

#### Lecture 4

Divide and Conquer III: quicksort, quickselect, median, integer multiplication

CS 161 Design and Analysis of Algorithms
Ioannis Panageas

# Divide and Conquer (recap)

### Steps of method:

- Divide input into parts (smaller problems)
- Conquer (solve) each part <u>recursively</u>
- Combine results to obtain solution of original

$$T(n) =$$
divide time  
+  $T(n_1) + T(n_2) + ... + T(n_k)$   
+ combine time

Problem: We are given n points  $(x_1, y_1), ..., (x_n, y_n)$  on the plane. A point  $(x_i, y_i)$  is called a maximum point if there is no other point  $(x_j, y_j)$  that  $x_i \le x_j$  and  $y_i \le y_j$ .

Example: x captures pool size and y restaurant quality. 10 hotels



Problem: We are given n points  $(x_1, y_1), ..., (x_n, y_n)$  on the plane. A point  $(x_i, y_i)$  is called a maximum point if there is no other point  $(x_j, y_j)$  that  $x_i \le x_j$  and  $y_i \le y_j$ .

Example: x captures pool size and y restaurant quality. 10 hotels



Problem: We are given n points  $(x_1, y_1), ..., (x_n, y_n)$  on the plane. A point  $(x_i, y_i)$  is called a maximum point if there is no other point  $(x_j, y_j)$  that  $x_i \le x_j$  and  $y_i \le y_j$ .

#### **Obvious approach:**

For every point  $(x_i, y_i)$ , check if it is maximum. To check if it is maximum, you check ------

the condition with all other points.



Problem: We are given n points  $(x_1, y_1), ..., (x_n, y_n)$  on the plane. A point  $(x_i, y_i)$  is called a maximum point if there is no other point  $(x_j, y_j)$  that  $x_i \le x_j$  and  $y_i \le y_j$ .

#### Pseudocode:

counter  $\leftarrow 0$ 

Running time  $\Theta(n^2)$ 

For i = 1 to n do

 $flag \leftarrow 1$ 

For j = i + 1 to n do

If  $(x_j > x_i \text{ and } y_j > y_i)$  then flag  $\leftarrow 0$ 

 $counter \leftarrow counter + flag$ 

Can we do better?

return counter

Problem: We are given n points  $(x_1, y_1), ..., (x_n, y_n)$  on the plane. A point  $(x_i, y_i)$  is called a maximum point if there is no other point  $(x_j, y_j)$  that  $x_i \le x_j$  and  $y_i \le y_j$ .

Idea: Divide and conquer. Divide step and Combine step is challenging.



Divide step: It should split the points in two parts of equal size. How?

Divide step: It should split the points in two parts of equal size.

How? Choose the middle (median) point with respect to x

coordinates.



Divide step: It should split the points in two parts of equal size.

How? Choose the middle (median) point with respect to x

coordinates.



Combine step: Return  $M_1 \cup M_2$ ?

Combine step: Return  $M_1 \cup M_2$ ? Wrong: blue points below of  $M_1$  are not part of the solution



Combine step idea:  $M_2$  points should part of the solution. From  $M_1$ , the points that are maximum should not be dominated by smallest with respect to x coordinates in  $M_2$ 



#### Pseudocode:

```
\begin{aligned} & \textbf{if } n = 1 \textbf{ then} \\ & \textbf{return } S \\ & \textbf{Let } p \textbf{ be the median point in } S, \textbf{ by } x \textbf{ -coordinates} \\ & \textbf{Let } L \textbf{ be the set of points less than } p \textbf{ in } S \textbf{ by } x \textbf{ -coordinates} \\ & \textbf{Let } G \textbf{ be the set of points greater than or equal to } p \textbf{ in } S \textbf{ by } x \textbf{ -coordinates} \\ & M_1 \leftarrow \textbf{MaximaSet}(L) \\ & M_2 \leftarrow \textbf{MaximaSet}(G) \\ & \textbf{Let } q \textbf{ be the smallest point in } M_2 \\ & \textbf{ for each point, } r, \textbf{ in } M_1 \textbf{ do by } x \textbf{ -coordinates} \\ & \textbf{ if } x(r) \leq x(q) \textbf{ and } y(r) \leq y(q) \textbf{ then} \\ & \textbf{ Remove } r \textbf{ from } M_1 \\ & \textbf{ return } M_1 \cup M_2 \end{aligned}
```

#### Pseudocode:

```
MaximaSet(S,n):
           if n = 1 then
                return S
           Let p be the median point in S, by x -coordinates
           Let L be the set of points less than p in S by x -coordinates
           Let G be the set of points greater than or equal to p in S by x -coordinates
           M_1 \leftarrow \mathsf{MaximaSet}(L)
           M_2 \leftarrow \mathsf{MaximaSet}(G)
           Let q be the smallest point in M_2
           for each point, r, in M_1 do by x -coordinates
                                                              Running time??
                if x(r) \le x(q) and y(r) \le y(q) then
                    Remove r from M_1
           return M_1 \cup M_2
Running time is T(n) = 2T(n/2) + T_{\text{media}}(n) + T_{\text{min}}(n) + \Theta(n)
                                = 2T(n/2) + T_{\text{media}}(n) + \Theta(n)
```

Design and Analysis of Algorithms

### Quicksort (recap)

### **Steps of Quicksort:**

Divide: pick an element x
 (called pivot) and partition
 into L, {x} and R.



# Quicksort (recap)

### **Steps of Quicksort:**

- Divide: pick an element x
   (called pivot) and partition
   into L, {x} and R.
- Conquer: L and R are sorted recursively.



# Quicksort (recap)

### **Steps of Quicksort:**

- Divide: pick an element x
   (called pivot) and partition
   into L, {x} and R.
- Conquer: L and R are sorted recursively.
- Combine: return sortedL, x, sortedR.



#### Pivot selection



Partition, recursive call and pivot selection



Partition, recursive call, base case



Recursive call, ..., base case, join



### Recursive call, pivot selection



Partition, ..., recursive call, base case



### Join, join



#### Pseudocode:

```
Quicksort(A[1:n]) If n == 0 then return null
  If n == 1 then
      return A|1|
  Choose pivot x
  splitindex \leftarrow 1
  For i = 1 to n do
     If A[i] < x then
       swap A[i] with A[splitindex]
       splitindex \leftarrow splitindex + 1
   swap x with A[splitindex]
  L = \text{Quicksort} (A[1:\text{splitindex}-1])
  R = \text{Quicksort} (A[\text{splitindex} + 1:n])
  return L[1: splitindex - 1], x, R[splitindex + 1: n]
                     Design and Analysis of Algorithms
```

#### Pseudocode:

```
Quicksort(A[1:n]) If n == 0 then return null
  If n == 1 then
                                              Base case
      return A|1|
  Choose pivot x
                                                 Pivot
  splitindex \leftarrow 1
                                               Partition
  For i = 1 to n do
     If A[i] < x then
       swap A[i] with A[splitindex]
       splitindex \leftarrow splitindex + 1
   swap x with A[splitindex]
  L = \text{Quicksort } (A[1:\text{splitindex} - 1])
                                                   Recursion
  R = \text{Quicksort} (A[\text{splitindex} + 1:n])
  return L[1: splitindex - 1], x, R[splitindex + 1: n]
                     Design and Analysis of Algorithms
```

Running time: Depends on the choice of the pivot.

Running time: Depends on the choice of the pivot.

Worst case: Pivot is the unique minimum or maximum element. Either *L* and *R* has size *n* - 1 and the other has size 0.

Example: 9 7 4 3 2 1

Choose pivots as follows: 1, then 2, then 3, then 4, then 7, then 9.

Running time: Depends on the choice of the pivot.

Worst case: Pivot is the unique minimum or maximum element. Either *L* and *R* has size *n* - 1 and the other has size 0.

Example: 9 7 4 3 2 1



Running time: Depends on the choice of the pivot.

Worst case: Pivot is the unique minimum or maximum element. Either *L* and *R* has size *n* - 1 and the other has size 0.

Example: 9 7 4 3 2 1

Number of computations of order  $n + (n - 1) + \dots + 2 + 1 \in \Theta(n^2)$ 



Running time: Depends on the choice of the pivot.

Average case: Random pivot gives expected time  $\Theta(n \log n)$ .

Idea: The pivot splits equally the array (the depth

of the tree will be  $\log n$ )



Running time: Depends on the choice of the pivot.

Average case: Random pivot gives expected time  $\Theta(n \log n)$ .

Idea: The pivot splits equally the array (the depth

of the tree will be  $\log n$ )

Can we achieve  $\Theta(n\log n)$  in worst case?



Idea: The pivot splits equally the array (the depth of the tree will be  $\log n$ ). Choose median as pivot.

Quicksort Running time:

$$T(n) = 2T(n/2) + \Theta(n) + T_{median}(n)$$

If we can find median in  $\Theta(n)$  then by Master thm: Quicksort in  $\Theta(n \log n)$  time.

Problem: Given an array A of n numbers, find the median in  $\Theta(n)$  time.

```
Example 1: A = [9,7,4,3,1,2]. Answer: 3 or 4.
```

Example 2: A = [9,7,17,3,10]. Answer: 9.

Problem: Given an array A of n numbers, find the median in  $\Theta(n)$  time.

```
Example 1: A = [9,7,4,3,1,2]. Answer: 3 or 4.
```

Example 2: A = [9,7,17,3,10]. Answer: 9.

Idea: Unfortunately sorting and picking the middle position needs  $\Theta(n \log n)$  time. Use divide and conquer.

Problem: Given an array A of n numbers, find the median in  $\Theta(n)$  time.

Idea: Use divide and conquer. Let's try to solve the more general problem of selection.

Problem: Given an array A of n numbers and positive integer k, find the k-th smallest in  $\Theta(n)$  time. Median when?

Problem: Given an array A of n numbers, find the k-th smallest in  $\Theta(n)$  time.

Divide: pick an element x
 (called pivot) and partition
 into L, {x} and R.



Problem: Given an array A of n numbers, find the k-th smallest in  $\Theta(n)$  time.

Divide: pick an element x
 (called pivot) and partition
 into L, {x} and R.



Where is the k-th element?



Problem: Given an array A of n numbers, find the k-th smallest in  $\Theta(n)$  time.

Divide: pick an element x
 (called pivot) and partition
 into L, {x} and R.



Where is the k-th element? Depends on the size of L!



Problem: Given an array A of n numbers, find the k-th smallest in  $\Theta(n)$  time.

- Divide: pick an element x
   (called pivot) and partition
   into L, {x} and R.
- Conquer and Combine: If  $|L| \ge k$  then recursively find k-th in L.



Problem: Given an array A of n numbers, find the k-th smallest in  $\Theta(n)$  time.

- Divide: pick an element x
   (called pivot) and partition
   into L, {x} and R.
- Conquer and Combine:

If  $|L| \ge k$  then recursively find k-th in L.

If |L| = k - 1 then x is k-th element.



Problem: Given an array A of n numbers, find the k-th smallest in  $\Theta(n)$  time.

- Divide: pick an element x
   (called pivot) and partition
   into L, {x} and R.
- Conquer and Combine:

If  $|L| \ge k$  then recursively find k-th in L.

If |L| = k - 1 then x is k-th element.

If |L| < k - 1 then recursively find k - L - 1-th element in R.



Problem: Given an array A of n numbers, find the k-th smallest in  $\Theta(n)$  time.

#### Pseudocode:

```
Quickselect(A, k)
  If len(A) == 1 then
    return A[1]
  Choose pivot x
  L = elements less than x
  R = elements greater than x
  If k \le |L| then
    Quickselect(L, k)
 else If k == |L| + 1 then return x
 else Quickselect(R, k-L-1)
```

Example: Each node represents a recursive call of quick-select



Design and Analysis of Algorithms

Problem: Given an array A of n numbers, find the k-th smallest in  $\Theta(n)$  time.

#### Pseudocode:

```
Quickselect(A, k)
  If len(A) == 1 then
    return A[1]
  Choose pivot x
  L = elements less than x
  R = elements greater than x
  If k \le |L| then
    Quickselect(L, k)
 else If k == |L| + 1 then return x
 else Quickselect(R, k-L-1)
```

Running time?

Depends on the choice of pivot

Good pivots: L and R have both at least c · n elements

Problem: Given an array A of n numbers, find the k-th smallest in  $\Theta(n)$  time.

Main idea: Recursively use quickselect algorithm itself to find a good pivot:

- Divide A into n/5 sets of 5 each
- Find a median in each 5-member set (constant time)
- Recursively find the median of the medians.

Problem: Given an array A of n numbers, find the k-th smallest in  $\Theta(n)$  time.

| 870 | 647   | 845 | 742 | 372 | 882 | 691 | 341 | 461 | 596 |
|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|
| 989 | [151] | 100 | 729 | 101 | 397 | 825 | 587 |     |     |
| 595 | (524) | 930 | 259 | 133 | 955 | 620 | 970 | 430 | 280 |
| 839 | 139   | 735 | 590 | 782 | 913 | 378 | 474 | 255 | 739 |
| 875 | 150   | 791 | 779 | 792 |     |     |     |     |     |

Median of 742, 596, 151, 397, 524, 620, 735, 474, 791 is 596 which is our **pivot**.

Problem: Given an array A of n numbers, find the k-th smallest in  $\Theta(n)$  time.



Problem: Given an array A of n numbers, find the k-th smallest in



Observation: L, R have size at least 3n/10. So, to get the pivot we need time:

$$T(n) = T(n/5) + T(7n/10) + \Theta(n)$$
. This yields  $\Theta(n)$ !

Problem: Given two n-digit numbers a, b in binary, compute  $a \cdot b$ .

Example: a = 101, b=111. Answer: 100011.

Problem: Given two n-digit numbers a, b in binary, compute  $a \cdot b$ .

Example: a = 101, b=111. Answer: 100011.

Standard Algorithm:  $\Theta(n^2)$  time. Summing two n-bit numbers takes  $\Theta(n)$  time.

#### Addition

| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |                |
|---|---|---|---|---|---|---|---|----------------|
|   | 1 | 1 | 0 | 1 | 0 | 1 | 0 | <mark>1</mark> |
| + | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1              |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0              |



Multiplication

Problem: Given two n-digit numbers a, b in binary, compute  $a \cdot b$ .

```
Example: a = 101, b=111. Answer: 100011.
                                              Multiplication
Standard Algorithm: \Theta(n^2) time. Summing two
n-bit numbers takes \Theta(n) time.
                          Can we do better?
        Addition
```

Idea: Divide and conquer.



Idea: Divide and conquer.



Idea: Divide and conquer.

$$a = a_1 a_2 \dots a_{n/2} \ a_{n/2+1} \dots a_n$$

$$a_L \qquad a_R$$

$$b = b_1 b_2 \dots b_{n/2} \ b_{n/2+1} \dots b_n$$
Recursively
$$b_L \qquad b_R$$

$$a \cdot b = a_R \cdot b_R + 2^{\frac{n}{2}} a_L \cdot b_R + a_R \cdot 2^{\frac{n}{2}} b_L + 2^{\frac{n}{2}} a_L \cdot 2^{\frac{n}{2}} b_L$$

Running time: 
$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n) \rightarrow \Theta(n^2)$$
 by Master thm

Idea (modified): Divide and conquer.

$$a = a_{1}a_{2} \dots a_{n/2} \ a_{n/2+1} \dots a_{n}$$

$$a_{L} \qquad a_{R}$$

$$b = b_{1}b_{2} \dots b_{n/2} \ b_{n/2+1} \dots b_{n}$$

$$b_{L} \qquad b_{R}$$

$$a \cdot b = 2^{\frac{n}{2}} a_{L} \cdot 2^{\frac{n}{2}} b_{L} + a_{R} \cdot b_{R} +$$

$$2^{\frac{n}{2}} ((a_{L} - a_{R}) \cdot (b_{R} - b_{L}) + a_{L} \cdot b_{L} + a_{R} \cdot b_{R})$$

Design and Analysis of Algorithms

Idea (modified): Divide and conquer.



$$b = b_1 b_2 \dots b_{n/2} b_{n/2+1} \dots b_n$$

$$b_L \qquad b_R$$

#### **Recursively compute**

- 1.  $(a_L a_R)(b_R b_L)$
- 2.  $a_L \cdot b_L$
- 3.  $a_R \cdot b_R$

$$a \cdot b = 2^{\frac{n}{2}} a_L \cdot 2^{\frac{n}{2}} b_L + a_R \cdot b_R + 2^{\frac{n}{2}} ((a_L - a_R) \cdot (b_R - b_L) + a_L \cdot b_L + a_R \cdot b_R)$$

Idea (modified): Divide and conquer.

$$a = a_{1}a_{2} \dots a_{n/2} \ a_{n/2+1} \dots a_{n}$$

$$a_{L} \qquad a_{R}$$

$$b = b_{1}b_{2} \dots b_{n/2} \ b_{n/2+1} \dots b_{n}$$

$$b_{L} \qquad b_{R}$$

#### Recursively compute

- 1.  $(a_L a_R)(b_R b_L)$
- 2.  $a_L \cdot b_L$
- 3.  $a_R \cdot b_R$

$$\Theta(n^{1.585})$$

Running time: 
$$T(n) = 3T(\frac{n}{2}) + \Theta(n) \rightarrow \Theta(n^{\log_2 3})$$
 by Master thm