Idea: Use divide and conquer. Suppose we first sort the intervals in increasing order of x-coordinate.

Idea: Use divide and conquer. Suppose we first sort the intervals in increasing order of x-coordinate.

- Divide the intervals in two parts L and R.
- Recursively find max overlap for each part maxL and maxR.
- Combine step?

Idea: Use divide and conquer. Suppose we first sort the intervals in increasing order of x-coordinate.

- Divide the intervals in two parts L and R.
- Recursively find max overlap for each part maxL and maxR.
- Combine step: maximum of maxL and maxR?

Idea: Use divide and conquer. Suppose we first sort the intervals in increasing order of x-coordinate.

- Divide the intervals in two parts L and R.
- Recursively find max overlap for each part maxL and maxR.
- Combine step: Check overlap between an interval in L and an interval in R. This should be in $\Theta(n)$.

We will scan the intervals once. One index for L and one index for R.

Combine step: Black is in L, red in R.

$$x_i$$
 y_i x_j y_j

Overlap is $(y_j - x_j + 1)$. We can remove interval j from R.

Combine step: Black is in L, red in R.

Overlap is $(y_i - x_j + 1)$. We can remove interval i from L.

Combine step: Black is in L, red in R.

Overlap is $(y_i - x_j + 1)$. We can remove interval i from L.

All intervals after j in R will not give larger overlap with interval i.

Pseudocode:

```
Maxoverlap(A[1:n])
   If n == 1 return 0
   \mathbf{maxL} \leftarrow \mathbf{Maxoverlap}(A[1:n/2])
   \mathbf{maxR} \leftarrow \mathbf{Maxoverlap}(A[n/2+1:n])
   maxComb \leftarrow 0
   i \leftarrow 1, j \leftarrow n/2 + 1
   While i \le n/2 and j \le n do
       If \max Comb < overlap(i, j) then
          \max Comb = overlap(i, j)
       If case 1 then j \leftarrow j + 1
      else If case 2 then i \leftarrow i+1
   return maximum of maxL, maxR and maxComb
```

Pseudocode:

```
Maxoverlap(A[1:n])
   If n == 1 return 0
                                                   T(n/2) Running time
   \mathbf{maxL} \leftarrow \mathbf{Maxoverlap}(A[1:n/2])
   \max \mathbf{R} \leftarrow \operatorname{Maxoverlap}(A[n/2+1:n]) T(n/2) Running time
   maxComb \leftarrow 0
   i \leftarrow 1, j \leftarrow n/2 + 1
   While i \leq n/2 and j \leq n do
                                                   \Theta(n) Running time
       If \max Comb < overlap(i, j) then
           \max Comb = overlap(i, j)
       If case 1 then j \leftarrow j + 1
       else If case 2 then i \leftarrow i+1
   return maximum of maxL, maxR and maxComb
```

Design and Analysis of Algorithms

```
\Theta(n \log n) Running time
Pseudocode:
      Maxoverlap(A[1:n])
          If n == 1 return 0
          \mathbf{maxL} \leftarrow \mathbf{Maxoverlap}(A[1:n/2])
                                                           T(n/2) Running time
          \max \mathbf{R} \leftarrow \operatorname{Maxoverlap}(A[n/2+1:n]) T(n/2) Running time
          maxComb \leftarrow 0
          i \leftarrow 1, j \leftarrow n/2 + 1
          While i \leq n/2 and j \leq n do
                                                           \Theta(n) Running time
              If \max Comb < overlap(i, j) then
                 \max Comb = overlap(i, j)
              If case 1 then j \leftarrow j + 1
             else If case 2 then i \leftarrow i+1
```

Design and Analysis of Algorithms

return maximum of maxL, maxR and maxComb